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The striatum is an important subcortical structure with extensive connections to other

regions of the brain. These connections are believed to play important roles in behaviors

such as reward-related processes and impulse control, which show significant sex

differences. However, little is known about sex differences in the striatum-projected fiber

connectivity. The current study examined sex differences between 50 Chinese males and

79 Chinese females in their fiber connections between the striatum and nine selected

cortical and subcortical regions. Despite overall similarities, males showed stronger fiber

connections between the left caudate and rostral cingulate cortex, between the right

putamen and the lateral orbitofrontal cortex, between the bilateral putamen and the

ventro-lateral prefrontal cortex, and between the right caudate and the ventro-lateral

prefrontal cortex, whereas females showed stronger fiber connections between the

right putamen and the dorsolateral prefrontal cortex, between bilateral caudate and

hippocampus, and between the left putamen and hippocampus. These findings help

us to understand sex differences in the striatum-projected fiber connections and their

implications for sex differences in behaviors.
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INTRODUCTION

The striatum is an important subcortical component of the basal ganglia-thalamo-cortical circuits.
The rostral, medial, and ventral parts of the striatum are primarily connected to the ventral and
medial prefrontal cortex, anterior cingulate cortex, and orbitofrontal cortex, whereas the dorsal
striatum, including the head of caudate and part of rostral putamen, are connected to the dorsal
and lateral prefrontal cortex (Haber et al., 2006; Haber and Knutson, 2010). These fiber connections
provide anatomical support for dynamic and reciprocal signaling between the striatum and other
brain regions, which underlie diverse psychological functions (Pauli et al., 2016). Indeed, five
distinct striatal zones have been found to be linked to distinct brain functions: the anterior caudate
for incentive behaviors and the evaluation of different actions, the posterior caudate for executive
functions, the posterior putamen for sensorimotor processes, the anterior putamen for social and
language-related functions, and the ventral striatum for the representation of stimulus value and
related stimulus-driven motivational states (Pauli et al., 2016).

Studies have reported significant sex differences in reward-related processes and impulse
control, which are sub-served by the striatal-cortical and striatal-subcortical circuits
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(Lighthall et al., 2012; Fattore, 2015). As one example, males
and females differ in processing reward information and decision
making. Studies found that the putamen showed a higher reward-
related anticipatory response in males than in females (Dreher
et al., 2007). Compared to females, males were faster and gained
greater rewards in risky decision making, and they also showed
increased activation in the dorsal striatum including the putamen
(Lighthall et al., 2012). Sometimes even when the behaviors
showed no sex differences, brain activations differed by sex. For
example, when asked to reject immediate rewards in pursuit of a
long-term goal, males showed a stronger reduction of activation
than did females in the dorsal striatum, subgenual and pregenual
anterior cingulate cortex, posterior orbitofrontal cortex, as well
as more positive functional coupling between these regions
(Diekhof et al., 2012). It seems that the striatal-frontal circuits
are more frequently and strongly recruited during reward-related
processing in males than in females. Based on the above results,
we may also speculate that males made a greater effort (as shown
in more positive functional coupling) to effectively suppress the
stronger response (stronger reduction of activation) that were
originally activated by immediate rewards.

Although researchers have discussed extensively sex
differences in the structure and function of the human
brain (Cahill, 2006; Gong et al., 2009, 2011), specific sex
differences within the striatum-connected structural circuits
remain largely unknown mainly because of the limitations
of earlier approaches to analyzing diffusion tensor imaging
(DTI) data. Three approaches of analyzing DTI data have been
developed: tract-based spatial statistics (TBSS), deterministic
tracking, and probabilistic tractography. The TBSS method
provides the most commonly used fractional anisotropy (FA) of
fiber tracts, which quantifies directional strength of each voxel
of the local tracts. The TBSS method does not directly quantify
connections between brain regions (Smith et al., 2006). With
the deterministic tracking method, seeds were placed in voxels
with FA greater than a given threshold (e.g., 15) to include only
white matter voxels, and then grown in both directions along
the dominant diffusion orientation of voxels into fiber tracts
or streamlines. Deterministic tracking has a limited capacity
for resolving crossing fiber bundles, and consequently misses
some fiber bundles for the lateral cortical regions (Mori and van
Zijl, 2002). Probabilistic tractography builds up distributions on
diffusion parameters at each voxel by using sampling techniques,
and then samples from the distributions on voxel-wise principal
diffusion directions, each time computing a streamline through
these local samples to generate a probabilistic streamline or
a sample. Probabilistic tractography is the preferred method
because it is better at handling fiber crossings and image
noise (Behrens et al., 2003a), although it may lead to spurious
connections (Parker and Alexander, 2005). Another drawback of
probabilistic tractography is that it is quite time-consuming and

