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Despite an abundance of computational models for learning of synaptic weights, there

has been relatively little research on structural plasticity, i.e., the creation and elimination

of synapses. Especially, it is not clear how structural plasticity works in concert with

spike-timing-dependent plasticity (STDP) and what advantages their combination offers.

Here we present a fairly large-scale functional model that uses leaky integrate-and-fire

neurons, STDP, homeostasis, recurrent connections, and structural plasticity to learn the

input encoding, the relation between inputs, and to infer missing inputs. Using this model,

we compare the error and the amount of noise in the network’s responses with and

without structural plasticity and the influence of structural plasticity on the learning speed

of the network. Using structural plasticity during learning shows good results for learning

the representation of input values, i.e., structural plasticity strongly reduces the noise of

the response by preventing spikes with a high error. For inferring missing inputs we see

similar results, with responses having less noise if the network was trained using structural

plasticity. Additionally, using structural plasticity with pruning significantly decreased the

time to learn weights suitable for inference. Presumably, this is due to the clearer signal

containing less spikes that misrepresent the desired value. Therefore, this work shows

that structural plasticity is not only able to improve upon the performance using STDP

without structural plasticity but also speeds up learning. Additionally, it addresses the

practical problem of limited resources for connectivity that is not only apparent in the

mammalian neocortex but also in computer hardware or neuromorphic (brain-inspired)

hardware by efficiently pruning synapses without losing performance.

Keywords: structural plasticity, STDP, learning, spiking neural network, homoeostasis

1. INTRODUCTION

To date, numerous models have been proposed to capture the learning process in the mammalian
brain. Many of them focus on synaptic plasticity which describes the change of the synaptic
state. Even though the creation and pruning of synapses (structural plasticity) is not only a key
feature during development but also in the adult brain (Majewska et al., 2006; Holtmaat and
Svoboda, 2009), modeling of structural plasticity has received less attention. Specifically, there is
little literature on the interaction between the two plasticity processes, which is of major importance
when trying to understand learning.
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1.1. Structural Plasticity
First findings that structural plasticity plays a role in the human
development date back to 1979. Huttenlocher found that synaptic
density increases during infancy, reaching a maximum at age
1–2 years which was about 50% above the adult mean. The
decline in synaptic density observed between ages 2–16 years
was also accompanied by a slight decrease in neuronal density
(Huttenlocher, 1979). Also in the mature brain connections are
pruned and new ones are created. The percentage of stable
dendritic spines, which are part of most excitatory synapses, in
adult mice are thought to be between 75 and 95% over 1 month
(Holtmaat and Svoboda, 2009).

Experience-dependent structural plasticity often happens in
tandem with synaptic plasticity (Butz et al., 2009). In other
words, long-term potentiation (LTP) and long-term depression
(LTD) might be closely related to structural rewiring. While
synaptic efficacies change within seconds, structural rewiring
might be more important on larger timescales (Chklovskii et al.,
2004). It has been shown that presynaptic activity and glutamate
can trigger spine growth and increases connectivity (Maletic-
Savatic et al., 1999; Richards et al., 2005; Le Bé and Markram,
2006). Thus, new synapses are preferentially formed next to
already existing synapses which were enhanced by long-term
potentiation (LTP) (Engert and Bonhoeffer, 1999; Toni et al.,
1999). Synapses weakened by LTD are more likely to be deleted
(Ngerl et al., 2004; Le Bé and Markram, 2006; Becker et al., 2008).

1.2. Previous work on modeling structural
plasticity
Even though the existence of structural plasticity has been
known for quite some time, work on computational modeling of
structural plasticity is still scarce.

Mel investigated the importance of spatial ordering and
grouping of synapses on the dendrite (Mel, 1992). Learning
included the rearrangement of the synapses. This enabled a
neuron to learn non-linear functions with a single dendritic tree.

Butz and van Oyen have developed a rule for synapse creation
based on axonal and dendritic elements (Butz and van Ooyen,
2013). Two neurons form a connection with a probability based
on their distance from each other, and on the number of free
and matching axonal boutons and dendritic spines. The axonal
and dendritic elements were also created and deleted based upon
the electrical activity of the neuron to reach a desired level of
activity (the homeostatic set-point). Applied on a simulation of
the visual cortex after focal retinal lesion their model produces
similar structural reorganizations as observed in experiments. In
a later publication they also show that the same rule can increase
the performance and efficiency of small world networks (Butz
et al., 2014).

