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Drifting States and Synchronization
Induced Chaos in Autonomous
Networks of Excitable Neurons
Rodrigo Echeveste*† and Claudius Gros

Institute for Theoretical Physics, Goethe-Universität Frankfurt, Frankfurt, Germany

The study of balanced networks of excitatory and inhibitory neurons has led to several

open questions. On the one hand it is yet unclear whether the asynchronous state

observed in the brain is autonomously generated, or if it results from the interplay between

external drivings and internal dynamics. It is also not known, which kind of network

variabilities will lead to irregular spiking and which to synchronous firing states. Here we

show how isolated networks of purely excitatory neurons generically show asynchronous

firing whenever a minimal level of structural variability is present together with a refractory

period. Our autonomous networks are composed of excitable units, in the form of leaky

integrators spiking only in response to driving currents, remaining otherwise quiet. For

a non-uniform network, composed exclusively of excitatory neurons, we find a rich

repertoire of self-induced dynamical states. We show in particular that asynchronous

drifting states may be stabilized in purely excitatory networks whenever a refractory

period is present. Other states found are either fully synchronized or mixed, containing

both drifting and synchronized components. The individual neurons considered are

excitable and hence do not dispose of intrinsic natural firing frequencies. An effective

network-wide distribution of natural frequencies is however generated autonomously

through self-consistent feedback loops. The asynchronous drifting state is, additionally,

amenable to an analytic solution. We find two types of asynchronous activity, with the

individual neurons spiking regularly in the pure drifting state, albeit with a continuous

distribution of firing frequencies. The activity of the drifting component, however,

becomes irregular in the mixed state, due to the periodic driving of the synchronized

component. We propose a new tool for the study of chaos in spiking neural networks,

which consists of an analysis of the time series of pairs of consecutive interspike intervals.

In this space, we show that a strange attractor with a fractal dimension of about 1.8 is

formed in the mentioned mixed state.

Keywords: synchronization, chaos, neural network, integrate-and-fire neuron, excitatory neurons, phase diagrams

1. INTRODUCTION

The study of collective synchronization has attracted the attention of researchers across fields for
now over half a century (Winfree, 1967; Kuramoto, 1975; Peskin, 1975; Buck, 1988; Pikovsky
and Rosenblum, 2015). Kuramoto’s exactly solvable mean field model of coupled limit-cycles
(Kuramoto, 1975), formulated originally by Winfree (1967), has helped in this context to establish
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the link between the distribution of natural frequencies and the
degree of synchronization (Gros, 2010). Moreover, the functional
simplicity of this model, and other extensions, has permitted
to analytically study the collective response of the system to
external perturbations in the form of phase resets (Levnajić
and Pikovsky, 2010). Networks of phase coupled oscillators may
show, in addition, attracting states corresponding to limit cycles,
heteroclinic networks, and chaotic phases (Ashwin et al., 2007;
Dörfler and Bullo, 2014), with full, partial, or clustered synchrony
(Golomb et al., 1992), or asynchronous behavior (Abbott and van
Vreeswijk, 1993)

Different degrees of collective synchronization may occur also
in networks of elements emitting signals not continuously, such
as limit-cycle oscillators, but via short-lived pulses (Mirollo and
Strogatz, 1990; Abbott and van Vreeswijk, 1993; Strogatz and
Stewart, 1993). Networks of pacemaker cells in the heart (Peskin,
1975), for instance, synchronize with high precision, acting
together as a robust macroscopic oscillator. Other well-known
examples are the simultaneous flashing of extended populations
of southeast Asian fireflies (Hanson, 1978; Buck, 1988) and the
neuronal oscillations of cortical networks (Buzsáki and Draguhn,
2004). In particular, the study of synchronization in the brain is
of particular relevance for the understanding of epileptic states,
or seizures (Velazquez et al., 2007).

The individual elements are usually modeled in this context
as integrate and fire units (Kuramoto, 1991; Izhikevich, 1999),
where the evolution (in between pulses, flashes, or spikes) of a
continuous internal state variable V is governed by an equation
of the type:

τ V̇ = f (V)+ I. (1)

Here τ is the characteristic relaxation timescale of V , with
f representing the intrinsic dynamics of the unit, and I the
overall input (both from other units and from external stimuli).
Whenever V reaches a threshold value Vθ , a pulse is emitted (the
only information carried to other units) and the internal variable
is reset to Vrest .

These units are usually classified either as oscillators or as
excitable units, depending on their intrinsic dynamics. The
unit will fire periodically even in the absence of input when
f (V) > 0 (∀V ≤ Vθ ). Units of this kind are denoted
pulse-coupled oscillators. The unit is, on the other hand, an
excitable unit, if an additional input is required to induce
firing.

