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Multiscale modeling and simulations in neuroscience is gaining scientific attention due

to its growing importance and unexplored capabilities. For instance, it can help to

acquire better understanding of biological phenomena that have important features at

multiple scales of time and space. This includes synaptic plasticity, memory formation

and modulation, homeostasis. There are several ways to organize multiscale simulations

depending on the scientific problem and the system to be modeled. One of the

possibilities is to simulate different components of a multiscale system simultaneously

and exchange data when required. The latter may become a challenging task for

several reasons. First, the components of a multiscale system usually span different

spatial and temporal scales, such that rigorous analysis of possible coupling solutions is

required. Then, the components can be defined by different mathematical formalisms.

For certain classes of problems a number of coupling mechanisms have been proposed

and successfully used. However, a strict mathematical theory is missing in many cases.

Recent work in the field has not so far investigated artifacts that may arise during coupled

integration of different approximation methods. Moreover, in neuroscience, the coupling

of widely used numerical fixed step size solvers may lead to unexpected inefficiency.

In this paper we address the question of possible numerical artifacts that can arise

during the integration of a coupled system. We develop an efficient strategy to couple

the components comprising a multiscale test problem in neuroscience. We introduce an

efficient coupling method based on the second-order backward differentiation formula

(BDF2) numerical approximation. The method uses an adaptive step size integration

with an error estimation proposed by Skelboe (2000). The method shows a significant

advantage over conventional fixed step size solvers used in neuroscience for similar

problems. We explore different coupling strategies that define the organization of

computations between system components. We study the importance of an appropriate
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approximation of exchanged variables during the simulation. The analysis shows a

substantial impact of these aspects on the solution accuracy in the application to our

multiscale neuroscientific test problem. We believe that the ideas presented in the paper

may essentially contribute to the development of a robust and efficient framework for

multiscale brain modeling and simulations in neuroscience.

Keywords: multiscale modeling, multiscale simulation, co-simulation, coupled system, adaptive time step

integration, backward differentiation formula, parallel numerical integration, coupled integration

1. INTRODUCTION

The concept of multiscale modeling is used in many fields such
as meteorology (Shukla, 2009; Kurowski et al., 2013), cardiac
physiology (Hernández et al., 2011) and neuroscience (Bhalla,
2014). It refers to the style of modeling in which different models,
possibly described by different physical formalisms and acting on
different temporal and spatial scales, are used simultaneously in
order to study important features of a complex phenomenon at
multiple levels of organization (Djurfeldt and Lansner, 2007).

An idea to study how one level of neural organization
influences another has become an important trend in
neuroscience. For example, Bhalla (2011) explores cross-
scale interactions between cellular and subcellular levels in the
context of homeostasis and synaptic plasticity. This multiscale
model proposes a pruning mechanism for weak synapses during
cellular excitability. Another study by Mattioni and Le Novère
(2013) presents an integration of electrical and biochemical
processes in a model of a Medium Spiny Neuron (MSN). In
particular, the influence of different input patterns on membrane
excitability and the mechanism of inter-spine synaptic plasticity
is discussed.

This paper focuses on the numerical aspects of different
coupling strategies. The goal of the paper is to present an efficient
method applicable to a wide class of problems where electrical
activity and chemical signals must be solved together in the
cell. This refers to almost all classes of excitable cells such as
muscle fibers and nerve cells or neurons. In the neuronal context,
the class of problems includes synaptic plasticity, excitability
homeostasis, development and other specific functions that
involve such multiscale cellular events. Here, we present a
method that allows us to bridge subcellular and cellular level
models described by ODEs in an accurate and efficient way.

How should the numerical solution of a multiscale system be
arranged in practice? Different components of the system may
need to be solved using different numerical methods. This can
be the case if the components are described by different physical
formalisms, for example one employs ordinary differential
equations (ODEs) and the other is stochastically formulated.
Even in the case when a multiscale system is formulated by a
single formalism it may become advantageous to treat different
components separately, both with regard to their description and
with regard to computing the solution. If different components of
a system are treated as independently as possible, computations
can be arranged to take advantage of modularity and parallelism.

Kübler and Schiehlen (2000) propose that a complex
engineering system can be decomposed into modules at three

levels of description: the physical, mathematical and behavioral
levels. The components of a system can be integrated at the
mathematical level and then solved using a single numerical
solver. Here, we rather focus on coupling at the behavioral
level—the level of signals in the computed solution. In particular,
we are interested in coupling different numerical solvers in a
theoretically proper and efficient way.

There are a few considerations that have to be taken into
account while coupling the components at the behavioral level.
First, a minimal set of signals which need to be communicated
between system components has to be defined. Then, an
organization between system components play a crucial role
in an accurate and efficient integration of the coupled system.
Mattioni and Le Novère (2013) proposed an event-driven
algorithm where the exchange of the scaled variables have to
be communicated each time the event happens. The algorithm
showed better performance results in comparison with the
time-driven algorithm where the communication of exchanged
variables has to be performed at regular time intervals. However
none of the recent studies give a theoretical background for the
proposed coupling strategy.