Bourjaily andMiller modeled structural plasticity by replacing
synapses which have too little causal correlation between pre-
and post-synaptic spikes (Bourjaily and Miller, 2011). The
replacement was done by choosing either a new pre- or
post-synaptic neuron, while keeping the other one the same.
They found that structural plasticity increased the clustering

of correlated neurons which led to an increased network
performance.

Poirazi andMel present findings which show that the memory
capacity provided by structural plasticity is magnitudes larger
than that of synaptic plasticity (Poirazi and Mel, 2001). In other
words, the synaptic weights are not the only or even the most
important form of parameters which are used to store learned
information. Also interesting is their finding of the benefit of
large quantities of silent synapses. These silent synapses are
potential candidates to replace eliminated synapses.

Hussain et al. implemented a model which clusters correlated
synapses on the same dendritic branch with a hardware-friendly
learning rule (Hussain et al., 2015). The proposed model attains
comparable performance to Support Vector Machines and
Extreme Learning Machines on binary classification benchmarks
while using less computational resources.

Knoblauch et al. developed a model with “potential synapses”
and probabilistic state changes (Knoblauch et al., 2014). They
found that structural plasticity outperforms synaptic plasticity in
terms of storage capacity for sparsely connected networks. Their
theory of structural plasticity can also explain various memory
related phenomena.

A global pruning rate of connections has been shown by
Navlakha et al. to create more efficient and robust networks when
starting with a highly connected network (Navlakha et al., 2015).
The best results were obtained with a decreasing pruning rate,
starting with many deletions followed by less and less pruning
activity.

Other models also consider the creation of new neurons. For
example the Spike-Timing-Dependent Construction algorithm
by Lightheart et al. (2013) which models the iterative growth of
a network. It produces similar results as STDP but also accounts
for synapse and neuron creation.

1.3. Summary
In this study we explore what influence different structural
plasticity mechanisms have when used in addition to spike-
timing-dependent plasticity (STDP). Does the performance
of the spiking neural network improve with the additional
plasticity?

All of the structural plasticity mechanisms are based on weight
changes induced by STDP, i.e., a lower synaptic weight will lead
to an increased chance that the synapse is pruned. Additionally,
we tested different strategies for synapse creation, either keeping
the number of existing synapses constant or reducing them over
time.

The structural plasticity mechanisms were tested on two
different networks. The first network consists of one input
population and one highly recurrently connected population that
in turn consists of excitatory and inhibitory leaky integrate-and-
fire neurons. We use a Gaussian-shaped input (with circular
boundaries) and a population code (specifically the circular mean
of the neuron activities). Using this network, we investigated the
effect of structural plasticity on the neuron responses. The second
network consists of four of the populations used in the first
model.While three of those populations receive direct input from
input populations, the fourth population only receives input from
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the other three recurrent populations (Diehl and Cook, 2016).
Since this “three-way network” can (after learning) infer missing
input values, it is useful for assessing the effect of structural
plasticity on inference performance in terms of learning speed
and precision of the inferred value.

For all tested structural plasticity mechanisms the quality
of the signal increases, i.e., the amount of noise in the
response is reduced compared to relying solely on STDP
for learning. Similarly, the three-way network’s inference
performance increases faster when using structural plasticity
(the performance after convergence is equal). Considering that
additional connections also require additional resources such
as physical space and energy, limiting the total number of
connections is crucial for large-scale practical implementations.
Therefore, the result that a reduction of the number of
connections does not lead to a performance loss for the
tested networks further corroborates the usefulness of structural
plasticity.

This work shows that structural plasticity offers not only
the possibility to improve the quality of the results but also
to save resources. This applies to mammalian brains as well
as simulating neural networks on traditional hardware and on
brain-inspired neuromorphic hardware (Indiveri et al., 2006;
Khan et al., 2008; Merolla et al., 2014). In biology the reduction
of axons allows for less energy requirements and for thicker
myelination in the course of development (Paus et al., 1999), in
computer simulations the reduction of connections leads to less
computation and it allows to adapt the number of connections in
a neural network to the (often physically limited) connectivity in
neuromorphic hardware.

2. MATERIALS AND METHODS

2.1. Model
The implementation of the model was done in python using the
Brian library (Goodman and Brette, 2009).

2.1.1. Leaky Integrate-and-Fire Neuron
The model used for the neurons is the leaky integrate-and-
fire model (Dayan and Abbott, 2001). Two different types of
neurons are modeled: excitatory and inhibitory neurons. A leaky
integrate-and-fire neuron fires a signal as soon as its membrane
potential reaches a certain threshold Vthresh. The signal travels
to all connected neurons and influences them. Additionally the
membrane potential of the firing neuron is reset to Vreset. All
parameter values are provided in Table 1.

dV

dt
=

(Vrest − V)+ (Ie + Ii)
1
nS

Vtimeconstant
(1)

The membrane potential is increased by the excitatory current
Ie and decreased by the inhibitory current Ii. But besides the
excitatory and inhibitory current there is also a leak term.
It slowly reverts the membrane potential back to the resting
potential Vrest. This leak term introduces a time dependency,
since the incoming signals need to be close in time to accumulate

TABLE 1 | Parameters used to simulate the leaky integrate-and-fire

neurons and those for the STDP rule.