A natural frequency given by the inverse integration time
of the autonomous dynamics exist in the case of pulse-coupled
oscillators. There is hence a preexisting, albeit discontinuous
limit cycle, which is then perturbed by external inputs. One can
hence use phase coupling methods to study networks of pulse
coupled oscillators (Mirollo and Strogatz, 1990; Kuramoto, 1991;
Izhikevich, 1999), by establishing a map between the internal
state variable V and a periodic phase φ given by the state of the
unit within its limit cycle. From this point of view systems of
pulse-coupled units share many properties with sets of coupled
Kuramoto-like oscillators (Kuramoto, 1975), albeit with generally
more complex coupling functions (Izhikevich, 1999). For reviews

and examples of synchronization in populations of coupled
oscillators see Strogatz (2000) and Dörfler and Bullo (2014).

These assumptions break down for networks of coupled
excitable units as the ones here described. In this case the
units will remain silent without inputs from other elements
of the system and there are no preexisting limit cycles and
consequently also no preexisting natural frequencies (unlike
rotators (Sonnenschein et al., 2014), which are defined in
terms of a periodic phase variable, and a count with a natural
frequency). The firing rate depends hence exclusively on the
amount of input received. The overall system activity will
therefore forcefully either die out or be sustained collectively
in a self-organized fashion (Gros, 2010). The respectively
generated spiking frequencies for a given mean network activity
could be considered in this context as self-generated natural
frequencies.

The study of pulse coupled excitable units is of particular
relevance within the neurosciences, where neurons are often
modeled as spike emitting units that continuously integrate the
input they receive from other cells (Burkitt, 2006). The proposal
(Shadlen and Newsome, 1994; Amit and Brunel, 1997), and later
the empirical observation that excitatory and inhibitory inputs
to cortical neurons are closely matched in time (Sanchez-Vives
and McCormick, 2000; Haider et al., 2006), has led researchers
to focus on dynamical states (asynchronous states in particular)
in networks characterized by a balance between excitation and
inhibition (Abbott and van Vreeswijk, 1993; van Vreeswijk and
Sompolinsky, 1996; Hansel and Mato, 2001; Vogels and Abbott,
2005; Kumar et al., 2008; Stefanescu and Jirsa, 2008). This
balance (E/I balance) is generally presumped to be an essential
condition for the stability of states showing irregular spiking,
such as the one arising in balanced networks of integrate and
fire neurons (Brunel, 2000). The type of connectivity usually
employed in network studies however, is either global, or local
consisting of either repeated patterns, or random connections
drawn from identical distributions (Kuramoto and Battogtokh,
2002; Abrams and Strogatz, 2004; Ashwin et al., 2007; Alonso and
Mindlin, 2011). Our results show, however, that only a minimal
level of structural variability is necessary for excitatory networks
to display wide varieties of dynamical states, including stable
autonomous irregular spiking. We believe that these studies are
not only interesting on their own because of the richness of
dynamical states, but also provide valuable insight into the role
of inhibition.

Alternatively, one could have built networks of excitatory
neurons with high variability in the connection parameters,
reproducing realistic connectivity distributions, such as those
found in the brain. The large number of parameters involved
would make it however difficult to fully characterize the system
from a dynamical systems point of view, the approach taken here.
An exhaustive phase-space study would also become intractable.
We did hence restrict ourselves in the present work to a scenario
of minimal variability, as given by a network of globally coupled
excitatory neurons, where the coupling strength of each neuron
to the mean field is non-uniform. Our key result is that stable
irregular spiking states emerge even when only a minimal level of
variability is present at a network level.
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Another point we would like to stress here is that
asynchronous firing states may be stabilized in the absence of
external inputs. In the case here studied, there is an additional
“difficulty” to the problem, in the sense that the pulse-coupled
units considered are in excitable states, remaining quiet without
sufficient drive from the other units in the network. The observed
sustained asynchronous activity is hence self-organized.

We characterize how the features of the network dynamics
depend on the coupling properties of the network and, in
particular, we explore the possibility of chaos in the here studied
case of excitable units, when partial synchrony is present, since
this link has already been established in the case of coupled
oscillators with a distribution of natural frequencies (Miritello
et al., 2009), while other studies had also shown how stable chaos
emerges in inhibitory networks of homogeneous connection
statistics (Angulo-Garcia and Torcini, 2014).