One of the problems which can occur when coupling system
components is numerical instability (Arnold and Günther, 2001).
Numerical methods must ensure convergence of the discrete
system. Even if a coupled integration is convergent, a proper
choice of the step size still has to be made in order to guarantee
numerical stability. It is important to keep in mind that the
numerical stability of a coupled integration is not guaranteed
by the stability of an independent integration of the system
components (see Supplementary Instability Example). At the
same time, it is crucial to perform integration in an efficient way
while keeping the accuracy within desired bounds. Finally, the
complexity increases when system components are described by
different physical formalisms (Alfonsi et al., 2005; Rüdiger et al.,
2007; Brandi et al., 2011). For example, chemical interactions
can be described either in a deterministic or in a stochastic way
possibly accompanied by diffusion processes.

We begin with a general introduction to the modeling
at different levels within the scope of interest. In particular,
in Section 2.1, we give an overview of some widely used
numerical discretization methods in Neuroscience. Section 2.2
covers different numerical aspects of a coupled integration
such as efficiency, order of accuracy and numerical stability.
In Section 2.3, we introduce an algorithm for an adaptive
control of the step size in a coupled integration. In Section
2.4, we present possible organization strategies in the system
composed of multiple components. Section 2.6 describes the
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multiscale test model used for our analysis: the dynamics,
communication signals between the components and
mathematical formulation. The details of implementation
and evaluation can be found in Sections 2.7 and 2.8,
respectively. In Sections 3 and 4, we present and discuss
the results.

2. MATERIALS AND METHODS

2.1. Modeling at Different Levels
Here, we focus on cellular and subcellular (molecular) levels
of neuronal organization. On the cellular level the object of
study is typically electrical properties of a cell. The cell with its
complex arborizations is usually represented by a cable split into a
number of compartments. Modelers then employ compartmental
modeling (Rall, 1964) to describe the neural processes where
the dynamics of each compartment is defined by a system of
ordinary differential equations (ODEs). Finally, by applying the
Hodgkin and Huxley formalism to define the currents (Hodgkin
and Huxley, 1952) a nonlinear system of ODEs has to be
solved. This approach is the basis of most simulators that take
neural morphology into account [e.g., NEURON (Hines, 1989),
GENESIS (Wilson et al., 1990), MOOSE (Dudani et al., 2009)].

On a molecular level the interaction of biochemical signaling
pathways is of particular interest. A signaling pathway is
usually considered as a set of reactions between the molecules
that operate on a subcellular level (Bhalla, 1998). Chemical
rate theory is normally applied to describe the chemical
kinetics of a signaling pathway. One of the traditional ways
to model the kinetics is by viewing the system of reactions as
deterministic. Then the chemical species are typically modeled as
concentrations that evolve over time. These models are described
by a system of nonlinear ODEs.

The complexity of the systems requires numerical
computations. Simulation packages offer the user a choice
between different numerical integration methods. The method
choice is usually dependent on the properties of a system. For
example, if the system of ODEs is stiff and an explicit numerical
method has been chosen, the step size of the discretization
is limited by stability and not by accuracy. Thus an efficient
numerical integration rather requires implicit methods. Implicit
methods often allow the simulation to be discretized with larger
time steps due to good stability properties.

Fixed step size numerical methods, such as the modified
Crank-Nicholson method and the classical Runge-Kutta method,
are typically applied to solve systems of current study in
neuroscience. The choice of the discretization time step is then
made by running the simulation with different step sizes and
comparing the computation cost vs. solution accuracy.

The Crank-Nicholson (CN)methodwith a staggered time step
approach is widely used for solving branched nerve equations
in neuroscience (Hines, 1984). The proposed approach allows
the user to obtain a solution in an accurate and efficient way.
The Crank-Nicholson method is an implicit method and can be
used for stiff systems. However little is known about stability
properties while working on a staggered grid (see Supplementary
Numerical Methods).

For the models defined on a subcellular level, the Classical
Runge-Kutta (RK4) numerical approximation method got its
wide application among computational neuroscientists. It is an
explicit numerical method with a bounded stability domain and
therefore it is not suitable for stiff problems. A mathematical
formulation of the method can be found in Supplementary
Numerical Methods.

While both the CN on a staggered grid and the RK4
methods provide efficient means for simulating the models on
the appropriate levels, the coupling of these methods poses
additional questions.

