
ORIGINAL RESEARCH
published: 19 August 2016

doi: 10.3389/fncom.2016.00086

Frontiers in Computational Neuroscience | www.frontiersin.org 1 August 2016 | Volume 10 | Article 86

Edited by:

Sliman J. Bensmaia,

University of Chicago, USA

Reviewed by:

Andrew Joseph Fuglevand,

University of Arizona, USA

Juan Álvaro Gallego,

Northwestern University, USA

Helen Huang,

North Carolina State University and

University of North Carolina at Chapel

Hill, USA

*Correspondence:

Francisco J. Valero-Cuevas

valero@usc.edu

Received: 29 April 2016

Accepted: 02 August 2016

Published: 19 August 2016

Citation:

Laine CM, Nagamori A and

Valero-Cuevas FJ (2016) The

Dynamics of Voluntary Force

Production in Afferented Muscle

Influence Involuntary Tremor.

Front. Comput. Neurosci. 10:86.

doi: 10.3389/fncom.2016.00086

The Dynamics of Voluntary Force
Production in Afferented Muscle
Influence Involuntary Tremor
Christopher M. Laine 1, 2, Akira Nagamori 2 and Francisco J. Valero-Cuevas 1, 2*

1Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA, 2Division of Biokinesiology

and Physical Therapy, University of Southern California, Los Angeles, CA, USA

Voluntary control of force is always marked by some degree of error and unsteadiness.

Both neural andmechanical factors contribute to these fluctuations, but how they interact

to produce them is poorly understood. In this study, we identify and characterize a

previously undescribed neuromechanical interaction where the dynamics of voluntary

force production suffice to generate involuntary tremor. Specifically, participants were

asked to produce isometric force with the index finger and use visual feedback to

track a sinusoidal target spanning 5–9% of each individual’s maximal voluntary force

level. Force fluctuations and EMG activity over the flexor digitorum superficialis (FDS)

muscle were recorded and their frequency content was analyzed as a function of

target phase. Force variability in either the 1–5 or 6–15Hz frequency ranges tended

to be largest at the peaks and valleys of the target sinusoid. In those same periods,

FDS EMG activity was synchronized with force fluctuations. We then constructed a

physiologically-realistic computer simulation in which a muscle-tendon complex was set

inside of a feedback-driven control loop. Surprisingly, the model sufficed to produce

phase-dependent modulation of tremor similar to that observed in humans. Further, the

gain of afferent feedback from muscle spindles was critical for appropriately amplifying

and shaping this tremor. We suggest that the experimentally-induced tremor may

represent the response of a viscoelastic muscle-tendon system to dynamic drive, and

therefore does not fall into known categories of tremor generation, such as tremorogenic

descending drive, stretch-reflex loop oscillations, motor unit behavior, or mechanical

resonance. Our findings motivate future efforts to understand tremor from a perspective

that considers neuromechanical coupling within the context of closed-loop control. The

strategy of combining experimental recordings with physiologically-sound simulations will

enable thorough exploration of neural and mechanical contributions to force control in

health and disease.
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INTRODUCTION

It is well known that humans cannot produce a perfectly stable force. Within the context of precise,
goal-directed actions, involuntary force fluctuations can reveal clinically relevant information
about neuromuscular control in disorders such as dystonia (Xia and Bush, 2007; Chu and Sanger,
2009), Parkinson’s disease (Vaillancourt et al., 2001; Ko et al., 2015), bruxism (Laine et al., 2015b),
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and essential tremor (Héroux et al., 2010), among others. In such
tasks, the nature of force variability may be influenced by both
central and peripheral components of sensorimotor integration.

Unfortunately, the utility of measuring involuntary force
fluctuations (i.e., tremor) within scientific or clinical settings
has been limited due to the large and often ambiguous set
of factors which can influence such measures. In some cases,
tremor may reflect a mechanical resonance whose frequency
depends on the physical characteristics of the muscle/limb in
question (Lakie et al., 2012; Vernooij et al., 2013). At the same
time, tremor may stem from cycles of excitation around the
stretch-reflex loop (Lippold, 1970; Young and Hagbarth, 1980;
Christakos et al., 2006; Erimaki and Christakos, 2008). The
two mechanisms likely interact, since reflex activity is itself
influenced bymuscle/tendon compliance (Rack et al., 1983), limb
loading (Joyce and Rack, 1974), contraction history (Gregory
et al., 1998), and the temporal dynamics of force production
(Xia et al., 2005).

It is clear that the specific type and extent of neuromechanical
coupling influencing performance of a given task are of key
importance for understanding the generation of force variability.
Understanding the factors which influence dynamic force control
is especially important given that this is the basis of manual
dexterity during activities of daily living. However, the neural
and/or mechanical origins of unintended force variability are not
always clear, particularly within the context of dynamic force
control.

In this study, we investigated the relationship between
voluntary force production and involuntary force variability in
a group of healthy adults engaged in a dynamic, isometric
force tracking task. Given the various links between reflex
activity, contraction dynamics, and tremor, our hypothesis was
that involuntary force variability would depend upon voluntary
contraction dynamics. In order to better understand the potential
sources of force variability within our experimental task, we used
a physiologically-realistic computer simulation to determine the
sufficiency of muscle-tendon mechanics and reflex pathways to
reproduce our experimental results. The simulation also allowed
us to characterize the sensitivity of force variability to parameters
such as reflex gain.

The significance of our study is two-fold. First, we describe
a novel source of tremor along with a method for its
experimental induction, and strong evidence for its origin
in musculotendon dynamics. Second, the sensitivity of this
tremor to both neural and mechanical factors within our
simulation implies that simple force tracking tasks, such as
described here, may represent a novel approach to investigating
peripheral components of sensorimotor integration in health and
disease.

METHODS

All procedures were approved by the institutional review
board at the University of Southern California and all
participants gave informed written consent prior to
participation. Ten healthy participants were recruited

(4 female, 6 male, aged 23–31 years) to carry out force tracking
experiments.