2. THE MODEL

In the current work we study the properties of the self-
induced stationary dynamical states in autonomous networks
of excitable integrate-and-fire neurons. The neurons considered
are characterized by a continuous state variable V (as in
Equation 1), representing the membrane potential, and a discrete
state variable y that indicates whether the neuron fires a spike
(y = 1) or not (y = 0) at a particular point in time. More
precisely, we will work here with a conductance based (COBA)
integrate-and-fire (IF) model as employed in Vogels and Abbott
(2005) (here however without inhibitory neurons), in which the
evolution of each neuron i in the system is described by:

τ V̇i = (Vrest − Vi) + gi (Eex − Vi) , (2)

where Eex = 0mV represents the excitatory reversal potential
and τ = 20ms is the membrane time constant. Whenever the
membrane potential reaches the threshold Vθ = −50mV, the
discrete state of the neuron is set to yi = 1 for the duration of
the spike. The voltage is reset, in addition, to its resting value of
Vrest = −60mV, where it remains fixed for a refractory period of
tref = 5ms. Equation (2) is not computed during the refractory
period. Except for the times of spike occurrences, the discrete
state of the neuron remains yi = 0 (no spike).

The conductance gi in Equation (2) integrates the influence of
the time series of presynaptic spikes, decaying on the other side
in absence of inputs:

τex ġi = −gi, (3)

where τex = 5ms is the conductance time constant. Incoming
spikes from the N − 1 other neurons produce an increase of the
conductance gi −→ gi + 1gi, with:

1gi =
Ki

N − 1

∑

j 6=i

wij yj. (4)

Here the synaptic weights wij represent the intensity of
the connection between the presynaptic neuron j and the

postsynaptic neuron i. We will generally employ normalized
synaptic matrices with

∑

j wij/(N − 1) = 1. In this way we

can scale the overall strength of the incoming connections via
Ki, retaining at the same time the structure of the connectivity
matrix.

2.1. Global Couplings
Different connectivity structures are usually employed in the
study of coupled oscillators, ranging from purely local rules to
global couplings (Kuramoto and Battogtokh, 2002; Abrams and
Strogatz, 2004; Ashwin et al., 2007; Alonso and Mindlin, 2011).
We start here by employing a global coupling structure, where
each neuron is coupled to the overall firing activity of the system:

wij = 1 ∀ i 6= j, wii = 0, (5)

which corresponds to a uniform connectivity matrix without
self coupling. All couplings are excitatory. The update rule
(Equation 4) for the conductance upon presynaptic spiking then
take the form:

1gi = Ki

∑

j 6=i yj

N − 1
= Ki r̄, r̄ =

∑

j 6=i yj

N − 1
, (6)

where r̄ = r̄(t) represents the time-dependent mean field of
the network, viz the average over all firing activities. r̄ is hence
equivalent to the mean field present in the Kuramoto model
(Kuramoto, 1975), resulting in a global coupling function as an
aggregation of local couplings. With our choice (Equation 5)
for the coupling matrix the individual excitable units may be
viewed, whenever the mean field r̄ is strong enough, as oscillators
emitting periodic spikes with an “effective” natural frequency
determined by the afferent coupling strength Ki. The resulting
neural activities determine in turn the mean field r̄(t).

2.2. Coupling Strength Distribution
We are interested in studying networks with non-uniformKi, We
mostly consider here the case of equidistant Ki, defined by:

Ki = K̄ − 1K +
21K

N − 1
(i− 1) , i = 1, . . . ,N (7)

for the N neurons, where K̄ represents the mean scaling
parameter, and 1K, the maximal distance to the mean. It is
possible, alternatively, to use a flat distribution with the Ki drawn
from an interval [K̄ − 1K, K̄ + 1K] around the mean K̄. For
large systems there is no discernible difference, as we have tested,
between using equidistant afferent coupling strengths Ki and
drawing them randomly from a flat distribution.

3. RESULTS

Several aspects of our model, in particular the asynchronous
drifting state, can be investigated analytically as a consequence
of the global coupling structure (Equation 5), as shown in
Section 3.1. All further results are obtained from numerical
simulations, for which, if not otherwise stated, a timestep of
0.01ms has been used. We have also set the spike duration to
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one time-step, although these two parameters can be modified
separately if desired, with our results not depending on the choice
of the time-step, while the spike width does introduce minor
quantitative changes to the results, as later discussed.