Abbreviations: DTI, diffusion tensor imaging; mOFC, the medial orbitofrontal

cortex; lOFC, the lateral orbitofrontal cortex; vlPFC, the ventrolateral prefrontal

cortex; dlPFC, the dorsolateral prefrontal cortex; PCC, the posterior cingulate

cortex/retrosplenial cortex; dorsal CC, the dorsal cingulate cortex; rostral CC, the

rostral cingulate cortex; Amy, amygdala; Hipp, hippocampus.

computationally intensive. Therefore, few studies have used this
method to study specific brain circuits, and even fewer on sex
differences of specific brain circuits. Consequently, even though
the anatomical connection pattern of the striatum has been
revealed by animal studies, postmortem human studies, and in
vivo human brain imaging studies of small samples (Haber et al.,
2006; Leh et al., 2007; Haber and Knutson, 2010), and several
studies of small samples have investigated the associations
between striatum-projected fiber connection and behavioral and
physiological measures (Cohen et al., 2009; Bohanna et al., 2011;
Lei et al., 2014; Tziortzi et al., 2014), no study has examined sex
differences in the striatum-projected structural connectivity.

The current study was designed to explore sex differences
in anatomical connectivity of the striatum to cortical and
subcortical regions. Following previous studies (Cohen et al.,
2009; Lei et al., 2014), the striatum and nine target masks (see
Figure S1 for anatomical locations of these masks) for each
hemisphere were created based on the automated anatomical
labeling template (Tzourio-Mazoyer et al., 2002). The nine
target regions included the medial orbitofrontal cortex (mOFC),
lateral orbitofrontal cortex (lOFC), ventrolateral prefrontal
cortex (vlPFC), dorsolateral prefrontal cortex (dlPFC), posterior
cingulate cortex/retrosplenial cortex (PCC), rostral cingulate
cortex (rostral CC), dorsal cingulate cortex (dorsal CC),
hippocampus, and amygdala. Based on the previous studies
showing that males relied on the striatal-frontal circuits to a
greater extent than did females (Dreher et al., 2007; Diekhof
et al., 2012; Lighthall et al., 2012), the current study hypothesized
stronger fiber connection in males than in females between
the striatum and the anterior cingulate cortex and orbitofrontal
cortex.

MATERIALS AND METHODS

Participants
Fifty male and seventy nine female college students (mean
age 20.10 years; range 19–22 years) were recruited from
Beijing Normal University. All participants were right-handed
Han Chinese with normal or corrected-to-normal vision. They
self-reported having no history of neurological or psychiatric
illnesses. They also passed the physical and clinical examinations
for all freshmen administered by the University. Participants
were scanned for diffusion tensor and high resolution 3D
anatomical images. They all gave informed written consents
and the study was approved by the Beijing Normal University
Institutional Review Board.

Image Acquisition
Participants were scanned on a Siemens Trio 3T scanner with an
eight-channel head coil in the Beijing Normal University Imaging
Center for Brain Research. The diffusion-weighted data were
acquired using a twice-refocused spin-echo EPI sequence with
the following parameters: TR/TE = 7200/104ms, 49 transverse
slices, field-of-view = 230∗230mm, matrix = 128∗128, slice
thickness = 2.5mm, 1 direction with b-value = 0 s/mm2, 64
directions with b-value = 1000 s/mm2. In addition, a high
resolution 3D anatomical image was obtained using T1-weighted
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MP-RAGE sequence with the following parameters: TR/TE/FA=

2530/3.75 ms/7◦, FOV = 220∗220mm, matrix = 256∗256, slice
thickness= 1mm, 128 sagittal slices). Scanning lasted 18min for
each participant.

Image Preprocessing
Diffusion tensor images (DTI) were processed using the FMRIB’s
Diffusion Toolbox (FDT 2.0; Smith et al., 2006) from the FMRIB’s
Software Library (FSL, version 5.0.5; www.fmrib.ox.ac.uk/fsl;
Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012).
The standard preprocessing procedure, including correction of
the diffusion data for eddy currents and head motion, fitting of
diffusion tensor, and Bayesian estimation of diffusion parameters,
was used for the probabilistic tractography of DTI data (Behrens
et al., 2003b, 2007; Johansen-Berg et al., 2005). Bayesian
estimation of diffusion parameters was conducted with a dual-
fiber model allowing for crossing fibers by using the BedpostX
program implemented in FMRIB’s diffusion toolbox (Behrens
et al., 2003b). Detailed preprocessing steps were described in our
previous study (Lei et al., 2014).