Physiological Data
Task
Participants were seated∼1m from a 17-inch computer monitor
which displayed a sinusoidal target with a vertical range
representing forces from 5 to 9% of the maximum force that each
individual could exert with the index finger of their self-reported
dominant hand (see Figure 1A). Visual feedback of exerted force
was provided in the form of a cursor which moved left to right
across the computer screen for 40 s before looping back to the
left. Prior to recordings, participants practiced tracking several
target cycles to become familiar with the task. Each participant
then tracked the 0.25Hz sinusoidal target for two 80 s trials
separated by several minutes of rest. A slow sinusoidal target is
a rich behavior that is ideal for probing dynamic dependencies.
For example, if tremor depended on force velocity, then tremor
amplitudes would appear to follow the derivative of the target
sinusoid (i.e., a cosine). If one direction of force (increasing
vs. decreasing) were tied to tremor amplitudes, then tremor
amplitudes would be largest along either the rising or falling
phase of the target sinusoid. If the magnitude of force were most
relevant, tremor amplitudes would essentially follow the target
trajectory, being largest at the peaks and smallest at the valleys.

As depicted in Figure 1A, a miniature single-axis force
transducer was fixed to the top of a plastic cylinder and located
under the tip of the finger. Participants were asked to produce
a downward force perpendicular to the force sensor, an action
requiring contraction of the index finger slip of the flexor
digitorum superficialis (FDS) muscle. This particular muscle
and joint action were chosen because flexion at the proximal
interphalangeal (PIP) joint is necessary for manipulation
activities of daily living, and because this straightforward
mechanical action is well suited for simulation.

Force and EMG Measurements
Surface EMG recordings were made over the distal portion
of the index finger slip of the FDS muscle using an active
bipolar electrode (Biometrics Ltd, Newport, UK) grounded at
the wrist. Confirmation of correct electrode positioning was
accomplished via palpation of the distal muscle belly (∼7 cm
proximal to the crease of the wrist, on the ulnar side) during index
finger flexion, as well as observation of ongoing EMG signals
during PIP joint flexion/extension and during our isometric task.
The EMG signals were acquired at 1000 samples per second
using a Biometrics DataLog system and associated software.
The measurement of force, and the display of visual feedback
to participants, was accomplished using custom MATLAB
(The MathWorks, Natick, MA, USA) scripts to acquire force
signals from a miniature load cell (ELB4-10, Measurement
Specialties, Hampton, VA, USA) using a USB-DAQ (National
Instruments, Austin TX, USA). The data acquisition unit sent a
synchronization pulse to the biometrics system at the start of each
recording. The data were analyzed offline using customMATLAB
scripts.
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Data Analysis
Conversion of Sinusoidal Force to Instantaneous

Phase
To uncover the slow, voluntary force associated with the intended
target trajectory, the force produced by each participant was
low-pass filtered at 0.5Hz. Using the Hilbert transform, the
instantaneous phase of this tracking force was calculated and
expressed in degrees (0–360◦) over the course of each target
cycle. This conversion was useful since instantaneous phase holds
information about the actual dynamics of force production at a
given time, regardless of tracking error. Although tracking error
was not a focus of this investigation, it was still important to
eliminate poorly tracked target cycles. Target cycles in which the
absolute tracking error exceeded 4% of a participant’s MVC level
at any time point were excluded from all further analysis.

Calculation of Instantaneous Tremor Amplitude
To quantify the presence of involuntary force fluctuations, the
sinusoidal force trajectories produced by each participant were
filtered into two different frequency bands.

First, we investigated the presence and magnitude of force
fluctuations at high frequencies (>6Hz), which cover the
frequency range of physiological tremor (Lippold, 1970; Elble and
Randall, 1976; Burne et al., 1984; Christakos et al., 2006). These
force fluctuations were extracted by band-pass-filtering the force
produced by each individual between 6 and 15Hz (zero-phase,
4th order Butterworth filter). Beyond about 15Hz, the amplitude
of force fluctuations is essentially negligible due to the low-pass
filtering effects of tissue (finger pad, tendon) and muscle.

Second, we quantified slow (1–5Hz) force fluctuations.
Generally, slow fluctuations in force stem from changes in the
overall drive to motor neurons (Allum et al., 1978; De Luca
et al., 1982; Miall et al., 1993; Slifkin et al., 2000; Squeri et al.,
2010). These slow fluctuations do include voluntary correction
of tracking errors, but our analysis focused on fluctuations that
were consistently present at particular phases of the target cycle,
and therefore reflect an involuntary process. To extract these
fluctuations, we used a 1–5Hz band-pass-filter (zero phase, 4th
order Butterworth filter).

An example of band-pass filtered force traces in relation to the
target sinusoid is depicted in Figure 1A (right).

Calculation of Tremor Modulation as a Function of

Tracking Phase
As described above, the tracking force produced over time by
each participant was converted to a trace of instantaneous phase
angles where each complete target cycle was represented as
a progression from 0 to 360◦. Each cycle was then divided
into 36 phase-bins (each representing 10◦). Again, it should
be noted that all analyses are based on the temporal dynamics
of the force produced by the participants and not on the
displayed target. This renders any positive or negative tracking
lags irrelevant [although they would be minimal given the
highly feed-forward nature of this type of task (Erimaki et al.,
2013)]. To examine the relationship between tracking phase and
force variability, we first converted each band-pass filtered force
signal into an instantaneous amplitude signal by rectification

FIGURE 1 | Experimental task and simulation. Participants were asked to

produce isometric force against a small load cell with the tip of the index finger

(A). Using feedback of their applied force, participants tracked a 0.25Hz

sinusoid during 80 s trials. The range of the target sinusoid was 5–9% of each

individual’s maximum voluntary contraction (MVC) force. An example of the

recorded force from one participant is depicted to the right (top trace). Below,

the same force trace has been filtered into 2 different bands, a 1–5Hz band

which captures slow tremor and tracking error (middle), and a 6–15Hz band

which reveals physiological tremor and fast twitches (bottom trace). In this

example, both high and low frequency force fluctuations appear to depend

upon the phase of the tracked sinusoid. (B) Depicts the implementation of a

control loop used to simulate the tracking experiment above. At the “spinal

cord,” three sources of input are summated. The first two sources are

proprioceptive signals from the muscle spindle (via group Ia and II afferents),

and Golgi tendon organ (GTO) (via Ib afferents) models, which provide positive

and negative feedback to the “spinal cord,” respectively. The third input is a

tracking signal sent from a supraspinal controller. This “tracking controller”

sends an output (C) which is continually updated according to the difference

between the target and the force (F) produced by the muscle (see text for

details). From the “spinal cord,” a neural drive (ND) signal is sent to a Hill-type

muscle model via an “activation filter” which further shapes the neural drive to

account for calcium dynamics within physiological muscle. The filtered muscle

activation (MA) signal sent from the “activation filter” generates contraction

(Fm), accounting for physical properties of the muscle-tendon complex, such

as a series and parallel elastic element (SE and PE), mass (M), viscosity (B),

and pennation angle (alpha). The delays and sign associated with each

feedback loop are also depicted.