2.2. Numerical Considerations in a Coupled
Integration
2.2.1. Efficiency
Multiscale systems are usually composed of components acting
on different timescales. For example, the timescale of a single
spike is of the order of a few milliseconds. However, simulations
normally run for many seconds in order to observe the effects
at a biochemical level. The gap between timescales demands an
efficient integration strategy.We suspect that adaptive integrators
can be more efficient or require less time for a given degree of
accuracy. Both the CN on a staggered grid and the RK4 methods
are normally applied on a fixed step size grid. Neither provide
an error estimation that could be used together with a step size
control mechanism.

2.2.2. Order of Accuracy
Little is known about the error propagation for the CN on
a staggered grid with RK4 coupled integration. The order of
the numerical method quantifies the global error behavior with
respect to the step size. We know that the CN on a staggered grid
method is second-order accurate and the RK4 method is of the
order four while the order of the coupled integration still has to
be studied.

2.2.3. Numerical Stability
Numerical properties, such as numerical stability, of a numerical
algorithm applied to each system component independently may
not hold in a coupled integration. For example, the Backward
Euler method applied to a stable system may lead to an amplified
oscillating behavior of the system when solved in a coupled
manner as shown in Supplementary Instability Example. This
may happen due to the different component properties, such
as stiffness, that may arise in a coupled system simulation. Our
multiscale system is often stiff due to the rapid changes in the
electrical component. Thus, to be on the safe side we aim to avoid
using methods not suitable for stiff problems.

2.3. Numerical Algorithm
2.3.1. Backward Differentiation Formula
Considering the thoughts above, we are interested in another
family of implicit methods, Backward Differentiation Formula
(BDF). In particular, the second-order BDF (BDF2) method
has gained a large recognition in its application to stiff
differential equations and Differential Algebraic Equations
(DAEs). Moreover, Skelboe (2000) provides stability analysis and
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error estimates within a coupled numerical integration strategy.
In Skelboe (2000) refers to the method as to the decoupled BDF2
formula. According to the algorithm a given system has to be
partitioned into loosely coupled subsystems first and then the
decoupled formula is applied to integrate the system. Here, the
subsystems to be coupled are given beforehand. A mathematical
formulation of the method is given in Supplementary Numerical
Methods.

2.3.2. Adaptive Step Size Controller
The aim of the adaptive step size controller is to reduce the
computational cost of the simulation while keeping the local
error within acceptable bounds. The reduced computational cost
is mainly achieved by a reduced number of time steps at which a
solution is approximated. In particular, the step size controller
aims at guaranteeing Equation (1) for an as large as possible
step size h, where |ǫj| is the local discretization error and the
parameter tolerance TOL is a bound on the local error.

|ǫj| ≤ TOL (1)

We implement an adaptive control of the step size shown in
Algorithm 1. It calculates a local discretization error |

[

ǫj
]

| of the
taken step hj (line #8). If the calculated quality is good enough
(line #9), an optimal step size is calculated and then used as a
predictor for the next step size hj+1 (line #13). Otherwise, the
current step size hj is recalculated (line #16) and the step has to
be done once again.

Since the quantity of the local discretization error |ej| cannot
be determined exactly, the notion of some computable estimate
|ej| ≈ |

[

ǫj
]

| was introduced by Deuflhard and Bornemann
(2002).

In Algorithm 1 we apply two controllers depending on the
computed local discretization error value to predict an optimal
time step, a so-called H211b controller proposed by Söderlind
and Wang (2006) and a P-controller used by Deuflhard and
Bornemann (2002, pp. 197ff). The optimal time step is also
bounded by qhj (q > 1) and hmax terms for the situation when
the error estimation value becomes or is close to zero (line #13
and line #16).

In order to implement Algorithm 1 an error estimation
mechanism (line #8) should be provided.

2.3.3. Estimate of the Local Discretization Error
The error estimation is method dependent. Below we describe
the error estimation for the BDF2 method based on a predictor-
corrector algorithm. The difference of the discrete evolutions
given by Equation (2) represents an estimate of the local error
| [ǫ] |:

|
[

ǫj
]

| =
∣

∣

∣

∣

∣

∣
9 t+h,tx− 9̂ t+h,tx

∣

∣

∣

∣

∣

∣
, (2)

where the prediction step taken by the discrete evolution
9̂ t+h,t calculates a rough approximation of the solution and the
corrector step taken by 9 t+h,t refines the initial approximation.