Neuron parameter Excitatory neuron Inhibitory neuron

Vrest −65mV −60mV

Vreset −65mV −45mV

Vthresh −52mV −40mV

Vtimeconstant 20ms 10ms

STDP parameter Pre-synaptic Post-synaptic

ν 0.0005 0.0025

η 0.2 0.2

wmax 0.5

and have the biggest influence on the potential.

Ie = −V · ge nS (2)

Ii = (−85mV− V) · gi nS (3)

dge

dt
=
−ge
5 ms

(4)

dgi

dt
=
−gi

10 ms
(5)

The excitatory and inhibitory currents depend on the
conductances ge and gi respectively. Depending on whether
the neuron receives a signal from an excitatory or an inhibitory
neuron the respective conductance increases temporarily. The
simulation time step is 0.5 ms.

2.1.2. STDP Rule
The spike-timing-dependent plasticity (STDP) rule used for the
simulations is largely based on the nearest spike model by Pfister
and Gerstner (2006). This rule uses traces to keep track of the
activity of the pre- and postsynaptic neuron. The trace r is set to
1 whenever the presynaptic neuron sends a spike. Another trace o
is set to 1 when the postsynaptic neuron fires. Both r and o slowly
decrease to zero over time. These traces are used to determine
how much the weight w of the synapse should change.

Additionally a weight dependent term is multiplied to each
equation. This prevents weights from going to the extreme values
too fast. Larger weights decrease faster and increase slower while
small weights do the opposite. With this term it is also possible to
enforce a maximum strengthwmax. The specific parameter values
are described in Table 1.

Equation (6) is applied to the synapse whenever the
presynaptic neuron fires. The synapse’s strength w is decreased
based on the current weight, the freely adjustable parameter
νpre and the parameter o. This means that the synapse is more
weakened if the postsynaptic neuron has just fired and o is large.

w← w− o · νpre · wηpre (6)

When the postsynaptic neuron fires, w is increased according to
Equation (7). It grows more if the presynaptic neuron has just
fired as well i.e., r is large. It also depends on o which means
that the weight is only increased if the postsynaptic neuron has
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spiked before. Note that o is set to 1 after this change is applied.
The weight dependent term prevents connections from growing
infinitely strong.

w← w+ r · νpost · o · (wmax − w)ηpost (7)

The traces decay exponentially.

do

dt
=
−o

40 ms
For excitatory to excitatory synapses (8)

do

dt
=
−o

20 ms
For inhibitory to excitatory synapses (9)

dr

dt
=
−r

20 ms
For both types of synapses (10)

2.1.3. Single Population Network
In order to test the structural plasticity algorithms, a recurrent
network model was used, as described in Diehl and Cook (2016).
It consists of one input population and only a single computation
population. The input population consists of 1600 excitatory
neurons which are simulated as spike trains according to a
Poisson distribution. Section 2.1.5 explains the shape of the input
in more detail. The computation population has 1600 excitatory
neurons and 400 inhibitory neurons. These neurons are leaky
integrate-and-fire neurons. The connections within and between
the groups of neurons can be seen in the inset of Figure 1.
To initialize the connections 10% of the possible synapses in
each connection are chosen. The synapses are chosen at random

FIGURE 1 | Architecture of the network. The right part of the figure shows

the full network that is used in the simulations for testing inference

performance. The simplified network that is used to assess the effect of

structural plasticity on the amount of noise is composed of an input population

and one neuron population that is connected to it. The inset shows the

structure of a single neuron population. An input population consists of 1600

excitatory neurons that output Poisson-distributed spike-trains with firing rates

determined by the stimulus value. A neuron population consists of 2000

neurons, 1600 of which are excitatory (Exc) and 400 are inhibitory (Inh). All

possible types of recurrent connections within a population are present, i.e.,

Exc→Exc, Exc→Inh, Inh→Exc, Inh→Inh. Connections from Inh→Exc

(denoted with “P”) use STDP and connections between excitatory neurons use

STDP and structural plasticity (denoted with “P+S”). Note that long-range

connections between populations are always originating from excitatory

neurons and posses the same structure. Therefore the connections from input

to neuron populations and connections between different neuron populations

are not differentiated between in the inset.