and smoothing with a 200ms Gaussian window. The magnitude
of the resulting smoothed/rectified signal also serves as a
simple estimation of instantaneous variance within the specified
frequency band, given the equivalence between total signal
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power (in frequency domain) and total signal variance (in time
domain) (i.e., Parseval’s theorem). We then found the sum of the
filtered/rectified force values associated with each phase interval,
and divided each by the integral of the filtered/rectified force
trace. This procedure gives the relative proportion of total force
variability (within the specified frequency band) associated with
each 10◦ phase interval of the target cycle.

Under the null hypothesis, the proportion of force variability
in each phase bin does not depend on the phase progression of
the target cycle. Thus each 10◦ phase bin would be expected to
show about 2.8% (100%/36 bins) of the total force variance. To
test the null hypothesis, we compared our recorded proportions
to a phase-randomized distribution generated directly from the
recorded data (i.e., shuffled versions of our own data). We
constructed these shuffled distributions of proportion values
by randomly selecting a different 10◦ phase bin in each
tracked target cycle, and then calculating the proportion of
total force variability, as previously described. The process
was repeated 5000 times, creating a distribution of shuffled
proportion values which allowed us to determine a 95%
confidence interval. Proportions falling outside of this interval
would then represent statistically significant deviations from
chance level. Our use of aMonte–Carlomethod provides a direct,
conservative, and assumption-free statistical analysis. Similar
methods are often used in neuroscience, where analysis of real
vs. shuffled/randomized neural activity is common (Perkel et al.,
1967; Tam et al., 1988; Türker et al., 1996; Rivlin-Etzion et al.,
2006; Laine et al., 2012). In our case, alternative methods such as
testing for differences between individual phase bins, would be
ill-suited for identifying the timing of tremor modulation with
respect to the target phase, and would also not account for the
fact that the proportion within each phase bin is not strictly an
independent measurement.

The above methodology was applied to individual
participants. To evaluate the population as a whole, the
proportions for each phase bin were averaged across individuals.
As a statistical evaluation, we calculated, for each phase bin, the
number of individuals whose tremor proportion fell above or
below the 95% confidence interval. For any given phase bin, a
5% error rate might be expected. Since our analysis included
10 individuals, it could be expected that at least one may have
exceeded the confidence level purely by chance. However, the
binomial probability that 2 of 10 individuals should show a (false
positive) significance at the 95% confidence level is 0.015. For
this reason, our population significance level was set to 0.015, or
2 out of 10 individuals, for our consistency analysis.

In addition to analyzing the proportion of force variance in
each phase interval, we also calculated the cross-cycle average
tremor amplitude in each phase interval. This analysis yielded
an amplitude profile for each individual (and frequency band),
similar to the proportion profiles described above. We then
recorded the maximum and minimum values observed in the
amplitude profile of each individual, regardless of the particular
phase at which these values were found. This allowed us to
evaluate the actual extent of tremor amplitude modulation,
uncoupled from any particular pattern of tremor modulation
across target phases.

Force to EMG Coherence across Target Phases
Coherence is a frequency-domain measure of synchronization
(primarily phase-locking) between signals, and is bounded
between 0 (no correlation between signals) and 1 (perfect linear
correlation). Coherence between rectified EMG activity and force
is useful for identifying the frequency content of force-relevant
neural drive to muscles, since action potential shapes/sizes and
other recording artifacts only influence the EMG spectrum, but
would not be synchronized with force. In addition, coherence
between FDS activity and force tremor provides validation
that our simulation of a dynamically activated FDS muscle is
appropriate for exploring the potential origins of recorded force
fluctuations.

To calculate EMG to force coherence, the force and EMG
signals were concatenated across all trials from all subjects to
form two long signals. These signals were then converted to time-
frequency-representations (TFRs) via wavelet analysis. We chose
a wavelet approach so that we could precisely determine which
frequencies of force were synchronized with EMG, and at what
times. The technique is common where temporal variation of
spectral power or synchronization is of interest (e.g., Siemionow
et al., 2010; Tscharner et al., 2011). This was accomplished
through convolution of each original signal x(t) with a Gaussian-
windowed complex sinusoid (a Morlet wavelet), the duration
of which was set to span 3 cycles of each frequency (f) from
1 to 20Hz. The process can be expressed by the following
formula:

TFR
(

t, f
)

=
∫

x (t)
1

σ
√
2π

e−
(t − τ )2

2σ 2
e−j2π f (t−τ )dt

where the standard deviation (σ ) of the Gaussian window is set to
3/(2π f). The force trace (band-pass filtered between 1 and 20Hz)
as well as the EMG activity (rectified, normalized per subject to
have unit variance) were thus converted to complex-valued TFRs
(herein defined as TFR_Force and TFR_EMG, respectively).
The spectral power of each signal can be calculated as
follows:

Power_Force (t, f) = TFR_Force (t, f) • conj (TFR_Force (t, f))

Power_EMG (t, f) = TFR_EMG (t, f) • conj (TFR_EMG (t, f))

Where conj refers to the complex conjugate.
Likewise, the time-frequency cross-spectrum can then be

defined as:

TFR_cspec (t, f) = TFR_Force (t, f) • conj (TFR_EMG (t, f))

The time course of coherence can then be calculated per
frequency as:

TFR_Coherence (f) =
| TFR_cspec

(

f
)

∗W |∧2
(Power_Force

(

f
)

∗W) • (Power_EMG
(

f
)

∗W)

Where the term ∗W represents convolution of the indicated time
series with a rectangular window (W), the duration of which was
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set per frequency to be 7/f. The multiplication and division in the
above equation are simply element-by-element operations on the
time series data.