Often, the tolerance TOL is set as a combination of a relative
tolerance, relTOL, and an absolute tolerance, absTOL. Then,

Algorithm 1 Step size controller

1: h0 = h̄0 % Choose initial step size prediction h̄0
2: j = 0 % Initiate the iteration index
3: 1t = {t0} % Initiate the time set
4: x1(t0) = x0 % Initiate the solution set
5: while tj < T do%Within the simulation time T do:
6: t = tj + hj
7: x = 9 t,tjx1(tj) % Advance the solution from tj to t

8: compute the error estimate |
[

ǫj
]

|
9: if |

[

ǫj
]

| ≤ TOL then% Step is accepted
10: tj+1 = t
11: 1t = 1t ∪ {tj+1}% Update the time set
12: x1(tj+1) = x% Update the solution set
13: hj+1 = min

(

qhj, hmax,

H211b(hj, E| [ǫ] |),
(T − tj+1) )

% Calculate an optimal time step hj+1

% using Söderlind H211b controller
(Söderlind and Wang, 2006)

14: j = j+ 1
15: else % Step is rejected

16: hj = min
(

qhj, hmax,

p+1

√

ρTOL
|[ǫj]|

hj )

% Adjust the current time step hj
% using a P-controller
(Deuflhard and Bornemann, 2002, pp. 197ff)

17: end if

18: end while

considering Equations (1) and (2) we can write:

∣

∣

∣

∣

∣

∣
9 t+h,tx− 9̂ t+h,tx

∣

∣

∣

∣

∣

∣
≤ relTOL ·

∣

∣

∣

∣

∣

∣
9 t+h,tx

∣

∣

∣

∣

∣

∣
+ absTOL (3)

From a practical point of view, it is more appropriate to use a
similar requirement component-wise. By rearranging Equation
(3) we obtain the error control quantity |[ǫ]| with the bound
equal to one:

|[ǫ]| = max
i

∣

∣

∣
9 t+h,txi − 9̂ t+h,txi

∣

∣

∣

relTOL ·
∣

∣9 t+h,txi
∣

∣ + absTOLi
≤ 1 (4)

where i is the index of the integrated variable in the solution
vector.

The best efficiency is usually achieved if both the predictor
and the corrector are of the same order (Sjö, 1999). Furthermore
polynomial interpolation formulas are preferred as predictors in
connection with stiff problems (Skelboe, 2000). The prediction
step in Equation (4) is taken by the discrete evolution of
the second-order polynomial described in Section 2.5, and the
corrector step by the BDF2 method.

2.4. Organization of System Components
in a Coupled Integration
In the coupled integration the components of a system are solved
independently on time windows [Tn,Tn+1]. Then information is
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exchanged at communication points 0 = T0 < · · · < Tn <

Tn+1 < . . . . Different aspects of integration are considered
in the literature: the use of multiple discretization step sizes
(multiratemethods), the coupling of different numerical methods
(multi-method integration) and different types of organization
of computations between the components. Here, we study two
organizations: Jacobi and Gauss-Seidel. The choice may have a
crucial impact on both numerical stability and accuracy.

We introduce the notion of macro time step and micro
time step. The macro time step determines the communication
points: how long the components can run independently from
each other without losing accuracy. The micro time step
determines the discretization points of each component between
two communication points. The latter is usually determined by
accuracy, stability and thus the numerical method used.

For the purpose of explaining Jacobi and Gauss-Seidel
organizations we introduce an abstract system composed of two
components: component 1 and component 2. Then we can define
the system using a continuous representation as:

d

dt
x1 = f1(t, x1, x2)

d

dt
x2 = f2(t, x1, x2),

(5)

where x1, x2 are solution vectors of the respective component.
Note that although the organization is discussed by considering
only two components, the basic principles carry over the general
case of n components.

2.4.1. Jacobi Organization
Jacobi organization in the system with two components leads to
the interaction shown in Figure 1. In order to make a step from
time Tn to Tn+1 each component gets variables exchanged at time
Tn (white triangle arrows on Figure 1). Then, the components are
integrated to the time point Tn+1.

In Jacobi organization System (5) can be rewritten in the form:

d

dt
x1 = f1(t, x1, x̃2,n+1)

d

dt
x2 = f2(t, x̃1,n+1, x2),

(6)

where x̃1,n+1 and x̃2,n+1 are approximations of the exchanged
variables x1 and x2 at time Tn+1, respectively. This organization
works well in parallel computations since no component needs to
wait for the other.

2.4.2. Gauss-Seidel Organization
The Gauss-Seidel organization updates each component in a
sequential order (Figure 2). Let the component 1 be the leading
component in System (5). Then, after the solution has been
communicated at time Tn (white triangle arrow on Figure 2), the
component 1 proceeds untilTn+1. Then the calculated solution of
the component 1 at time Tn+1 can be used by the component 2.
This organization has been used by Mattioni and Le Novère
(2013).

FIGURE 1 | Discretization in time of System (5) using Jacobi

organization. White triangle arrows correspond to the variables exchanged

between component 1 and component 2. Hn is a macro time step of

System (5), hx1 , hx2 are micro time steps of the component 1 and 2

respectively.

FIGURE 2 | Discretization in time of System (5) using Gauss-Seidel

organization. White triangle arrows correspond to the variables exchanged

between the component 1 and the component 2. Hn is a macro time step in

System (5), hx1 , hx2 are micro time steps of the component 1 and 2,

respectively.