3.1. Stationary Mean-Field Solution for the
Drifting State
As a first approach we compute the response of a neuron with
coupling constant Ki to a stationary mean field r̄, as defined
by Equation (6), representing the average firing rate of spikes
(per second) of the network. This is actually the situation
present in the asynchronous drifting state, for which the firing
rates of the individual units are incommensurate. With r̄ being
constant we can combine the update rules (3) and (4) for the
conductances gi to

τex ġi = −gi + τexKir̄, g∗i = τexKir̄, (8)

where we have denoted with g∗i the steady-state conductance.
With the individual conductance becoming a constant we may
also integrate the evolution Equation (2) for the membrane
potential,

τ V̇i = (Vrest − Vi) + τexKir̄ (Eex − Vi) , (9)

obtaining the time t∗i it takes for the membrane potential Vi

to reach the threshold Vθ , when starting from the resting
potential Vrest :

t∗i = −
1

Bi
log

(

BiVθ − Ai

BiVrest − Ai

)

, (10)

with:

Ai =
Vrest + τexKir̄Eex

τ
, Bi =

1+ τexKir̄

τ
. (11)

We note, that the threshold potential Vθ is only reached, if
dVi/dt > 0 for all Vi ≤ Vθ . For the t∗i to be finite we hence
have (from Equation 9)

Kir̄ >
1

τex

(

Vθ − Vrest

Eex − Vθ

)

. (12)

The spiking frequency is ri = T−1
i , with the intervals Ti between

consecutive spikes given by Ti = t∗i + tref , when (Equation 12) is
satisfied. Otherwise the neuron does not fire. The mean field r̄ is
defined as the average firing frequency

r̄ = 〈ri〉 =

〈

1

t∗i + tref

〉

(13)

of the neurons. Equations (10) and (13) describe the
asynchronous drifting state in the thermodynamic limit
N → ∞. We denote this self-consistency condition for r̄ the
stationary mean-field (SMF) solution.

3.2. Numerical Simulations
We studied our model, as defined by Equations (2) and (3),
numerically for networks with typically N = 100 neurons,
a uniform coupling matrix (see Equation 5) and coupling
parameters K̄ and 1K given by Equation (7). We did not find
qualitative changes when scaling the size of the network up
to N = 400 for testing purposes (and neither with down-
scaling), see Figure 7. Random initial conditions where used. The
network-wide distribution of firing rates is computed after the
system settles to a dynamical equilibrium.

Three examples, for K̄ = 2.0 and 1K/K̄ = 0.9, 0.6,
and 0.2, of firing-rate distributions are presented in Figure 1 in
comparison with the analytic results obtained from the stationary
mean field approach (SMF), as given by Equation (13). The
presence or absence of synchrony is directly visible. In all of the
three parameter settings presented in Figure 1 there is a drifting
component, characterized by a set of neurons with a continuum
of frequencies. These neurons fire asynchronously, generating a
constant contribution to the collective mean field.

The plateau present in the case 1K/K̄ = 0.2, corresponds,
on the other hand, to a set of neurons firing with identical
frequencies and hence synchronously. Neurons firing
synchronously will do so however with finite pairwise phase lags,
with the reason being the modulation of the common mean field
r̄ through the distinct afferent coupling strengths Ki. We note
that the stationary mean-field theory (Equation 13) holds, as

FIGURE 1 | The firing rates of all i = 1, . . . ,N neurons, as a function of the relative rank Krank = i/N of the individual neurons (N = 100). The coupling

matrix is uniform (see Equation 5) and the afferent coupling strength Ki uniformly distributed between K̄ ± 1K; with K̄ = 2.0 and 1K/K̄ = 0.9/0.6/0.2 (A–C). The full

red lines denote the results obtained by solving numerically Equations (2) and (3), and the dashed lines the stationary mean field solution (SMF, Equation 13).
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expected, for drifting states, but not when synchronized clusters
of neurons are present.

In Figure 2 we systematically explore the phase space as a
function of K̄ and 1K. For labeling the distinct phases we use
the notation

I : inactive,
I+D : partially inactive and drifting,

D : fully drifting (asynchronous),
D+S : mixed, containing both drifting and synchronized

components, and
S : fully synchronized.

Examples of the rate distributions present in the individual
phases are presented in Figure 2C.

The phase diagram is presented in Figure 2A. The activity

dies out for a low mean connectivity strength K̄, but not for
larger K̄. Partial synchronization is present when both K̄ and the

variance 1K are small, taking over completely for larger values

of K̄ and small 1K. The phase space is otherwise dominated by
a fully drifting state. The network average r̄ of the neural firing
rates, given in Figure 2B, drops only close to the transition to the
inactive state I, showing otherwise no discernible features at the
phase boundaries.

The dashed lines in Figures 2A,B represent the transitions
between the inactive state I and active state I+D, and between
states I+D and D, as predicted by the stationary mean field

approximation (Equation 13), which becomes exact in the
thermodynamic limit. The shaded region in these plots indicates
the co-existence of attracting states S and S+D. As a note, we
found that the location of this shaded region depends on the spike
width, shifting to higher K̄ values for narrower spikes. While real
spikes in neurons have a finite width, we note from a dynamical
systems point of view, that this region would most likely vanish
in the limit of delta spikes.