TABLE 2 | Maximum synapse weight values for initialization.

Connection type Value

Input to excitatory (single population) 1.0

Input to excitatory (three-way network) 0.5

Input to inhibitory 0.2

Excitatory to excitatory 0.2

Excitatory to inhibitory 0.2

Inhibitory to excitatory 1.0

Inhibitory to inhibitory 0.4

with the only constraint that each target neuron has the same
amount of input connection i.e., each column in the connection
matrix has the same number of non zero values. This constraint
increases the stability of the network slightly. The weight value
of each synapse is random between zero and a maximum value
depending on the type of connection (See Table 2). The goal
of the computation population is to learn the pattern of the
input population. The performance is measured by how fast and
accurate the pattern is learned.

2.1.4. Three-Way Network
Using multiple of the neuron populations, it is possible
to construct a three-way network (Diehl and Cook, 2016).
It contains three input populations and four computation
populations that are highly recurrently connected. The network
structure is shown in Figure 1. The connections are initialized
in the same way as for the Single Population network. Such a
network can learn arbitrary relations with three variables like
A+B−C = 0. If a trained network receives only two of the three
inputs, it can infer the missing one, e.g., if the network receives A
and B it can infer the value of C. Here we choose the accuracy of
the inference as the performance metric for this network.

The populations A, B, C, and H each use the same setup
as the single population network and the input populations X,
Y, and Z are equivalent to the input population in the single
population network. The main difference lies in the bidirectional
connectivity between populations. Note that the connectivity is
bidirectional on a population level but not on a neuron level since
often connections between neurons from different populations
form connections only in one direction. The bidirectional
connectivity enables the four populations of the network to
reach a consistent state. Note that the long-range connections
arriving at a neuron population are represented by the same
input connection in the inset of Figure 1 since they are identical
in structure and the neuron population cannot differentiate
between connections originating from input populations and
neuron populations. This state is random in the beginning but
converges toward a correct solution of the input relation after
learning. How well this convergence works exactly corresponds
to our inference accuracy. For further information see Diehl and
Cook (2016).

2.1.5. Encoding and Decoding
During each simulation multiple input examples are shown to
the network with a duration of 250 ms per example. We use
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Gaussian-shaped inputs with wrap-around in combination with
a population code to encode and decode the value of a population
(Georgopoulos et al., 1986; Pouget et al., 2000). The standard
deviation of the input Gaussian is σ = 1

12 and the mean is the
input value.

The value represented by a population can be calculated by the
circular mean ā of the activities of each neuron of the population:

ā = arg





1600
∑

j=1
aj exp(i ·

j

1600
2π)



 (11)

where a1, ..., a1600 are the activities of the neurons 1–1600.

2.2. Noise estimation
An important performance criterion we use is the amount of
noise in a population’s spike response. We estimate the noise
onoise by fitting a Gaussian with offset to the response of a
population (Equation 12).

G(x, a, µ, σ, onoise) = a exp

(

−(x− µ)2

2σ 2

)

+max(0, onoise)

(12)
The maximum function prevents the offset onoise from being
negative. The initial guesses for the free parameters are:

a =
1

σinput

√
2π

(13)

µ = arg





1600
∑

j=1
sj exp(i ·

j

1600
2π)



 , (14)

where sj is the spike activity of neuron j

σ = σinput (15)

onoise = 0 (16)

The fitting itself is done by SciPy’s curve_fit function which
employs non-linear least squares to fit (Equation 12) to the spike
response. The resulting value for onoise is the white-noise amount
in the response.

2.3. Structural Plasticity Algorithms
Through the course of this investigationmultiple algorithms with
increasing complexity were devised to model structural plasticity.
While all of the presented algorithms were performed with
multiple parameter setting to that the observed effects are not a
coincidence, we are presenting the results for each algorithmwith
one set of parameters for brevity. All of them are based on the
current connection matrices. The rows of such a matrix represent
the source neurons and the columns are the target neurons. The
value of the matrix entry indicates how strong the synapse is.
During training these algorithms are applied after every 50 input
examples.

2.3.1. Basic Idea and Implementation
The simplest algorithm consists of periodically checking the
synapses and deleting those whose strength is below a certain
threshold. New synapses are randomly inserted into the
connection matrix. Deleting the weakest synapses which have
the least influence on the network makes intuitively sense. It is
also backed by evidence in biology that unused and weakened
synapses are prone to being removed (Ngerl et al., 2004; Le Bé
and Markram, 2006; Becker et al., 2008; Butz et al., 2009). The
notion of deleting the weak synapses remains the same for all
other algorithms as well. While there is no theoretical framework
for the spiking neuron model used in this work there have
been findings with theoretical derivations for this reasoning for
associative memory networks with Hebbian learning (Chechik
et al., 1998).