Prior to further analysis, coherence values were normalized
using Fisher’s r-to-z transform Fz = atanh(

√
C) where C

is the coherence at a given time-frequency point (Benignus,
1969).

Because of the short time scales involved in the calculation
of wavelet coherence, it is best to recast coherence values as a
statistical deviation from chance level. Here, the chance level
was derived empirically by recalculating the time-frequency
coherence after reversing the concatenated EMG signal in time.
This causes EMG signals from one participant to be tested for
coherence with force traces produced by a different participant,
and completely misaligns the signals with respect to the phase
progression of the sinusoidal target. The actual coherence values
for each frequency were then converted to standard Z-scores
with respect to the distribution of coherence values obtained
from the “fake” time series. This method helps to emphasize any
synchronization which varies significantly across target phases.
Values > 1.65 (the one-sided 95% confidence level for a Z-test)
indicate that the time-localized coherence between EMG and
force was greater than expected by chance at a given phase and
frequency.

Simulations
Closed-Loop Control Overview
We used a computational model of an afferented muscle to
study the dependence of tremor on the dynamics of force
production. A schematic diagram of the feedback-driven control
loop is shown in Figure 1B. Briefly, a Hill-type muscle-tendon
model was driven by a neural activation signal to produce force
under isometric conditions. The simulation was intended to
approximate the action of the FDS muscle in our experimental
data. The muscle-tendon model describes changes in force
as well as the magnitude and rate of associated changes in
the length of the muscle fascicle and tendon, accounting
for their viscoelastic properties. Our simulation includes two
spinal proprioceptive systems; the muscle spindle and the
GTO. Upon muscle fiber lengthening, the muscle spindle sends
excitatory feedback through primary (Ia) and secondary (II)
afferent fibers proportional to eccentric changes in muscle
fiber length and velocity; while GTOs send inhibitory feedback
(Ib) proportional to the force in the tendon. A tracking
controller, whose operation includes conduction and synaptic
delays appropriate for a transcortical loop (Lourenço et al.,
2006; Pruszynski et al., 2011; Sohn et al., 2015), sends a
command signal (C) to the “spinal cord” which is corrected
at each time step according to the difference between the
target force level and the actual force output from the muscle.
This tracking control signal simply ensured that the afferented
muscle-tendon model could follow the target force trajectory,
and is not intended to model a specific neural pathway, or
to recreate human visuomotor or voluntary tracking behaviors.
Signals from the tracking controller, muscle spindle, and
GTO, are integrated at the “spinal cord” to generate the α-
motoneuron drive to the lumped-parameter muscle model. This

neural drive (ND) at each ms (t) can be expressed in the
following form:

ND(t) = Ia (t− 15)+ II(t− 25)− Ib(t− 17)+ C(t)

The output of the tracking controller (C) is calculated as:

C(t) = C (t− 1) + k • (Target(t)− F(t− 35))

where F is the force on the tendon and k is a constant. Note that
the above represents a simple “iterative learning control” (ILC)
scheme (Wang et al., 2009).

To translate the neural drive into force, the signal was delayed
by an additional 22ms before reaching the muscle fibers to
account for conduction time along efferent fibers. At the muscle,
the signal was passed through an “activation filter” which shapes
the signal to account for calcium dynamics in physiological
muscle. Finally, the muscle-tendon model converts this muscle
activation signal to the force output of the tendon. In this
simulation, the delays for each pathway have been matched to
physiological recordings from humans and reflex latencies from
the FDS muscle in particular (Lourenço et al., 2006).

The muscle model, muscle spindle, and GTO elements of this
control loop have been published previously by various groups
and will be described and referenced individually below.

Control Loop Elements
Muscle Model
Our Hill-type muscle-tendon model and its mathematical
derivation were adopted from previous literature (He et al., 1991;
Brown et al., 1996). The schematic diagram of this muscle-tendon
model is presented in Figure 1B. The muscle fascicle consists
of a mass (M), two passive elastic elements (PE in Figure 1B),
a viscous element (B), and a contractile element (Fm), which is
connected with a pennation angle (α) to a series elastic element
(SE) representing tendon and aponeurousis.

The contractile element generates muscle force as a fraction
of the maximal force that the muscle is capable of producing.
This is defined as the product of its physiological cross-sectional
area and a constant factor (45N/cm2) (Holzbaur et al., 2005).
Two parallel elastic elements characterize passive behaviors
of muscle fascicles. The first (non-linear) spring acts against
stretch of muscle fascicle, while the second (linear) spring resists
compression (Brown et al., 1996). The series elastic element (SE)
shown in Figure 1B is a lumped non-linear spring model of
tendon and aponeurosis. The force produced by this element in
relation to the length of the tendon has been implemented as in
Brown et al. (1996). The contraction dynamics within themuscle-
tendon unit are modeled as a second-order differential equation
(He et al., 1991).

Taking the above factors into account, the output force
function (F) can be summarized as follows

F(t) = MA(t) • FL (t) • FV (t)+ F_PE1 (t)+ F_PE2 (t)

+ (B • v(t))+ (a (t) •M)

Where MA is the muscle activation (the output of the activation
filter), FL is the force-length function, FV is the force-velocity

Frontiers in Computational Neuroscience | www.frontiersin.org 5 August 2016 | Volume 10 | Article 86

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Laine et al. Force Dynamics and Tremor

function, F_PE1 and F_PE2 are the forces produced by the two
elastic passive elements in the model, v(t) and a(t) are the velocity
and acceleration of muscle fiber contraction, and themuscle mass
(M) and viscosity (B) are constants.

Because the force produced by human participants ranged
from 5 to 9% of maximal effort, we applied the same forces to
the simulated FDS muscle. Given our focus on understanding
the general nature of tremor modulation by dynamic force
production, it was not necessary to calculate the precise, isolated
contribution of the FDS muscle to the generation of index
finger force in our experimental task. To simulate the FDS
muscle, architectural parameters were set (Table 1) according to
published anatomical data (Lieber et al., 1991; Holzbaur et al.,
2005). For our purposes, the muscle fibers of the FDS muscle
associated with the tendon acting on PIP joint of the index finger
were combined into a single belly for simplicity.