The Gauss-Seidel organization allows to eliminate the error
introduced by one solution approximation in System (7).

d

dt
x1 = f1(t, x1, x̃2,n+1)

d

dt
x2 = f2(t, x1, x2),

(7)

where x̃2,n+1 is an approximated solution of the component 2
as in Equation (6). However while Jacobi organization
preserves parallelity of the integration, the Gauss-Seidel
organization imposes a sequence of computation which reduces
parallelity (Skelboe, 1992).

2.5. Approximation of Exchanged Variables
We aim to simulate two components with reciprocal data
dependencies, that is the solution of each component depends
on the solution of the other component at each integration time
step. It can happen that the information is not available at a
certain time point. For instance, the implicit methods require
exchanged variable values and state variables from the current
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time point Tn+1 as shown in System (6) and in System (7). Then
an approximation of exchanged variables can be considered.

Here we will compare two approximation strategies, so called
Mode 1 and Mode 3 introduced in Skelboe (2000). Mode 1
implies a constant extrapolation x̃n+1 ≡ xn, so that the
solution at the previous time step n is used when required. A
second-order polynomial is applied in Mode 3. It uses the data
from the previous time steps to approximate the value at time
Tn+1 Equation (8).

x̃n+ 1 = x
p2
n+ 1 = ᾱ1xn + ᾱ2xn− 1 + ᾱ3xn− 2 (8)

ᾱ1 = 1− ᾱ2 − ᾱ3, ᾱ2 =
γn+1(γn+1 + δn+1)

1− δn+1
,

ᾱ3 =
γn+1(γn+1 + 1)

δn+1(δn+1 − 1)
,

where γn+ 1 = hn+ 1/hn and δn+ 1 = 1 + hn− 1/hn. In
general, Equation (8) can be easily extended to a continuous
extrapolation. In that case, the parameters ᾱ1, ᾱ2, ᾱ3 are
functions of time. We use Equation (8) as a predictor in the
estimate of the local discretization error and as an approximator
of the exchanged variables in Mode 3.

2.6. Test Case
In computational neuroscience both the electrical and the
chemical signaling play a crucial role in the studies of learning
and memory mechanisms. Synaptic input integration, signal
propagation along the dendrites and action potential generation
can often be modeled as electrical processes. These processes act
on a timescale of about 0.001 s and a spatial scale from a few
100µm to a few millimeters. The chemical processes typically
span the timescales from a few seconds to months and years and
can act within 1µm. In our multiscale test system we span two
levels of neural organization: cellular and subcellular levels. We
model the electrical dynamics of a single neuron and biochemical
processes in its spine (Figure 3).

Models of bistable chemical switches are commonly explored
in the studies of long-term memory formation, in particular
LTP and LTD. We choose the mitogen-activated protein kinase
(MAPK) signaling model used in the study of homeostatic
regulation of excitability at the scale of a single synapse by
Bhalla (2011). The model exhibits bistability. It changes from
the inactive to the active stable state by means of receptor
phosphorylation caused by a calcium signal. To simulate the
calcium influx we model a compartmentalized cell of a regular-
spiking neuron (Pospischil et al., 2008). A current of 0.09 · 10−9 A
is applied to the soma of the cell for 5 s. The change in
the membrane potential activates voltage dependent sodium
and potassium channels and a spike train propagates through
the axial resistance to the spine. Spine depolarization activates
voltage dependent calcium channels and a calcium current flows
into the spine. Calcium influx triggersmultiple signaling cascades
on a sub-cellular level. P-MAPK becomes active, phosphorylates
potassium channels K_A and leads to their non-conductivity.
Then the biochemical model settles at its second steady state. The
parameters of both models are given in Supplementary Model
Details.

2.6.1. Communication Signals
We use Ca2+ influx as a key signal in our multiscale model to
activate the MAPK cascade. The Ca2+ current in the electrical
model (ICa) is transformed to the calcium injection rate to the
biochemical model (kinj) as shown in Equation (9).

kinj =
Ne

2 · NA · vol
· ICa

[

M

s

]

, (9)

where Ne is the number of electrons in one Coulomb which
roughly equals 6.242 · 1018, NA is Avogadro’s constant and vol
is the volume of the spine compartment.

In turn, the biochemical model provides calcium
concentration [Ca] and the fraction of active (non-
phosphorylated) potassium channels in the spine [K_A]

[Kbase]
.

The fraction is used in the conductance evolution of the A-type
potassium current in the electrical model Equation (10).

gKA = ḡKA

[K_A]

[Kbase]
[S] , (10)

where ḡKA is the maximum potassium conductance. Calcium
concentration [Ca] is used in the Nernst potential recalculations
for the calcium ion in the spine (see Supplementary Model
Details).