2.3.2. Bookkeeping
A generalization of the basic algorithm is to monitor the synapses
over a period of time. If the synapse’s strength is below a
threshold, an entry in a sparse matrix (the “bookkeeping” matrix)
is increased. As soon as the value in the bookkeeping matrix
is larger than a certain threshold the synapse is finally deleted.
Figure 2 shows how this plays out for a particular synapse. If
the synapse recovers after being below the threshold, the entry
in the bookkeeping matrix decreases until it is back at zero.
This mechanism gives a much finer control over the deletion of
synapses.

This mechanism also allows new synapses to have an
additional margin of time before they are targeted for deletion.
There have been biological findings which hint to such a period
of grace (Le Bé and Markram, 2006). In the implementation this

FIGURE 2 | Bookkeeping algorithm time schedule. This plot shows two

different scenarios for a weakened synapse. If its strength is under the

threshold for an extended period, the synapse is deleted and replaced with a

new one at a different location. The evaluation occurs as often as the

bookkeeping algorithm is applied, which is after every 50 iterations. The

number of times the synapse has been weaker than the threshold is stored in

the bookkeeping matrix. The counter is slowly reset to zero if the synapse

manages to recover its strength.
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is simply done by using a negative value in the bookkeeping
matrix.

New synapses are created in the same column of the
connection matrix where they were deleted. This prevents
starvation of neurons as it ensures that there are always input
synapses for a neuron. Additionally, pruning of synapses can be
simulated by slowly decreasing a target value for the number
of synapses in each column. If there are too many synapses
in a column, the weakest is deleted. The decrease follows an
exponential decay which matches experimental data (Navlakha
et al., 2015). Specific numbers can be seen in Figure 3.

2.3.3. Including Spatial Information
Building on the bookkeeping algorithm additional spatial
information is introduced. Instead of creating synapses
uniformly at randomly in the same column, a probability
distribution which depends on the existing synapses is used.
It has been shown that presynaptic activity and glutamate can
trigger spine growth and increases connectivity (Maletic-Savatic
et al., 1999; Richards et al., 2005; Le Bé and Markram, 2006).
Therefore the probability that new synapses are created is higher
in the vicinity of already existing ones (Govindarajan et al., 2006;
Butz et al., 2009).

The idea is to increase the probability for new synapses next
to already existing synapses. In the implementation this is done
by creating a custom probability distribution for the formation
of new synapses. The probability is acquired by spreading the
values of existing synapses to nearby free locations. An easy
way to do this is convolving the connection matrix with a
filter. Figure 4 shows how convolution with a Gaussian filter
is used to transform the connection matrix into a probability
distribution. Because convolution only creates the sum of the
contributions, the resulting values are exponentiated in order
to gain a multiplicative effect of nearby synapses. This leads to

FIGURE 3 | Pruning schedule. Initially 10% of the possible connections are

used (without pruning this number does not change). With pruning the number

of connections is decreased over time by multiplying the target number of

connections by a constant factor smaller than one (effectively implementing an

exponential decay).

increased clustering of new synapses which has a positive effect
as can be seen later in Section 3.3 and Figure 10.

P = exp(W ∗ G) (17)

where W is the current connection matrix containing the
synapse strengths and G is a two-dimensional Gaussian filter
with σhorizontal = 10 and σvertical = 5. The larger horizontal
standard deviation means that the Gaussian has a far reaching
influence for the same source neuron but only a small influence
on neighboring source neurons. The convolution is done with
wrapped borders since the input is wrapped as well.

The final values P define the new probability distribution per
column. The algorithm does the same steps as the bookkeeping
algorithm, but instead of inserting new synapses at random
within a column, it uses the custom probability distribution.
This algorithm also decreases the total number of synapses over
time with pruning which was introduced in the bookkeeping
algorithm.

3. RESULTS

3.1. Denoising of Responses
In order to gain a first impression of the influence structural
plasticity has during training, we use a single population network.
When comparing the connection matrices that are only trained
with STDP to the connection matrices of networks which
additionally use structural plasticity, the main advantage of
structural plasticity becomes apparent. Weak synapses which
contribute mostly to the noise are removed. The columns of the
connection matrices shown in Figure 5 are sorted according to
their preferred input stimulus. Since the columns represent the
target neuron of the synapses, each entry in a column is a synapse
from a different source neuron. For the following performance
measurements all matrices were sorted in that way (see Section
3.3 and Figure 10 for results without this prior sorting). While
the network that was trained only with STDP has non-zero
entries that are distributed evenly, the networks using structural
plasticity have all synapses concentrated on the preferred input.