The non-diffusion-weighted images of all participants were
spatially normalized into the Montreal Neurological Institute
(MNI) standard space with FMRIB’s Linear Image Registration
Tool (FLIRT; Jenkinson et al., 2002; Greve and Fischl, 2009)
and FMRIB’s Nonlinear Image Registration Tool (FNIRT) by
individual’s high resolution T1-weighted structural image. The
transformation matrix and the warp field from individual
participants’ diffusion space to the MNI standard space, and
the inversed transformation matrix and warp field from the
MNI standard space to individual diffusion space were obtained
through the normalization process. The matrix and warp

field were then used, respectively, for the striatum and nine
target brain regions in the MNI standard space warping into
participants’ diffusion space, and for the normalization of the
resulting tractography maps (scalar) into the MNI standard
space. Visual inspection of normalized non-diffusion-weighted
brain images was done to confirm that the registration was
successful.

Seed Brain Region and Target Brain
Regions
One seed mask and nine target masks, including the striatum,
mOFC, lOFC, dlPFC, vlPFC, rostral CC, dorsal CC, PCC,
hippocampus, and amygdala, were created for each hemisphere
based on the automated anatomical labeling template (Tzourio-
Mazoyer et al., 2002) and previous studies (Cohen et al., 2009; Lei
et al., 2014). Detailed information of these masks was presented
in our previous study (Lei et al., 2014). Figure S1 shows the
anatomical locations of these brainmasks for one hemisphere. All
masks in the MNI standard space were transformed to individual
diffusion space by using transformation matrix and warp field
produced in the previous step and binarized. Volumes of these
ten masks in individuals’ diffusion space were obtained. The total
intracranial volume (ICV) was obtained from high resolution T1-
weighted anatomical image by using the Freesurfer segmentation
software package (http://surfer.nmr.mgh.harvard.edu/; Fischl
et al., 2002).

Tractography and Seed-Based
Classification
Probabilistic tractography was performed from the striatum
to the nine target regions in individuals’ diffusion space by

TABLE 1 | Descriptive statistics and sex differences.

Variables All (n =129) Male (n = 50) Female (n = 79) Statistics

Mean SD Mean SD Mean SD Tc p

Age 20.36 0.84 20.52 0.84 20.25 0.83 −1.78 0.08

Handednessa 90.99 6.02 90.28 6.32 91.44 5.85 −0.1.07 0.29

VOLUMES OF BRAIN REGIONSb

dlPFC 101601.8 11576.5 107762.7 11174.7 97702.5 10086.9 −4.71 < 0.0001

vlPFC 28315.1 4851.6 30336.4 4809.9 27035.8 4451.5 −3.41 0.001

lOFC 32133.7 3217.6 33755.7 3277.2 31107.2 2736.5 −4.51 < 0.0001

mOFC 30932.9 3566.8 33020.1 3100.7 29611.9 3205.8 −5.27 < 0.0001

Rostral CC 16046.1 2607.6 17262.9 2613.4 15276.0 2306.0 −3.74 < 0.0001

Dorsal CC 25764.2 2483.0 27156.9 2375.5 24882.7 2131.2 −5.03 < 0.0001

PCC 42031.1 4901.4 44869.1 4624.3 40234.9 4190.3 −5.08 < 0.0001

Amygdala 2841.3 371.3 3042.7 369.2 2713.9 313.3 −5.09 < 0.0001

Hippocampus 11770.0 896.6 12343.5 929.0 11407.0 657.8 −6.03 < 0.0001

Striatum 23843.3 2325.4 25192.8 1930.8 22989.2 2150.8 −5.04 < 0.0001

ICV 1459216.8 231556.24 1543662.4 207768.4 1405770.2 231098.4 −3.43 0.001

aDetermined using Edinburgh Inventory (Oldfield, 1971); Scores greater than 0 indicate right-handedness. A score of 100 indicates strong right-handedness.
bSex differences of the ten brain ROIs were analyzed with regression models with sex and ICV as predictors.
cTwo kinds of T statistics are shown: independent sample T statistics for age, handedness, and ICV; and T statistics for the regression coefficients of sex as a predictor in regression.