2.6.2. Mathematical Formulation
The compartmental modeling with the HH formalism in the
electrical component defines 17 subsequent electrical circuits or
24 ODEs (see Supplementary Model Details). Chemical reactions
in the spine are defined by reaction-rate equations constituting
a non-linear system of 18 ODEs (see Supplementary Model
Details). Considering the communication signals System (5) can
be reformulated in the following form:

d

dt
xchem = fchem(t, xchem, g1(xelec, xchem))

d

dt
xelec = felec(t, g2(xchem), xelec),

(11)

where g1 and g2 are the output functions from the electrical and
the biochemical component respectively.

g1(xelec, xchem) = C1(xelec,i + C2ln(xchem,j)− C3)x
2
elec,kxelec,l

g2(xchem) =

{

xchem,m

C4xchem,n
,

(12)
where C1..C4 are constants; the indices i..m correspond to
positions of variables in the solution vector x at time t:

i - potential in the spine [V];
j, m - calcium concentration in the spine [M];
k - probability for an s gate being opened (calcium channel

activation);
l - probability for an r gate being opened (calcium channel

inactivation);
n - concentration of active (non-phosphorylated) potassium

channels in the spine [M].
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FIGURE 3 | A schematic representation of the multiscale neuron assembly. A compartmental structure of the neuron is depicted together with the

communication signals between electrical and biochemical models of the spine. The neuron consists of 17 compartments: a soma, 15 subcompartments of a

dendrite and a spine. The morphological and physiological details are given in Supplementary Model Details.

FIGURE 4 | System solution used as a reference for method evaluation. (A) Voltage traces of soma and spine on the interval [0;10] s of simulation time. (B)

Concentration traces of the characteristic molecules Ca, P-MAPK and K_A in the biochemical model.

2.7. Implementation and Simulation
The electrical and biochemical models, numerical disretization
methods, Crank-Nicholson on a staggered grid, RK4 and BDF2,
along with the adaptive step size controller was implemented
in MATLAB R©. The Crank-Nicholson on a staggered grid and
the RK4 methods were used to solve the electrical and the
biochemical component respectively. The adaptive step size
controller was used only when both the electrical and the
biochemical models were discretized with the BDF2 method.

Often a reference solution of the system is required for the
numerical method evaluation. To obtain the reference solution
we solve our system using ode15s MATLAB R© function. ode15s
is a solver designed for stiff problems. It is a quasi-constant
step size implementation of the backward differentiation
methods (Shampine and Reichelt, 1997). We set RelTol and

AbsTol parameters to 10−9 and 10−12 respectively to achieve
high accuracy in the reference solution. The Figures 4A,B

depict the traces of a few most representative variables from
the electrical and the biochemical components in the system
respectively.

In our simulations in the proposed methods we used macro
time step equal micro time step, that is Hn = hx1 = hx2 . In
general, the macro time step does not have to be equal the micro
time step. For example, one can imagine to reduce the number
of communication points when appropriate in order to optimize
the data flow in parallel simulations. Another example is the
multirate methods where each component can be solved with its
own discretization time step, that is hxi 6= hxj . In this case, the
macro time step is different from the micro time step at least for
one of the components.
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Two input parameters, relTOL and absTOL, are required
by the error estimation step in the adaptive algorithm. The
latter one, the absolute error tolerance absTOL, determines the
accuracy when the solution approaches zero. In order to reduce
the number of parameters we replaced absTOL in Equation (4)
with the relative tolerance multiplied with a value representing a
typical size of the corresponding solution component, absTOLi =
relTOL · |Ytypical, i|. We assigned Ytypical to the reference
solution vector chosen at an arbitrary point of time during the
stimulation.

2.8. Evaluation
We apply visual inspection to estimate the global error of the
method by plotting the order-relative slopes, first- and second-
order declines, in each figure in Section 3 (dashed lines). Visual
inspection can also be used to understand whether an obtained
solution deviates from the reference one. However in order to
compare the accuracy of the methods a more rigorous technique
is required.

A typical way to evaluate the accuracy of a numerical
approximation method is to calculate the relative error of the
solution at a characteristic point (often taken to be the final) of the
simulation. In our system, the calcium communication signal has
a crucial impact on the biochemical component. Thus we took
a solution of the calcium concentration to calculate the error. To
verify our observations we applied the same evaluation technique
to the voltage solution in the spine.

We propose a component-wise relative error represented
by Equation (13).

ǫ =
1

N

N
∑

i

‖Eri‖ · 100 [%] (13)

where Eri = (p̌i − pi) ⊘ p̌i, p̌i = (tp̌i , vp̌i ) and pi = (tpi , vpi ) are
characteristic points on the reference and approximate solutions
respectively and ⊘ stands for an element-wise division of the
vectors. Thus two components, the time t and the magnitude v,
are considered in our formula. We motivate this choice with the
thought in mind that both the strength and the time of the event
are important in our simulations. In our solutions we defined
maxima on an arbitrary chosen interval of the simulation as our
characteristic points. We located two maxima values (N = 2) on
the interval between 1 and 2 s of the simulation time to calculate
relative error ǫ Equation (13).