Muscle Spindle Model
The muscle spindle model employed in this study is adapted
from Mileusnic and Loeb (2006). This computational model
was chosen because it is both physiologically realistic and, at
the same time, is immediately compatible with the inputs and
outputs of the other elements within our control loop. The model
comprises three types of intrafusal fibers, namely, the bag1, bag2,
and chain fibers, all of which are modeled as a second-order
mechanical system (a mass, a viscous element, and parallel and
series elastic elements), similar to a Hill-type muscle-tendon
model. Each of the intrafusal fibers receives input describing
the muscle fascicle length, velocity, and acceleration, as well
as a fiber-type-specific fusimotor activation signal (dynamic or
static). In this study, fusimotor activation was set to be constant
during each simulation run. The fusimotor gains tested were 75,
150, and 350. Functionally, these are arbitrary units, but can
be expressed conceptually as pulses per second. We chose to
define our baseline value as 75, since this is near the previously
published value of 70 (Mileusnic and Loeb, 2006), and we varied
that parameter because fusimotor drive is known to depend
upon task and individual psychology (Ribot et al., 1986; Ribot-
Ciscar et al., 2000, 2009; Hospod et al., 2007). Because fusimotor
drive is modified by the nature of the task independently of
(and even without) α-motoneuron firing (neural drive, in our
model), we chose not to assume obligatory α-γ coactivation.
It is true that mechanisms other than fusimotor drive may
change the effective gain of afferent activity (e.g., presynaptic
inhibition). Here, variation in fusimotor drive is not only a
likely physiological occurrence, but also serves to more generally

TABLE 1 | Architectural parameters of the slip to the index finger of the

flexor digitorum superficialis (FDS) muscle.

Mass (g) 12

Optimal fascicle length (cm) 8.4

Resting fascicle length (cm) 6.8

Tendon slack length (cm) 27.5

Pennation angle (◦) 6

Cross-sectional area per head (cm2) 1.7

represent the overall gain of spindle feedback to motor neurons.
For integration with the feedback control loop, the final outputs
of the spindle model were normalized to fall between 0 and 1.

Golgi Tendon Organ Model
The GTO model was adopted from Elias et al. (2014). This GTO
model presents the overall behavior of a population of Ib fibers.
It was placed in series with tendon, so that it receives tendon
force as an input. The force was then converted into Ib fiber
output. The transfer function described in Elias et al. (2014) was
implemented using the c2d function in MATLAB. The Ib fiber
output was scaled between 0 and 1, as was carried out for the
spindle outputs.

Activation Filter
The activation filter adjusts the neural drive signal to account for
the effects of calcium dynamics (release and reuptake) on cross-
bridge formation, as described in Song et al. (2008). The resulting
muscle activation signal (MA in Figure 1B) is the “effective” drive
delivered to the muscle model.

Simulation Analysis
Force tracking was simulated for 128 s with new values for each
output parameter derived every ms. To be certain that only
consistent, steady-state behavior was analyzed, only the last 30
cycles were used for analysis. The muscle forces produced by the
simulation were analyzed in the same way as the experimentally
recorded force tremor, providing a direct comparison.

RESULTS

Tremor during Force Tracking
The phase of voluntary force modulation influenced both low
(1–5Hz) and high (6–15Hz) frequency bands of involuntary
tremor. For reference, the top panels of Figures 2A,B show
the target isometric force sinusoid, which spanned from 5 to
9% of each individual’s maximum voluntary force level. The
panels immediately below the target in Figures 2A,B show the
proportion of total tremor variance associated with each phase
of the target sinusoid. The proportion of total force variance
accumulated in each 10◦ phase bin is shown for low (Figure 2A,
upper trace) and high (Figure 2B, upper trace) frequency bands.
Each plot represents a grand average over all 10 participants, who
together tracked a total of 357 target cycles. The largest tremor in
either frequency band was observed at the beginning of the rising
phase of the target. A second time period of increased tremor
amplitude appeared at or slightly after the peak of the target cycle,
mainly for high frequency tremor. The dashed line indicates the
proportion of variance to be expected in each phase bin if force
variability were evenly distributed over all phase bins.

Below these average tremor profiles are the cross-participant
standard deviations associated with the mean proportions in the
traces above. Variance across participants was highest at the base
of the target sinusoid, where bursts of tremor (e.g., Figure 1) were
often observed. The bottom panels of Figures 2A,B depict the
number of participants (out of 10 total) whose tremor profiles
showed statistically larger (above 0 line) or smaller (below 0
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FIGURE 2 | Phase-dependent modulation of tremor amplitude. The

amplitude of force variability within the 1–5 and 6–15Hz frequency bands

depended upon the phase of the target cycle (shown at the top of each

column, for reference). The first data panel of (A) (left column) shows the mean

proportion of total force variability (within the 1–5Hz band) observed in each

10◦ phase bin, calculated over all participants. The same panel of the right

column (B) shows this analysis for 6–15Hz force fluctuations. The horizontal

dashed line in each figure represents the proportion expected per bin if tremor

amplitude were constant across target phases. The 1–5Hz frequency band

shows a clear peak at the initiation of the rising phase of the target sinusoid. A

similar profile was observed for 6–15Hz force fluctuations, but with a more

pronounced tremor amplification at the peak of the target sinusoid. Below

these grand averages are depicted the cross-participant standard deviation for

each phase bin. The cross-participant variability is generally highest at the

valley of the target sinusoid, when bursts of high amplitude tremor were more

likely to occur (as can be seen in Figure 1A). The bottom panels are

histograms which depict the number of individuals (out of 10), whose tremor

profiles deviated significantly from chance level at each phase-bin, as

determined by a Monte-Carlo test (see text for details). In these histograms,

counts above the 0 line record the number of individuals who displayed

greater than chance-level proportions. Counts below 0 indicate the number of

individuals showing lower tremor than expected by chance at each phase.