ICV, intracranial volume; dlPFC, the dorsolateral prefrontal cortex; vlPFC, the ventrolateral prefrontal cortex; mOFC, the medial orbitofrontal cortex; lOFC, the lateral orbitofrontal cortex;

rostral CC, the rostral cingulate cortex; dorsal CC, the dorsal cingulate cortex; PCC, the posterior cingulate cortex/retrosplenial cortex.
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PROBTRACKS program implemented in FMRIB’s diffusion
toolbox (Behrens et al., 2003b). Five thousand tract-following
samples were initiated in each voxel of the striatum, and
were then tracked to the nine target regions, resulting in nine
probabilistic maps of fiber connectivity, called tractography
images. The value of each voxel in the tractography image
represented the number of the tracking to the target region
(connectivity between the voxel in the striatum to all voxels in the
target region). Only voxels above the threshold of a minimum of
10 tracking samples per voxel were retained to assure true fiber
connection after removing noise (Aron et al., 2007). The number
of tracking samples of a given voxel to each target was then
divided by the voxel’s total tracking number to all regions to yield
a proportional ratio. The resulting nine images were transformed

back to theMNI standard space for group statistical analyses. The
final spatial resolution was 1mm3. All preprocessing was done
separately for each hemisphere. Tractography images in the MNI
standard space from two hemispheres were combined and used
in general linear models to examine sex differences.

Statistical Analysis
Independent sample t-test in SPSS was used to examine sex
differences in age, handedness, and ICV. Linear regression model
with sex as a predictor and ICV as a covariate was used to
examine sex differences in volumes of the ten brain regions.

Fiber connections between the striatum and nine target
regions were analyzed using the general linear model with the
tool “randomize” (Winkler et al., 2014). The permutation-based

FIGURE 1 | Tracts between the striatum and each of the nine target regions. Only voxels with at least 5% target-ending tracts are displayed. Colors indicate

the proportions of target-specific tracts out of all tracts for a given voxel. mOFC, the medial orbitofrontal cortex; lOFC, the lateral orbitofrontal cortex; vlPFC, the

ventrolateral prefrontal cortex; dlPFC, the dorsolateral prefrontal cortex; PCC, the posterior cingulate cortex/retrosplenial cortex; dorsal CC, the dorsal cingulate

cortex; rostral CC, the rostral cingulate cortex; Amy, amygdala; Hipp, hippocampus. (A) Group-average tractography from the striatum to amygdala. (B)

Group-average tractogragy from the striatum to hippocampus. (C) Group-average tractography from the striatum to rostral CC. (D) Group-average tractography from

the striatum to dorsal CC. (E) Group-average tractography from the striatum to PCC. (F) Group-average tractography from the striatum to medial OFC. (G)

Group-average tractography from the striatum to lateral OFC. (H) Group-average tractography from the striatum to ventrolatgeral PFC. (I) Group-average

tractography from the striatum to dorsolateral PFC.
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non-parametric test with the Threshold-Free Cluster
Enhancement (TFCE) was used to perform group analysis
(Nichols and Holmes, 2002; Smith and Nichols, 2009). This
method has been highly recommended by the FSL group for
research on finding statistically significant cluster-like structures.
Nine preprocessed tractography images, each representing fiber
connectivity between the striatum and one target region, were
entered into nine general linear models, respectively. In order
to exclude its potential confounding effect, the total intracranial
volume (ICV) was entered into GLM as a covariate. Results were
corrected for multiple comparisons with the TFCE algorithm
(Smith and Nichols, 2009). We further extracted and plotted
individual participants’ average fiber connection within the
striatal regions that showed significant sex differences.

RESULTS

Males were found to have larger ICV and larger volumes in
all ten brain regions included in this study (Table 1). Figure 1
shows the group–averaged tractography map of the connections
between the striatum (including the putamen and caudate) and
nine target regions. Clear anterior-posterior, medial-lateral, and
dorsal-ventral connectivity patterns were observed. The rostral
CC, mOFC, and lOFC were found to mainly connect to the
medial and ventral parts of the striatum; the dlPFC, vlPFC, and
dorsal CC to the dorsal and lateral parts of the striatum; the
amygdala and hippocampus to the posterior putamen; and the
PCC to the posterior caudate.