To look at the efficiency of the coupling method we plotted
the error vs. the total number of function calls of the right hand
side of the system of ODEs during the simulation time T =
2 s. In the BDF2 implementation the total number of function
calls includes the function calls used to compute the Jacobian
matrix. For the RK4 method the total number of function calls
per step equals four. In the CN on staggered grid implementation
we estimated the work as one function call plus one Jacobian
evaluation. The latter is comparable to one function call
per step.

3. RESULTS

3.1. The BDF2-BDF2 Coupling
Outperforms RK4-CN on a Fixed Step Size
Grid
We have a stiff electrical component that is usually solved with
the CN method on a staggered grid in neuroscience. We applied
the RK4 method to the biochemical system (Bhalla, 2011). Both
methods are fixed step size methods. The BDF2 method can
also be used on a fixed step size grid however this can be
inefficient due to the multiple iterations per step required in
implicit methods.

In Figure 5we compare the accuracy of two different coupling
methods, the BDF2-BDF2 coupling method and the CN on
staggered grid with RK4 coupling on a fixed step size grid.

We observe that the accuracy of the decoupled BDF2 formula
is preserved in the solutions. However an expected second-
order accuracy of the calcium solution obtained with the RK4-
CN coupling is lost (Figure 5A). This can happen due to
insufficient accuracy of the exchanged variables. In the modified
CN method calcium current is calculated at a half time step and
then communicated at a whole time step. Thus the accuracy
of the communicated variable is only of the first order. This
can influence the order of the coupling method. We performed
simulations using different order extrapolating techniques of the
exchanged variables. However, we did not notice a sufficient
order difference with respect to the calcium solution.

There is no visible accuracy loss in the voltage traces as shown
in Figure 5B. We expect the order of a coupling method to
be dependent on the strength of the coupling and thus vary
for different systems. In our multiscale test problem we have
a strong coupling influence of the electrical component on the
biochemical and a weak coupling vice versa.

Overall the BDF2-BDF2 coupling shows more accurate results
than the conventional methods on a given range of fixed step size
grids. These promising outcomes indicate a further direction of
the research.

3.2. The H211b Controller Leads to a
Smoother Distribution of Step Sizes
An optimal behavior of the step size controller is when the step
sizes that have to be taken do not have an extensive variation.
Otherwise it increases the number of times the step size controller
has to redo a step. A smooth distribution of step sizes leads to
good performance of the integrator.

In Figure 6 we compare the P-, PI- and H211b controllers.
The H211b controller shows a smoother step size variation at the
beginning of the simulation. Thus we chose the H211b controller
for our further observations.

3.3. An Appropriate Approximation of
Exchanged Variables
In these simulations we compare the constant extrapolation
(Mode 1) with the second-order polynomial extrapolation
of exchanged variables (Mode 3) described in Section 2.5.
We used Jacobi organization of the components and an
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FIGURE 5 | Efficiency comparison between the RK4-CN (staggered) (“asterisk” markers) and the BDF2-BDF2 (“square” markers) coupling on a fixed

step size grid. The datapoints on each curve correspond to helec = hchem = {2 · 10−5; 1 · 10−5; 5 · 10−6; 2.5 · 10−6}, respectively. The first discretization grid

corresponds approximately to the one required by the fastest component when solved independently. The dashed lines correspond to the first- and second-order

declines. The simulations were performed using Jacobi organization between the components with constant extrapolation of exchanged variables (Mode 1). (A) The

relative error of the calcium solution versus the number of ODE calls. (B) The relative error of the voltage solution versus the number of ODE calls.

FIGURE 6 | The size of a step taken by the P-, PI-, H211b controllers as a function of simulation time evaluation. (A) The time span of 2 s. After 1 s of

simulation time a current stimulus is given to the soma that leads to a large increase in the firing rate. Hence the required time step becomes small. (B) Close up on

time interval (0;0.04) s.

adaptive step size controller with the BDF2 approximation
method in these simulations. The relative errors both of
calcium concentration ǫCa and of voltage in the spine ǫV
were calculated. An expected asymptotic behavior is observed
in Mode 3 and only a first-order of coupling in Mode 1
(Figure 7). Accuracy measurements of the voltage solution
do not show significant difference between the modes (not
shown).

A significant advantage of the second-order polynomial
extrapolation (Mode 3) over the constant extrapolation (Mode 1)
with respect to solution accuracy demonstrates the importance of
an appropriate choice between different approximation strategies
of exchanged variables.

In general, approximated values can be of 0th order (Mode 1)
if the coupling between the components is weak or xi(t) is
slowly varying, otherwise the results will be inaccurate (Sand
and Skelboe, 1992). Our results are perfectly in line with this
observation since our test case has a strong coupling between the
electrical and the biochemical component.