Note that these “less than chance” histogram counts are an effect of other

phases showing high proportions of tremor, and do not indicate suppression

of ongoing tremor, which was never observed. Histogram counts exceeding

the shaded region indicate that significant effects at a given phase were more

consistent across individuals than could have occurred by chance (according

to a binomial test). The histograms show that the modulation of tremor by

target phase was fairly consistent across individuals. The arrows on each

histogram (A,B bottom), emphasize that tremor was most often larger than

expected at the peaks and valleys of the target sinusoid, for both

frequency bands.

line) proportions in each phase bin than expected by chance
(as determined by a Monte–Carlo test, as previously described).
The shaded region marks the number of participants that may

have been expected to show significant effects by chance. That
is, histogram counts exceeding the upper limits of the shaded
range represent a consistent amplification of tremor occurred
across the population of participants. Histogram counts below
the 0 line are caused by the high proportions observed in
other phase bins and do not represent suppression of tremor,
which was never observed. Again, column A shows results for
1–5Hz force fluctuations and column B shows results for 6–
15Hz force fluctuations. For both frequency bands, a significant
population effect was observed at the beginning of the rising
phase of the target sinusoid, and at the beginning of the
falling phase.

EMG to Force Coherence
To confirm that the cross-cycle modulation of force variability
was also reflected in the activation of the FDS muscle, we
calculated EMG-to-force coherence. Using wavelet coherence,
we were able to examine the coupling between signals at each
frequency, and at each phase of the target cycle. The statistical
magnitude of coherence (z-score with respect chance-level)
shown in Figure 3 for each time-frequency pixel was calculated
from the full data set (all 357 tracked cycles). Pixels with values
greater than 1.65 can be considered as significant at the 95%
confidence level.

Importantly, the coupling between EMG and force signals
closely resembles the phase progression of force tremor
amplitudes, and reflects the same frequency profile. The
phase-related modulation of coherence demonstrates temporal
variation in synchronization between signals, which would be
expected if the frequency content of neural drive depended on
the phase progression of the tracking action.

Actual Tremor Amplitudes during Force
Tracking
Although our study is primarily focused on the modulation
pattern of normalized tremor amplitudes as a function of
voluntary force dynamics, it is also important to address actual
tremor amplitudes, and the extent of amplitude modulation
across target phases. Since the pattern of tremor modulation
could vary across individuals (described below), we chose to
record the maximum, minimum, and 1 amplitude (max-min).
The latter was important for better comparability with our
simulation results, since our simulation does not contain noise or
ongoing physiological tremor, both of which are typically present
in human participants. In general, we found tremor amplitudes
fluctuated by a factor of about 2 over the course of a target
cycle. Figure 4 shows the mean and cross-participant SD for each
measure.

Tremor Modulation across Different
Individuals
Although the phase-dependent modulation of force variability
shown in Figure 2 was representative of the population overall,
tremor profiles did vary across individuals. Figures 5A–D depicts
the tremor proportion profiles for high and low frequency bands
in 4 individuals whose profiles differed from each other. Overall,
most participants showed some degree of increased tremor
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FIGURE 3 | EMG to Force Coherence. To confirm a correlation between

force fluctuations and muscle activity, coherence between FDS EMG activity

and force was analyzed as a function of target-phase (x axis) and frequency

(y-axis). The statistical magnitude of coherence (z-score with respect

chance-level) is represented by the color of each pixel. Values >1.65 indicate

statistically greater coupling than expected by chance. Each phase-frequency

pixel represents the average coherence observed at that specific pixel,

calculated over 357 tracked target cycles. The pattern of coupling is similar to

the behavior of force fluctuations (as shown in Figure 2). This plot confirms

that FDS activity corresponds with phase-dependent force fluctuations.

(in either frequency band) at the peaks and/or valleys of the
target sinusoid. The modulation of tremor amplitudes in these
individuals, shown in the bar graphs at the bottom of each
column, indicate that 1–5Hz tremor amplitude was consistently
higher than 6–15Hz tremor amplitude, but the ratio could vary
across individuals.

Simulation Results
By embedding a modeled FDS muscle within a feedback-driven
control loop, we were able to simulate the force tracking
experiment carried out by human participants. Surprisingly, this
simple model of an afferented FDS muscle sufficed to produce
much the same pattern of tremor modulation in relation to the
0.25Hz sinusoid as seen in Figures 2, 5. Figures 6A–C shows
the modulation of tremor obtained when the simulation was
run using low, medium, and high fusimotor drive. Adjusting the
fusimotor drive, and thus, the gain of afferent feedback from
the muscle spindle, could produce variation in simulation results
similar to the type of variation observed across different subjects
(e.g., compare Figure 5A with Figure 6A, or Figure 5C with
Figure 6C). Force fluctuations near the valley of the sinusoidal

FIGURE 4 | Tremor modulation amplitude. For each participant, the

average cross-cycle tremor amplitude was calculated for each phase of the

target sinusoid. The resulting amplitude profile was characterized (for both 1–5

and 6–15Hz frequency bands) in terms of the maximum tremor amplitude, the

minimum amplitude, and the difference between the two, which indexes the

average amplitude modulation across one target cycle. The cross-participant

mean amplitudes for each feature (regardless of the precise phase at which

they occurred for each individual) are depicted by the red (low frequency) and

blue (high frequency) bars. The error bars show the cross-participant standard

deviations for these features. For both frequencies, there was a nearly two-fold

modulation of tremor amplitude across a target cycle, on average.

target were present in all cases, although the fluctuations
occurring at the peak of the sinusoid was reduced as the
afferent gain was increased. As with the experimental data, the
rising and falling phases of the target sinusoid did not appear
to be associated with consistent changes in tremor activity.
At the bottom of each column in Figure 6 are bar graphs
showing the average extent of amplitude modulation. Since
the minimum amplitude was nearly 0 in all cases, these bars
also represent the average maximum amplitude across phases
as well. Of particular importance is the fact that increasing
fusimotor gain resulted in a doubling (B) and tripling (C)
of high frequency tremor amplitudes, as compared with the
low fusimotor drive condition (A). Low frequency tremor
did not appear to be consistently influenced, but if anything,
was actually reduced in amplitude as fusimotor drive was
increased. It should be noted that the amplitudes measured
from our simulation should not be expected to precisely
match those recorded experimentally. Of greater importance
is the relative relationship between high and low frequency
tremor amplitudes, and how they vary across individuals or
simulation parameters. That said, our simulated amplitudes
appear to be smaller than those recorded experimentally by a
factor of about 10, which is reasonable considering the highly
reduced/simplified nature of the model and the absence of any
noise.