Overall, females and males showed similar patterns of
fiber connection (Figures S2, S3). General linear model
analysis nevertheless revealed significant sex differences in fiber
connection between sub-regions of the striatum and five of
the nine target regions (the hippocampus, rostral CC, lOFC,
vlPFC, and dlPFC). As shown in Table 2; Figures 2, 3, males
showed greater fiber connection than did females between left
ventral and medial caudate and the rostral CC, between the
right ventrolateral putamen and the lOFC, between bilateral
lateral putamen and the vlPFC, and between the left lateral
caudate and the vlPFC, whereas females showed greater fiber
connection between the right putamen and the hippocampus,
between bilateral posterior caudate and the hippocampus, and
between the right dorsolateral putamen and the dlPFC. These sex
differences remained significant after controlling for the volumes
of the striatum and the target region and ICV (see Table S1).

DISCUSSION

The current study explored sex differences in fiber connectivity
between the striatum and nine target regions. Consistent with
previous studies (Gur et al., 1999; Goldstein et al., 2001;
Cosgrove et al., 2007), we found larger ICV and brain regions
in males than females. Group–averaged tractography patterns of
the striatum were also consistent with the results of previous
studies in primates and humans (Lehericy et al., 2004; Haber
et al., 2006; Draganski et al., 2008; Haber and Knutson, 2010),
which confirmed the validity of the current tractography. Despite

TABLE 2 | Fiber connectivity that showed significant sex differences.

Fiber target

regions

Fiber-initiated

regions in

striatum

Volume in

striatum/mm3
Tmax MNI

coordinate

MALES > FEMALES

Rostral CC Left caudate 755 5.307 −4, 13, −5

lOFC Right putamen 635 5.179 34, 3, 3

vlPFC Right putamen 3578 4.576 33, 4, −5

Left putamen 1130 4.218 −32, 0, −7

Right caudate 192 4.601 13, 12, 20

Right caudate 149 3.729 19, 6, 25

MALES < FEMALES

dlPFC Right putamen 3667 3.949 31, 0, −8

Hippocampus Left putamen 840 3.653 −30, −12, −1

Right caudate 693 3.801 11, −1, 15

Left caudate 570 4.368 −14, −4, 17

Rostral CC, the rostral cingulate cortex; lOFC, the lateral orbitofrontal cortex; vlPFC, the

ventrolateral prefrontal cortex; dlPFC, the dorsolateral prefrontal cortex.

overall similarities between males and females, significant sex
differences in striatal fiber connectivity were observed in the
current study. Males showed stronger fiber connection between
the left ventromedial caudate and rostral CC, between the right
ventrolateral putamen and the lOFC, between bilateral putamen
and the vlPFC, and between the right lateral caudate and
the vlPFC, whereas females showed stronger fiber connection
between the right dorsolateral putamen and the dlPFC, between
the bilateral posterior caudate and the hippocampus, and
between the left lateral putamen and the hippocampus.

Several lines of previous research had hinted at potential
sex differences in the striatum-connected fiber sub-networks
found in this study. First, TBSS studies found that, compared
to females, males had higher white matter integrity in white
matter regions and tracts that underlie striatal-frontal connection
(Wakana et al., 2004; Lawes et al., 2008; Nowinski et al.,
2012), such as bilateral superior corona radiate (Takao et al.,
2014), bilateral internal capsule, and cingulate (Hsu et al., 2008).
Second, functional coupling between the striatum and anterior
cingulate cortex and prefrontal cortex has been found to be
stronger in males than in females in reward-related processing
and impulse inhibition (Lighthall et al., 2012; Fattore, 2015),
suggesting potentially stronger fiber connection in males. As
reviewed in the Introduction, males were found to be more likely
to recruit striatal-frontal circuits for reward-related processes
and impulse inhibition (Diekhof et al., 2012; Lighthall et al.,
2012). Consistently, several studies implicated striatal-cingulate
and striatal-prefrontal circuits for reward, emotion and cognitive
control (Beckmann et al., 2009; Dixon and Christoff, 2014;
Burton et al., 2015; Dixon, 2015; Jarbo and Verstynen, 2015;
Porter et al., 2015; Morris et al., 2016).

In contrast to the stronger fiber connection between right
putamen to the vlPFC in males, females showed stronger fiber
connection between right putamen and the dlPFC. Both vlPFC
and dlPFC are central for reward-related cognitive control
(Dixon and Christoff, 2014; Dixon, 2015). The vlPFC has been
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FIGURE 2 | Stronger fiber connection in males than in females. Fiber connections between left caudate and rostral CC (top), between the right putamen and

the lOFC (middle), between bilateral caudate and the vlPFC (bottom), and between the putamen and the vlPFC (bottom). Red, stronger connection for males than for

females; Blue, proportion of target-specific tracts from Figure 1. See Figure 1 for abbreviations.

found to represent associations between rules and outcomes
that are signaled by the immediate environment, and the
dlPFC has been found to represent the relationship between
more complex/abstract rules for action and desired outcomes,
and to play a critical role in pursuing future reward (Dixon
and Christoff, 2014; Dixon, 2015). Thus, this sex difference
within striatal-lateral prefrontal circuits may reflect sex-specific
neuroanatomical correlates of reward-related cognitive control.