For a stable (non-trivial) attractor to arise in a network
composed only of excitatory neurons, some limitation
mechanism needs to be at play. Otherwise one observes a
bifurcation phenomenon, similar to that of branching problems,
in which only a critical network in the thermodynamic limit
could be stable (Gros, 2010). In this case, the limiting factor is the
refractory period. Refractoriness prevents neurons from firing
continuously, and prevents the system activity from exploding.
Interestingly, this does not mean that the neurons will fire at
the maximal rate of 1/tref which would correspond in this case
to 200Hz. The existence of this refractory period allows for
self-organized states with frequencies even well bellow this limit,
as seen in Figure 2B. We have tested these claims numerically by
setting tref = 0, observing that the neural activity either dies out
or the neurons fire continuously.

In order to study the phase transitions between states D
and D+S and between D+S and S, we will resort in the

FIGURE 2 | The phase diagram, as obtained for a network of N = 100 neurons evolving according to Equations (2) and (3). The network matrix is flat, see

Equation (5). Full and partially inactive (I), drifting (D), and synchronized states (S) are found as a function of the coupling parameters K̄ and 1K (Equation 7). (A) The

dashed lines represent the phase transition lines as predicted by the stationary mean field approximation (Equation 13). The shaded region indicates the coexistence

of attracting states S and S+D. (B) The average firing rate of the network. In black the phase boundaries and in white the two adiabatic paths used in Figure 3. (C)

Examples of the four active dynamical states found. As in Figure 1.
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FIGURE 3 | Study of the transitions between fully drifting D and partially drifting and synchronized D+S phase (left panels), and between D+S and the

fully synchronized S state (right panels). For the full phase diagram see Figure 2. The coupling parameters K̄ and 1K (Equation 7), are modified on times scales

much slower than the intrinsic dynamics . For the two adiabatic paths considered, each crossing a phase transition line, the evolution of the firing rate distribution is

computed in several windows and shown. (A) K̄ = 3.0 is kept constant and 1K/K̄ varied between 0.1 and 0.6 (from D to D+S, indicated as I↔II in this figure). (B)

1K/K̄ = 0.1 is kept constant, varying K̄ between 3 and 12 (from D+S to S, indicated as II↔III in this figure).

following section to adiabatic paths in phase space crossing these
lines.

3.2.1. Adiabatic Parameter Evolution

Here we study the nature of the phase transitions between
different dynamical states in Figure 2. To do so, we resort
to adiabatic trajectories in phase space, crossing these lines.
Beginning in a given phase we modify the coupling parameters
K̄ and 1K (Equation 7), on a timescale much slower than that
of the network dynamics. Along these trajectories, we then freeze
the system in a number of windows in which we compute the rate
distribution as a function of theKrank (see Figure 1). During these
observation windows the parameters do not change. In this way,
we can follow how the rate distribution varies across the observed
phase transitions. The results are presented in Figure 3.

We observe that the emergence of synchronized clusters, the
transition D→(D+S), is completely reversible. We believe this
transition to be of second order and that the small discontinuity
in the respective firing rate distributions observed in Figure 3A

are due to finite-size effects. The time to reach the stationary state
diverges, additionally, close to the transition, making it difficult
to resolve the locus with high accuracy.

The disappearance of a subset of drifting neurons, the
transition S→(D+S) is, on the other hand, not reversible. In
this case, when K̄ is reduced, the system tends to get stuck in
metastable attractors in the S phase, producing irregular jumps
in the rate distributions. Furthermore, when we increase K̄, we

observe that the system jumps back and forth between states
D+S and S in the vicinity of the phase transition, indicating
that both states may coexist as metastable attractors close to the
transition.We note that a similar metastability has been observed
in partially synchronized phase of the Kuramotomodel (Miritello
et al., 2009).

3.2.2. Time Structure

In networks of spiking neurons, it is essential to characterize not
only the rate distribution of the system, but also the neurons’
interspike-time statistics (Perkel et al., 1967a,b; Chacron et al.,
2004; Lindner, 2004; Farkhooi et al., 2009). In this case, we have
computed the distribution pi(s) of the interspike intervals s (ISI)
of the individual neurons respectively for full and partial drifting
and synchronized states. The distribution of inter-spike intervals
in Figure 4 shows the network average of the pi(s), normalized
individually with respect to the average Ti =

∫

s pi(s)ds spiking
intervals.

• D : The input received by a given neuron i tends to a
constant, as discussed in Section 3.1, in the thermodynamic
limit N → ∞. The small but finite width of the ISI for the
fully drifting state D evident in Figure 4 is hence a finite-size
effect.