We also ran the simulation after eliminating various
elements of the control loop. Figure 7 shows the resulting
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FIGURE 5 | Phase-dependent tremor modulation varies across individuals. Tremor profiles were often variable across individual participants. Panels (A–D)

depict the dependence of high frequency (bottom traces) and low frequency (top traces) force variability on target phase. Panels (A–D) represent profiles from four

individuals. The shaded regions show the 95% confidence interval, as derived by a Monte–Carlo test. Tremor in either frequency range tended to be largest at the

initiation of the rising phase of the target sinusoid and/or at the peak of the target sinusoid. At the bottom of each column, the average cross-cycle amplitude

modulation (maximum-minimum amplitude) is plotted for the 1–5 and 6–15Hz frequency bands.

tremor modulation pattern when the simulation was run
completely feedforward (Figure 7A), using only feedback from
the controller (Figure 7B), using only the controller and GTO
feedback (Figure 7C), and using only the controller and spindle
feedback (Figure 7D). Where spindle feedback is present, the
fusimotor drive was set to 75 (as in Figure 6A). An increase
in 6–15Hz fluctuations occurred roughly at the peak and
valley of the target sinusoid regardless of the feedback utilized
in the control loop. However, the precise shape, timing, and
magnitude of these fluctuations were altered by the type of
feedback utilized. Inclusion of spindle feedback (Figure 7D)
was necessary to produce realistic tremor variance patterns

(compared with Figures 2, 5) at the initiation of the rising
phase of the target sinusoid. Also it is worth noting that tremor
amplitudes (bar graphs at bottom of Figure 7) were drastically
reduced in the absence of spindle feedback roughly by a factor
of 10 for 1–5Hz tremor and by a factor of about 50 for 6–15Hz
tremor. These observations are well aligned with previous
findings where reduction of afferent feedback was associated
with reduced/eliminated physiological tremor (Halliday and
Redfearn, 1958; Sanes, 1985; Erimaki and Christakos, 2008).
Tremor modulation was in general particularly sensitive to
spindle feedback, since increasing its effective gain through
fusimotor drive (Figures 6B,C) or removing spindle feedback
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FIGURE 6 | Phase-dependent force tremor in simulation. The simulated FDS muscle activity produced target-phase dependent tremor, as observed in human

participants (Figures 2, 5). Panels (A–C) show the proportion of within-band force variability observed at each 10◦ phase bin when the simulation was run using

different levels of fusimotor drive: low (A), medium (B), and high (C). As before, the top traces show 1–5Hz force variability and the lower traces show 6–15Hz force

variability. Alteration of fusimotor drive in this simulation was able to alter the phase-dependent modulation of tremor in both frequency bands. At the bottom of each

column, the average extent of cross-cycle amplitude modulation is depicted, as in Figure 5. While changes in fusimotor drive did somewhat alter the extent of

low-frequency tremor amplitude modulation, the effects were greatest on the 6–15Hz tremor, which roughly tripled as fusimotor drive was increased from low to high.

Also, the relationship between high and low frequency amplitude modulation is similar to that observed in the experimental data (Figures 4, 5, bottom).

entirely (Figures 7A–C) both influence the overall shape,
timing, and amplitude of tremor fluctuations. This occurred
even though the largest change in muscle fascicle length
was only about 1.1mm. Interestingly, removal of GTO
feedback had minimal effect (Figure 7D compared with
Figure 6A).

DISCUSSION

In this study, we show that involuntary tremor can arise
simply from the dynamic viscoelastic response of afferented

muscles during voluntary production of isometric force. We
characterized this tremor in two frequency bands as healthy
adults performed a sinusoidal force tracking task. Furthermore,
we simulated the spontaneous emergence of tremor from
purely peripheral mechanisms using a computational closed-loop
model comprised of well accepted musculotendon, spindle, and
GTO computational modules. Our results extend the current
understanding of how force variability arises independently
of central mechanisms during production of isometric force.
Importantly, our results suggest that simple force tracking
tasks may provide a clinically and scientifically relevant
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FIGURE 7 | Simulation results after removing sources of feedback control. Each panels (A–D) depicts the results of the simulation after removing elements of

the control loop. (A) Depicts the tremor modulation profile that emerged when the simulation was run completely feedforward, with no feedback. (B) Depicts the

results when using the controller output, but no neural feedback. Panel (C) shows the tremor modulation occurring when Gogli tendon organ feedback was added to

the controller, while panel (D) shows the tremor profile that emerged when only controller and spindle feedback were used. The baseline condition (before removal of

feedback) was the same as in Figure 6A. Removal of the GTO feedback had minimal influence on the overall shape and timing of force fluctuations (compare

Figure 6A with panel D). In contrast, elimination of spindle feedback not only reduced the magnitude of force tremor, but also influenced the general shape and timing

of tremor modulation (panels A–C), particularly at the initiation of the rising phase of the target sinusoid. Shown at the bottom of each column are bar graphs depicting

the average tremor amplitude modulation for each frequency band (as in Figures 5, 6). The addition of spindle feedback (D) to the model was the only condition which

greatly modified tremor amplitudes. Note the change of scale for the bar graph in (D) as compared with (A–C). While low frequency tremor modulation was increased

by roughly a factor of 10 with the addition of spindle feedback, the high frequency tremor increased by about a factor of 50, with respect to any other condition.

window into the neural and mechanical factors which generate
involuntary tremor.

Although tremor is not often attributed to the specific
dynamics of voluntary force production, several investigations
have suggested the existence, and potential importance, of such
an interaction. For example, muscle stretch has been suggested
to play a role in tremor modulation during dynamic force
production. Specifically, declining isometric force is associated

with at least some small degree of muscle fiber lengthening,
toward resting state (Ito et al., 1998). Compared with shortening
contractions, lengthening contractions are associated with
increased force variability (Christou and Carlton, 2002) and
increased motor unit coherence within the physiological tremor
range (Semmler et al., 2002). However, it does not appear that
muscle fiber lengthening, or associated spindle activity, could
explain our results, since we would have expected a systematic
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and consistent increase in tremor during the descending phases
of our sinusoidal target trajectory.