The effects of structural plasticity are also noticeable when
computing the noise of the responses as described in Section 2.2.
The graph in Figure 6 shows that structural plasticity decreases
the noise amount faster. All structural plasticity algorithms
perform roughly equally well. This shows that the details of
the implementation are not that important in this case. The
shown results are averaged over three different initial connection
matrices. Each connection matrix was randomly initialized with
the only constraint of having a certain number of non-zero
entries per column, as described in more detail in Section 2.1.3.

Figure 7 shows plots of exemplary spike-responses with and
without structural plasticity. The plots contain the spike response
of two networks to an input example. Two Gaussian curves with
an offset were fitted to these responses. The activity of the input
population is also shown as a Gaussian. As Figure 6 suggests, the
responses are less noisy when structural plasticity is used.
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FIGURE 4 | Determining the position of new synapses. The connection matrix is transformed into a probability distribution, which is not yet normalized, by using

convolution with a two-dimensional Gaussian filter, see Equation (17). When choosing the place for a new synapse, locations with a higher value are more likely to be

picked than the ones with a lower value. (A) Current connection matrix. (B) Resulting probability distribution.

FIGURE 5 | Changes in topology for different structural plasticity mechanisms. These are the connection matrices from the input population to the

computation population for four differently trained networks. Since STDP has no mechanism to delete weak synapses the connection matrix of the network trained

with only STDP has non zero entries spread evenly. Bookkeeping with pruning reduced the total number of synapses over time which led to a sparser matrix. The

bottom left and upper right corner of each matrix have non-zero entries due to the wrap around and therefore periodic nature of the input.
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FIGURE 6 | Average noise amount. The estimated noise amount onoise as

defined in Section 2.2. drops faster in networks trained with a structural

plasticity algorithm. The different structural plasticity algorithms perform

roughly equally well.

3.2. Improving Learning Speed
As a next step we investigate whether structural plasticity can
improve the inference capabilities of the three-way network. The
initial random connections are sorted once before training. The
network is then trained with random inputs for populations A
and B while C receives the input A + B modulo 1. During this
training the network learns the relation A+ B− C = 0. Here we
test the performance of the network by measuring how well it can
infer the value of C given only the inputs A and B.

Four different training methods are compared: Using only
synaptic plasticity, bookkeeping with and without pruning and
finally training with the Gaussian convolution algorithm. Note
that the Gaussian convolution algorithm uses pruning as well.

The left plot in Figure 8 shows the amount of noise in the
spiking activity in population C during testing where only A and
B receive input. The actual error of the inference is shown in the
right plot of Figure 8. The error is the difference of the target
value A + B and the circular mean (Equation 11) of the spiking
activity in population C. The two algorithms which decrease
the total number of synapses converge faster to a lower error.
It takes roughly 10,000–15,000 examples until the connections
are trained enough for the spiking activity to change. The
bookkeeping with decay and the Gaussian convolution algorithm
learn faster, i.e., decrease their error faster, and achieve a lower
amount of noise. These two algorithms have in common that they
decrease the total number of synapses with pruning.

The development of the spiking activity for the inference
can be seen in Figure 9. Two networks are compared after
5000, 15,000, and 25,000 shown input examples. The response
after 5000 iterations is still mostly random for both networks.
After 15,000 iterations the network trained with the Gaussian
convolution algorithm and pruning produces a less noisy signal
than the network trained only with STDP. With additional
training both networks manage to produce a clearer Gaussian
response. But structural plasticity and pruning improve the speed
of the learning process by a large margin.

3.3. Structural Plasticity Preserves Tuning
In order to better understand the changes induced by using
structural plasticity in addition to STDP, we also investigated how
it affects the preferred input-tuning of neurons. Before starting
learning, the columns of the initialization matrices were sorted
such that neurons with strong weights to input neurons that
are encoding low-values are at the beginning, and neurons with
strong weights to high-values input neurons are at the end.
We then simulated learning with different structural plasticity
mechanisms (some of which use spatial information for the
generation of new synapses) and without structural plasticity.
The resulting matrices are shown in Figure 10.

The simulation that uses only STDP shows that the initial
tuning of the neurons (which is due to fluctuations in the random
initialization) is preserved to some extent and that the neurons
preferred input-tuning after learning is influenced by its initial
variations.