• D+S : The input received for drifting neuron i in a state where
other neurons form a synchronized subcluster is intrinsically
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FIGURE 4 | Top: Histograms of interspike interval (ISI), denoted as s, normalized by the average period, for three parameter configurations. Bottom:

Histograms of the coefficient of variation CV, as defined by Equation (14). Parameters (Equation 7) and state (as defined in Figure 2), for both Top and Bottom: (A)

K̄ = 3.0, 1K/K̄ = 0.6, state: D. (B) K̄ = 3.0, 1K/K̄ = 0.1, state: D+S. (C) K̄ = 12.0, 1K/K̄ = 0.1, state: S.

periodic in time and the resulting pi(s) non-trivial, as evident
in Figure 4.

• S : pi(s) is a delta function for all neurons in the fully
synchronized state, with identical inter-spike intervals Ti.

As a frequently used measure of the regularity of a time
distribution we have included in Figure 4 the coefficient of
variation (CV),

CVi =
σi

Ti
, Ti =

∫

s pi(s)ds, σ 2
i =

∫

(s− Ti)
2pi(s)ds .

(14)
Of interest here are the finite CVs of the drifting units in the
D+S state, which are considerably larger than the CVs of the
drifting neurons when no synchronized component is present.
This phenomenon is a consequence of the interplay between
the periodic driving of the drifting neurons by the synchronized
subcluster in the D+S state, where the driving frequency will in
general be in mismatch with the effective, self-organized natural
frequency of the drifting neurons. The firing of a drifting neuron
is hence irregular in the mixed D+S state, becoming however
regular in the absence of synchronized drivings.

3.2.3. Self Induced Chaos

The high variability of the spiking intervals observed in themixed
state, as presented in Figure 4, indicates that the firing may
have a chaotic component in the mixed state and hence positive
Lyapunov exponents (Gros, 2010).

Alternatively to a numerical evaluation of the Lyapunov
exponents (a demanding task for large networks of spiking
neurons), a somewhat more direct understanding of the
chaotic state can be obtained by studying the relation between
consecutive spike intervals. In Figure 5 we plot for this

purpose a time series of 2000 consecutive interspike intervals
[

si(n), si(n+ 1)
]

(corresponding to about 17 s in real time), for
one of the drifting neurons in the D+S state (with the parameters
of the third example of Figure 1: K̄ = 2.0 and 1K/K̄ = 0.2).
We note that the spiking would be regular, viz si(n) constant,
for all neurons either in the fully drifting state (D) or in
the fully synchronized state (S). The plot of consecutive spike
intervals presented in Figure 5 can be viewed as a poor man’s
approximation to Takens’ embedding theorem (Takens, 1981),
which states that a chaotic attractor arising in a d-dimensional
phase space (in our case d = 2N) can be reconstructed by the
series of d-tuples of time events of a single variable.

With a blue line we follow in Figure 5 a representative
segment of the trajectory, which jumps irregularly. A first
indication that the attractor in Figure 5 may be chaotic comes
from the observation that the trajectory does not seem to
settle (within the observation window) within a limit cycle. The
time series of consecutive spike-interval pairs will nevertheless
approach any given previous pair

[

si(n), si(n+ 1)
]

arbitrarily
close, a consequence of the generic ergodicity of attracting sets
(Gros, 2010). One of these close re-encounters occurs in Figure 5

near the center of the dashed circle, with the trajectory diverging
again after the close re-encounter. This divergence indicates the
presence of positive Lyapunov exponents.

We have determined the fractal dimension of the attracting
set of pairs of spike intervals in the mixed phase by overlaying
the attractor with a grid of 2r × 2r squares. For this calculation
we employed a longer simulation with Nspikes = 128, 000. The
resulting box count, presented in Figure 6, yields a Minkowski or
box-counting dimension DF ≈ 1.8, embeded in the 2D space of
the plot, confirming such that the drifting neurons in the D+S
phase spikes indeed chaotically. As a comparison, a limit cycle in
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FIGURE 5 | Pairs of consecutive interspike intervals s plotted against

each other, for one of the drifting neurons in the D+S state,

corresponding to the third example of Figure 1 (K̄ = 2.0 and

1K/K̄ = 0.2). The plots are qualitatively similar for all drifting neurons in this

state. The qualitative features of the plot are the same for any of the drifting

neurons in this state. In red, each point represents a pair [si (n), si (n+ 1)] where

n denotes the spike number. In blue, we follow a representative segment of the

trajectory. The system does not appear to follow a limit cycle, and these

preliminary results would suggest the presence of chaos in the D+S state,

consistent with studies of chaos in periodically driven oscillators (d’Humieres

et al., 1982). Indeed, if one looks at the two close points within the dashed

circle, we observe how an initially small distance between them, rapidly grows

in a few iterations steps, indicating a positive eigenvalue. For this simulation we

have used a time-step dt = 0.001ms, to improve the resolution of the points

in the plot. We have evaluated the time the neuron needs to circle the attractor,

finding it to be of the order of ∼ 5.3 spikes. Other drifting neurons take slightly

longer or shorter. In Figure 6, we compute the fractal dimension of the here

shown attractor.