Females also showed stronger fiber connections between the
putamen and the hippocampus and between the caudate to the
hippocampus than did males. In animal studies and human
brain imaging studies, the striatum-hippocampus balance has

been implicated in compensation and competition between
different memory and learning systems (e.g., the hippocampus
system for declarative learning and memory, and the striatum
system for procedural learning and memory; Ghiglieri et al.,
2011). Because functional coupling between the striatum and
the hippocampus is involved in episodic memory (Jiang et al.,
2015), our finding of stronger fiber connection between the
striatum and hippocampus in females than in males may
provide a structural neural basis for the robust sex differences
in episodic memory (for meta-analyses, see Wang, 2013;
Hyde, 2014). Future studies should specifically examine this
speculation.
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FIGURE 3 | Stronger fiber connection in females than in males. Fiber connections between right putamen and the dlPFC (top), between the bilateral caudate

and the hippocampus (bottom), and between the left putamen to the hippocampus (bottom). Yellow, stronger connection for females than for males; Blue, proportion

of target-specific tracts from Figure 1. See Figure 1 for abbreviations.

The current study had several limitations that need to be
discussed. First, we only used probabilistic tractography, which
does not allow for the identification of afferent or efferent
striatal pathway (Rushworth et al., 2009; Bohanna et al., 2011).
Second, our participants were young college students with
a narrow age range, so we could not examine age-related
changes in the striatal circuitry. Third, we found significant
sex differences in the striatum-projected fiber connections
that may explain behavioral differences, but how these brain
differences came about remains unknown. Some researchers
(Herting et al., 2012; Lentini et al., 2012) have discussed
biological factors (e.g., sex hormones) involved in sex differences
in brain anatomy, whereas others (Joel, 2011; Fine et al.,
2013; Miller and Halpern, 2014; Rippon et al., 2014) have
speculated about the importance of social environments. Fourth,
based on previous research, we speculated that our finding
of sex differences in the striatum-projected connection could
account for some sex differences in behavior, but this study
did not directly test that possibility. The prefrontal neurons
have been found to be significantly more spinous than those
in the other lobes, indicating a higher ability of prefrontal
neurons to integrate a large number of excitatory inputs (Elston,
2000; Jacobs et al., 2001). Although the current study found
that anatomical striatal-prefrontal circuitries differ in male and
female, it should be noted that functional stimulations within
these striatal-prefrontal circuitries may not have the same

patterns of sex differences. The relationships between brain
structure and function, as well between brain and behaviors, are
complex, so great caution is needed when linking significant
sex differences in striatal-prefrontal fiber connectivity to sex
differences in behaviors.

CONCLUSION

Using probabilistic tracking of diffusion tensor images, the
current study found several significant sex differences in the fiber
connection between the striatum and nine target regions after
controlling for the ICV and the volumes of the striatum and
target regions. These differences may help explain sex differences
in relevant behaviors such as risky decision making, impulse
inhibition, and memory.
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Figure S1 | Anatomical locations of the nine target regions in one

hemisphere. Amy, amygdala; Hipp, hippocampus; mOFC, the medial

orbitofrontal cortex; rostral CC, the rostral cingulate cortex; dorsal CC, the dorsal

cingulate cortex; PCC, the posterior cingulate cortex/retrosplenial cortex; lOFC,

the lateral orbitofrontal cortex; vlPFC, the ventrolateral prefrontal cortex; dlPFC,

the dorsolateral prefrontal cortex.

Figure S2 | Tracts between the striatum and each target region for males.

Only voxels with at least 5% target-ending tracts are displayed. Colors indicate

proportion of target-specific tracts out of all tracts for a given voxel. See

Figure S1 for abbreviations.

Figure S3 | Tracts between the striatum and each target region for

females. Only voxels with at least 5% target-ending tracts are displayed. Colors

indicate proportion of target-specific tracts out of all tracts for a given voxel. See

Figure S1 for abbreviations.

Table S1 | Linear regression models for the nine fiber connections from

Table 2.
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