Including structural plasticity and pruning strongly increases
the chances that initial preference of the input-tuning is
preserved. This can be seen by observing that there are much
less neurons that develop receptive fields that are not on the
diagonal, i.e., that are different from their initial preference. The
network trained with a spatial structural plasticity algorithm
based on Gaussian convolution reinforces the initial tuning even
stronger. Interestingly, the increased probability near already
existing synapses also leads to the forming of patches of synapses.

4. DISCUSSION

We simulate the process of structural plasticity using models
with different underlying mechanisms and assumptions. The
mechanisms ranged from simple deletion of the weakest
synapses to more sophisticated monitoring of synapses and
finally the inclusion of spatial information. Additionally, some
implementations decrease the total number of synapses similarly
to the pruning in the mammalian brain after peak synaptic
density was achieved early in development (Huttenlocher, 1979;
Navlakha et al., 2015). Two different network topologies were
used to evaluate the performance of the algorithms. A smaller
network to compare the noise amount of the responses with the
different models and a bigger network that allowed us to compare
the influence of the models on inference capabilities.

The results of the simulations show that structural plasticity
can improve the learning process. Specifically, the noise in the
response of the small network is reduced roughly 30% faster with
structural plasticity. The inferred response in the big network is
less noisy if a structural plasticity algorithm with pruning is used.
The noise amount of the bookkeeping without pruning network
is not significantly lower. This reduction of noise in the responses
means that the networks are able to transmit the represented
value with a clearer signal to connected populations.

This finding is especially interesting when connected to the
results of the inference performance. Using structural plasticity
with pruning reduces training time until the network reaches
peak inference performance to about half of what is needed
without pruning but without pruning the structural plasticity has
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FIGURE 7 | Response of neuron populations to a single input examples. The blue bars depict the frequency of spikes for each neuron. A Gaussian with an

offset has been fitted to the spiking activity (red curve). The dashed Gaussian curves represent the input. Both networks were trained with 15,000 examples. The

structural plasticity algorithm achieves a less noisy signal (onoise = 0.0941, µ = 0.5092, σ = 0.0947) than the network trained with only STDP (onoise = 0.7356,

µ = 0.4949, σ = 0.1071). The input Gaussian has onoise = 0, µ = 0.5 and σ = 0.0833. (A) Only STDP. (B) Bookkeeping with pruning.

FIGURE 8 | Development of inferred responses in population C. The left plot shows the amount of noise onoise in the spiking activity in population C of the

three-way network. The two algorithms using pruning decrease the amount of noise faster. The right plot shows the error of the inference. The error is calculated as

the difference of the mean of the spiking activity in C and the target value A+ B. Clearly visible is the faster convergence of the bookkeeping with pruning and the

Gaussian convolution algorithm.

little effect on learning speed. The positive results of synaptic
pruning during training are in good agreement with (Navlakha
et al., 2015).

Together those findings suggest that the fast reduction of
the inference error and the decrease of noise in the response,
which is facilitated by the structural plasticity (especially when

combined with pruning), makes learning easier on a network
level. Intuitively, if a population is confronted with less noisy
inputs, fewer examples are needed to understand (or learn) the
underlying relation between them.

As neuron populations in deep neural networks increase
in size, established compression methods such as Huffman
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FIGURE 9 | Development of two three-way networks (with and without structural plasticity) over time. Shown are their spike responses for the inference of

a missing value. The upper row is a network trained only with STDP. The bottom row is trained with the Gaussian convolution algorithm and pruning. The blue bars are

the spike responses of the individual neurons. The red Gaussians with offset are fitted to these responses. The dashed Gaussian represents the target value using the

same standard deviation as the input of the two given inputs. With additional training the difference of the mean between the response and the target, the offset due

to noise, and the standard deviation of the response decrease. But structural plasticity and pruning do so at a faster rate.

coding have lately found their way into the field of
computational neuroscience for reducing the amount of
data to be stored (Han et al., 2015). The use of structural
plasticity as introduced here, can contribute to this effort by
allowing control over the degree of sparseness in the network
connectivity. Viewed under the light of lossy compression,
the potential for not only data reduction but also data access
reduction is given through the developed biologically inspired
model.

To summarize, the addition of structural plasticity is an
improvement to the current learning paradigm of only focusing
on adjusting weight strengths rather than adjusting the actual
connectivity.