this space, has a DF of 1. While we present here the result for one
particular neuron, the same holds for every drifting neuron in
this state, albeit with slightly different fractal dimension values.
We note that the such determined fractal dimension is not the
one of the full attractor in d = 2N phase space, for which tuples of
2N consecutive inter-spike intervals would need to be considered
(Takens, 1981; Ding et al., 1993). Our point here is that a non-
integer result for the single neuron DF strongly indicates that the
full attractor (in the d-dimensional phase space) is chaotic.

We believe that the chaotic state arising in the mixed D+S
state may be understood in analogy to the occurrence of chaos
in the periodically driven pendulum (d’Humieres et al., 1982).
A drifting neuron with a coupling constant K in the D+S does
indeed receive two types of inputs to its conductance, compare
Equation (4), with the first input being constant (resulting from
the firing of the other drifting neurons) and with the second
input being periodic. The frequency rsyn of the periodic driving
will then be strictly smaller than the natural frequency rK of the
drifting neuron as resulting from the constant input (compare
Figure 1). It is known from the theory of driven oscillators
(d’Humieres et al., 1982) that the oscillator may not be able
to synchronize with the external frequency, here rsyn, when the
frequency ratio rsyn/rK is small enough and the relative strength
of the driving not too strong.

FIGURE 6 | Determination of the Minkowski (or box-counting)

dimension for the attractor illustrated in Figure 5. Nbox denotes the

number of squares occupied with at least one point of the trajectory of

consecutive pairs of spike intervals, when a grid of 2r × 2r squares is laid upon

the attracting set shown in Figure 5. The fractal dimension

DF = log(Nbox )/log(r) is then ∼1.8. A time series with Nspikes = 128000

spikes for the same drifting neuron in the same D+S state has been used.

log2(Nbox ) saturates at log2(Nspikes) ≈ 16.97, observing that the linear range

can be expanded further by increasing the number of spikes, albeit with an

high cost in simulation time. Finally the resolution of the method is limited by

the spike width.

3.2.4. Robustness

In order to evaluate the robustness and the generality of the
results here presented, we have evaluated the effects occurring
when changing the size of the network and when allowing for
variability in the connectivitymatrixwij. We have also considered
an adiabatically increasing external input, as well as Gaussian
noise.

In Figure 7 (top half), the effect on the rate distribution of the
network size is evaluated. Sizes of N = 50, 100, 200, and 400
have been employed. We observe that the plots overlap within
the precision of the simulations. This result is on the one hand
a consequence of the scaling Ki ∼ 1/N for the overall strength
of the afferent links and, on the other hand, of the regularity
in firing discussed in Section 3.2.2. The neural activity is driven
by the mean field r̄(t) which is constant, in the thermodynamic
limit N → ∞, in the fully drifting state and non-constant but
smooth (apart from an initial jump) in the synchronized states.
Fluctuations due to finite network sizes are already small for
N ≈ 100, as employed for our simulations, justifying this choice.

In the previous sections, we considered the uniform
connectivity matrix described by Equation (5). This allowed us
to formulate the problem in terms of a mean-field coupling. We
now analyze the robustness of the states found when a certain
degree of variability is present in the weight matrix, viz when an
extra variability term η is present:

wij = 1+ η, η random, i 6= j . (15)

Here we consider η to be drawn from a flat distribution with zero
mean and a width 1W. Tests with 1W = 10, 20, and 50% were
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FIGURE 7 | As in Figure 1, the firing rate of each neuron in the network is presented as a function of the neuron’s relative rank in K (from smaller to

larger). (A) K̄ = 3.0, 1K/K̄ = 0.6 (fully drifting: D). (B) K̄ = 3.0, 1K/K̄ = 0.1 (partially drifting and synchronized: D+S). (C) K̄ = 12.0, 1K/K̄ = 0.1 (fully synchronized:

S). Top: Comparison for several network sizes N. Bottom: The numerical result for a network with a uniform connectivity matrix (red line) in comparison to a network in

which the elements of the connectivity matrix are allowed to vary within 50% up or down from unity (Blue points. The error bars represent the standard deviation of

twenty realizations of the weight matrix).

performed. In Figure 7 (lower half), the results for 1W = 50%
are presented. We observe that the fully drifting state is the least
affected by the variability in the weight matrix. On the other
hand, the influence of variable weight matrices becomes more
evident when the state is partially or fully synchronized, with the
separation between the locked and the drifting neurons becoming
less pronounced in the case of partial synchronization (lower
panel of Figure 7B). The larger standard deviation evident for
larger values ofKrank in the lower panel of Figure 7C indicates the
presence of drifting states in some of the ensemble realizations of
weight matrices.