3.4. Organization of System Components
We investigate whether different organizations between the
components in our system have an impact on the solution
accuracy. Having a strong influence of the electrical component
on the biochemical during the stimulation interval we predicted
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FIGURE 7 | Efficiency comparison between Mode 1 and Mode 3. The

simulations were performed using Jacobi organization in the system. The

datapoints correspond to relTOL = {10−5; 10−6; 10−7}. The dashed lines are

the first- and second-order declines.

FIGURE 8 | Efficiency comparison between Jacobi, Gauss-Seidel with

electrical component solved first and Gauss-Seidel with biochemical

component solved first organizations. The datapoints on the figure

correspond to relTOL = {10−5; 10−6; 10−7}. The dashed lines are the first

and second-order declines.

that by letting the electrical component lead the integration we
could possibly avoid an approximation error of the exchanged
variables and improve overall performance. The results we
observe are consistent with our expectations (Figure 8). Gauss-
Seidel organization with the electrical component solved first in
Mode 1 lead to more accurate results.

We also compared different organizations in Mode 3. We did
not notice any superiority of Gauss-Seidel organization with the
electrical component solved first.

We conclude that Jacobi organization with the second-order
polynomial approximation of the exchanged variables (Mode 3)

can have similar accuracy as Gauss-Seidel organization with an
appropriate ordering of system components in Mode 1.

4. DISCUSSION

Several strategies have been proposed for coupling multiple
components of a multiscale system on a behavioral level recently
(Bhalla, 2011; Mattioni and Le Novère, 2013). One of the
questions that has not been addressed in the research literature is
mathematical justification of the coupling strategy. In this paper
we discussed the problems of inefficiency and possible numerical
instability that may arise while coupling multiple components
comprising a multiscale system.

We introduced an implicit approximation method, two-
step Backward Differentiation formula (BDF2) as a possible
alternative to the conventional discretization methods used in
neuroscience. This numerical method appealed to our interest
for several reasons. First, it has been previously introduced
as a decoupled implicit BDF2 formula by Skelboe (2000). Its
stability properties and error propagation estimates within a
coupled integration have been discussed. Second, the proposed
error estimation allowed us to use the adaptive time-stepping
algorithm described in Section 2.3.

In this paper we investigated the influence of such factors
as an approximation of exchanged variables and different
organizations of system components. We compared constant
(Mode 1) and second-order polynomial (Mode 3) extrapolation
of exchanged variables in our simulations. We also introduced
two types of organization between the components, Jacobi
and Gauss-Seidel. Our results show that an appropriate
approximation of exchanged variables and organization of system
components plays a significant role in efficient integration of
the coupled system. Moreover, an application of the proposed
integration method with the Jacobi-type organization of system
components is well suited for parallel computations.

The power and applicability of the method was demonstrated
solving a multiscale test case that was designed as a prototype of
models used in the scope of interest. In Figure 9 we combine
the efficiency measurements of the solutions obtained with
the adaptive step size BDF2-BDF2 coupling method and those
obtained with the fixed step size coupling RK4 - CN (staggered)
method. The BDF2-BDF2 coupling in Mode 3 with Jacobi
organization (the curve with “square” markers) is comparable
to the BDF2-BDF2 coupling in Mode 1 with Gauss-Seidel
organization where the electrical component was solved first
(the curve with “asterisk” markers). The proposed integration
method allowed us to solve the system in a more efficient way.
An application of the method and conclusions can be generalized
for similar problems formulated by systems of ODEs and DAEs.

Multiscale problems usually span multiple time scales. The
step sizes required for numerical stability and desired accuracy
normally differ for different system components when solved
separately. In this paper, we used macro time-stepping equal
micro time-stepping for each component in order to address
the questions of stability and accuracy of a coupled integration.
Intuitively one would imagine to use small steps for the fastest
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FIGURE 9 | Efficiency comparison between the proposed coupling

method BDf2-BDF2 (“cross” and “square” markers) and the

conventional coupling method RK4-CN (“circle” markers). The

datapoints represent the error estimates of the solution obtained with

relTOL = {10−5; 10−6; 10−7} and on the fixed grid with the step sizes

helec = hchem = {2 · 10−5; 1 · 10−5; 5 · 10−6; 2.5 · 10−6} accordingly. The

dashed lines correspond to the first and second-order declines.

changing components and larger steps in slow components
in the hope of reducing the amount of computational and
communication work, a so-called multirate method. To the
knowledge of the authors an application of the multirate
integration to the physical systems is a non trivial task with a
limited choice of available methods. Skelboe (2000) mentions
an applicability of the decoupled integration formula in a
multirate mode with a waveform relaxation method. In Günther
and Rentrop (1993) tested the multirate Rosenbrock-Wanner

schemes on a highly integrated electric circuits. The method
showed a potential for a computational speedup. Therefore, an
extension of the proposed method to allow multirate integration
can be further considered.
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