4.1. Reducing Simulation Costs
While the results and the last subsection focused on
improvements in terms of performance of the model, there is
another very important aspect: Resource cost of the simulation.
Practically the simulation of synapses requires a considerable
amount of the total computation (Diehl and Cook, 2014) and
poses a big challenge for implementation on neuromorphic

hardware when the synapses are “hardwired” in silicon as in
state-of-the-art analog VLSI spiking neuron processors (Qiao
et al., 2015) The simulations presented here also benefited
from reduced simulation times, i.e., a network trained with
only STDP ran for 169 seconds1 to train on an additional 400
examples. Compared to a network which was trained with
bookkeeping and pruning to reduce the number of synapses
to roughly half of the starting amount which only ran for 125
seconds (roughly 25% faster). If the bookkeeping algorithm was
used for the 400 examples an additional overhead of roughly
7 s brought the time to 132 s. Therefore keeping the number
of synapses to a minimum is desirable. Of course this should
ideally not impact the resulting performance negatively. But
as shown here, there can even be a performance improvement
by sensibly pruning synapses, mainly due to a reduction of the
noise.

We can look at the “price-performance” of the model from
different points of view. Firstly, we could fix a target accuracy and
create a system that achieves the target accuracy while using as

1These speed evaluations were done single threaded on a i7-3520M 2.90 Ghz and

8 GB RAM
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FIGURE 10 | The connection matrices from the input population to the computation population after training. The columns of these matrices were only

sorted once before the start of the simulation. (D) shows the performance of these unsorted matrices. The algorithm using Gaussian convolution achieves lower

variance in the spike response thanks to the inclusion of spatial information. (A) Only STDP. (B) Bookkeeping with pruning. (C) Gaussian convolution with pruning. (D)

Unsorted matrices evaluation.

few synapses as possible. A practical scenario might be the need
to implement natural language processing capabilities in a system
with very stringent energy constraints like a mobile phone (Diehl
et al., 2016a,b), where the systems needs a certain precision for
it to be useful. After finding a small system with the required
performance, it could be implemented in hardware and deployed
on a device.

The second scenario is that the number of available synapses
could be fixed while trying to optimize performance on that
system, e.g., due to limited size of a neuromorphic device or
limited time for simulation on traditional computer. If the low
number of synapses is mainly needed for running a system after
learning, it would be useful to start with a denser connectivity and
apply pruning, and only implement the pruned network in the
final system. However, as shown also using a constant number
of synapses with structural plasticity potentially increases the

raw performance while not leading to higher costs after training,
which therefore also increases the price-performance of the
model.

Therefore structural plasticity is also interesting for existing
spiking networks that are designed to solve machine-learning
tasks (Neftci et al., 2014; Zhao et al., 2014; Diehl and Cook, 2015)
to not only increase their performance but also lower simulation
cost.

4.2. Biological Plausibility
Although the described work does not aim at reproducing
biological effects in their highest level of detail, the underlying
mechanisms of the introduced model take strong inspiration
from the biological processes involved in the structural plasticity
of the mammalian brain. These mechanisms were abstracted to
an extent that it was possible to gain a computational advantage.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 September 2016 | Volume 10 | Article 93

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Spiess et al. Structural Plasticity

An example for this approach of trading off computational
efficiency and biological plausibility is the exploitation of the
finding that activity dependent reorganization of the biological
brain shows observable effects over longer time windows than
synaptic plasticity (hours to months) (Holtmaat and Svoboda,
2009). By discretization of the structural plasticity model in a
second time-domain with time-steps that are large multiples of
those of the synaptic plasticity time-domain, a trade-off between
the introduced overhead of computations and the resulting
optimization in the weight-matrix was made.

Similarly, the model purposely neglects the dynamics
of receptor expression during synaptogenesis. Instead of
introducing initially “silent” synapses that only hold NMDA
receptors and can only be co-activated by neighbors on the
same dendritic branch, here synapses allays perform STDP-
like behavior. To obtain a comparable effect however, newly
instantiated synapses were located close to those present synapses
with the highest weight in the neuron which speeds up
convergence to the learning goal.

As the main application of the introduced model is thought to
be that of an optimization technique for established methods in
spiking neural networks, here we begin training on a randomly
initialized sparse connectivity-matrix instead of initializing with
zero connectivity and including a process of activity independent
synaptogenesis that simulates network development. This step
not only greatly reduces computational overhead, it also allows
to maintain a continuously fixed sparseness in the matrix which
guarantees the reduction of memory utilization and can be seen
as a form of lossy compression.

A further mechanism that the described model strongly relies
on is synaptic scaling as a form of weight normalization. The
implication here is that as popular synapses get potentiated
by synaptic plasticity, the weight of less activated synapses
tends to be depressed below the threshold which causes the
vulnerability to pruning. A biological foundation behind
this mechanism is a NMDA-mediated heterosynaptic
depression that accompanies longterm potentiation
(Royer and Paré, 2003).
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