Finally, we test the robustness of the drifting state when
perturbed with an external stimulus. To determine the stability
of the state, we adiabatically increase the external stimulus Iext
and compute the firing rate as a function of the rank for several
values of Iext . We do two excursions, one for positive values of Iext
and another one for negative values. These plots are presented in
Figure 8. We observe that the firing rates evolve in a continuous
fashion, indicating that the drifting state is indeed stable. While
positive inputs push the system to saturation, negative inputs
reduce the average rate. We find, as is to be expected, that a large
enough negative input makes the system silent. As a final test
(not shown here), we have perturbed the system with random
Gaussian uncorrelated noise, observing that the found attractors
are all robust with respect to this type of noise as well.

4. DISCUSSION

In the present work we have studied a network of excitable
units, consisting exclusively of excitatory neurons. In absence

FIGURE 8 | Effect of an external input (either positive or negative), on

the neural firing rates. The input is either increased (blue arrow) or

decreased (red arrow) from zero (green curve) adiabatically. The drifting state

remains stable for a wide range of inputs, with the activity disappearing only for

Iext < −7.0 (gray curve, coinciding with the x-axis).

of external stimulus, the network is only able to remain active
through its own activity, in a self-organized fashion. Below a
certain average coupling strength of the network the activity
dies out, whereas, if the average coupling is strong enough,
the excitable units will collectively behave as pulse-coupled
oscillators.

We have shown how the variability of coupling strengths
determines the synchronization characteristics of the network,
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ranging from fully asynchronous, to fully synchronous activity.
Interestingly, this variability, together with the neurons’
refractoriness, is enough to keep the neural activity from
exploding.

While we have initially assumed a purely mean field coupling
(by setting all the synaptic weights wij = 1), only regulating
the intensity with which a neuron integrates the mean field with
the introduction of a scaling constant Ki, we have later shown
how the here found states also survive when we allow the wijs
to individually vary up or down by up to a 50% value. We have
also shown how the variability in coupling strength makes the
asynchronous or drifting state extremely robust with respect to
strong homogeneous external inputs.

Finally, we have studied the time structure of spikes in the
different dynamical states observed. It is in the time domain that
we find themain difference with natural neural networks. Spiking
in real neurons is usually irregular, and it is often modeled as
Poissonian, whereas in our network we found a very high degree
of regularity, even in the asynchronous state. Only in the partially
synchronous state we found a higher degree of variability, as
a result from chaotic behavior. We have determined the fractal
dimension of the respective strange attractor in the space of pairs
of consecutive interspike intervals, finding fractional values of
roughly 1.8 for the different neurons in the state.

While it has been often stated that inhibition is a necessary
condition for bounded and uncorrelated activity, we have show
here that uncorrelated aperiodic (and even chaotic) activity can
be obtained with a network of excitatory-only connections, in
a stable fashion and without external input. We are of course
aware that the firing rates obtained in our simulations are
high compared to in vivo activity levels and that the degree of
variability in the time domain of spikes is far from Poissonian.
We have however incorporated in this work only variability of the
inter-neural connectivity, keeping other neural properties (such
as the neural intrinsic parameters) constant and homogeneous.

In this sense, it would be interesting to study in future work, how
intrinsic and synaptic plasticity (Triesch, 2007), modify these
statistics, incorporating plasticity in terms of interspike-times
(Clopath et al., 2010; Echeveste and Gros, 2015b), and in terms of
neural rates (Bienenstock et al., 1982; Hyvärinen and Oja, 1998;
Echeveste and Gros, 2015a). Here, instead of trying to reproduce
the detailed connection statistics in the brain, which would in any
case never be realistic without inhibitory neurons, we have shown
how a minimal variability model in terms of non uniform link
matrices is able to give rise to asynchronous spiking states, even
without inhibition. Our results indicate therefore that further
studies are needed for an improved understanding of which
features of the asynchronous spiking state depend essentially on
inhibition, and which do not.

We have shown here that autonomous activity (sustained
even in the absence of external inputs) may arise in networks of
coupled excitable units, viz for units which are not intrinsically
oscillating. We have also proposed a new tool to study the
appearance of chaos in spiking neural networks by applying a
box counting method to consecutive pairs of inter-spike intervals
from a single unit. This tool is readily applicable both to

experimental data and to the results of theory simulations in
general.
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