Similarly, in the production of bite force, 7–10Hz jaw tremor
is reduced in slowly increasing force ramps compared with
constant or slowly decreasing force (Sowman et al., 2008). In
the present study, a simple relation between force direction
(increasing or decreasing) and finger tremor was not observed,
likely due to differences in the physiology of bite vs. grip force
control. Jaw tremor in the 7–10Hz range depends upon the
activity of periodontal mechanoreceptors (Sowman et al., 2006),
and different bite-force dynamics may have led to different
levels of dental intrusion (Schoo et al., 1983), and presumably
adaptation of the periodontal mechanoreceptors (Sowman
et al., 2008). Accordingly, both the dynamics of bite-force
production and afferent feedback are important considerations
when comparing healthy adults to those who suffer from bruxism
(Laine et al., 2015b). While jaw tremor may depend on specific
mechanical properties of the gums and their interaction with
periodontal mechanoreceptors, these studies do demonstrate that
tremor modulation can stem from afferent responses to dynamic
force.

Stretch-reflex amplitudes have, in fact, been reported to
change during the production of sinusoidal forces. For example,
rhythmic (sinusoidal) pen-squeezing has been shown to produce
stretch-reflex modulation in the FDS muscle (Xia et al., 2005).
This is important in the context of the present study because
oscillations of excitation around the stretch reflex loop are
considered to be one of the major contributors to physiological
tremor (Lippold, 1970; Young and Hagbarth, 1980; Christakos
et al., 2006; Erimaki and Christakos, 2008). In the study of Xia
et al. (2005), it was observed that stretch-reflex amplitudes were
roughly modulated in a sinusoidal fashion such that increased
reflex amplitudes were associated with higher background FDS
EMG levels. A similar conclusion was reached by Stanislaus and
Burne (2009), who reported a consistent relationship between
stretch-reflex gain and overall contraction level regardless of
force dynamics. If a similar sinusoidal modulation of reflex gain
were responsible for tremor modulation in our study, we should
have observed a sinusoidal modulation of tremor amplitude,
which was not the case.

Few tasks involve only one muscle, as thus, it is possible
that some tremors stem from an interaction among co-activated
muscles. Due to the simplicity of our task and the posture of
the hand, it is likely that any co-activated muscles were also
co-modulated synergistically during tracking. It has been shown
that synergistic muscles may share neural drive over a wide
range of frequencies (Laine et al., 2015a). Moreover, we have
shown that changes in the magnitude of an isometric fingertip
force are likely produced by a simple scaling of a same muscle
coordination pattern (Valero-Cuevas, 2000), while others have
shown that isometric force magnitude does not influence the
frequency content of shared neural drive among muscles of
the hand (Poston et al., 2010). In addition to the potential
for shared descending drive, neighboring co-activated muscles
would likely show temporally-coordinated afferent activity and
reflex responses as well. At the very least, it seems that the effects
of slow sinusoidal contractions on musculotendon dynamics

would be similar across all co-activated muscles, leading them
to tremor at the same time relative to the slow voluntary
action.

During voluntary force production, tremor may also stem
from the recruitment, de-recruitment, and firing rates motor
units. For example, the force level at which motor units are
recruited can be lower than the force level at which they are
de-recruited (De Luca et al., 1982), and due to the activation
of persistent inward currents, the magnitude of neural drive
needed to recruit a motor unit is often higher than the drive
at which the same unit is de-recruited (Gorassini et al., 2002).
Therefore, the population of motor units which generate a given
force is partly determined by the recent contraction history
of the muscle. Motor unit activity, especially the twitches of
motor units near threshold, may contribute to isometric force
tremor (McAuley and Marsden, 2000). The relevance of such
mechanisms to the present study is not clear, but we can speculate
that the contribution would be minimal, given the sufficiency of
our simulation (which does not include firing motor units, their
intrinsic properties, or any source of signal-dependent noise) to
replicate the experimentally-observed tremor modulation. We
would, however, assume that simulated tremor amplitudes would
more closely match those observed experimentally if signal-
dependent noise and/or intrinsic motor unit properties were
included in our closed-loop system. This is a topic which certainly
merits future investigation.

It is of course possible, even likely, that many of the above
mentioned sources of force variability were still present to
some degree in our study, but were not very consistent across
participants or across target cycles. In that sense, they may
explain some of the variation in tremor profiles observed across
participants. Similarly, the degree to which any differences in
muscle/tendon strength, size, and compliance across individuals
would have influenced our results remains a topic for future
investigation. We can speculate, however, that tendon strain
magnitudes would likely be important, given that the dynamics
of muscle stretch influence spindle output, which had the largest
influence on tremor in the present study. The fact that our
model could at least partly replicate cross-subject variation in
tremor modulation through manipulation of fusimotor gains,
which would be expected to vary across individuals (Ribot
et al., 1986; Ribot-Ciscar et al., 2000, 2009; Hospod et al.,
2007), adds validity to our simulation results and helps to
mitigate concerns about its simplifications/assumptions. While
it is beyond the scope of this study to precisely match the
tremor profiles of every individual, or to exhaustively test the
influence of all possible parameters, our results should serve
as an important proof of principle upon which to base future
investigation.

Despite the many possible sources of tremor within our
task, it is clear that the dominant phase-dependent source of
tremor was peripheral neuromechanical coupling, rooted in the
viscoelastic properties of muscle and tendon. While smooth
tracking is initially disrupted as a mechanical consequence of
musculotendon dynamics, the spindle reflex system plays an
important role in determining the overall magnitude and timing
of the resulting tremor.
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Our results, therefore, motivate and justify the development
of similar experimental paradigms for scientific and clinical
applications. For example, we propose that the tremor induced
by slow voluntary force modulation may provide a simple
measure of reflex integrity, providing an alternative to direct,
yet time-consuming and often uncomfortable, perturbations of
nerves or tendons. Further, it may be that characteristic patterns
of tremor modulation would emerge within the context of
spasticity, dystonia, or within conditions such as Parkinson’s
disease or essential tremor. As a means of probing peripheral
neuromechanical coupling, the type of tremor described in
this study may hold potential as a tool for understanding
and assessing dysfunctional sensorimotor control in those with
congenital or developmental disorders, or in those with acquired
dysfunction due to trauma or disease. Finally, neuromechanical
coupling may contribute mechanistically to the maintenance or
amplification of pathological tremor. While we did not test the
effects of inserting a descending tremor-frequency input into our
simulation, such investigation may be informative, and perhaps
even suggest novel avenues for clinical intervention.
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