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As the sole output neurons in the retina, ganglion cells play significant roles in

transforming visual information into spike trains, and then transmitting them to the

higher visual centers. However, coding strategies that retinal ganglion cells (RGCs) adopt

to accomplish these processes are not completely clear yet. To clarify these issues,

we investigate the coding properties of three types of RGCs (repetitive spiking, tonic

firing, and phasic firing) by two different measures (spike-rate and spike-latency). Model

results show that for periodic stimuli, repetitive spiking RGC and tonic RGC exhibit

similar spike-rate patterns. Their spike- rates decrease gradually with increased stimulus

frequency, moreover, variation of stimulus amplitude would change the two RGCs’

spike-rate patterns. For phasic RGC, it activates strongly at medium levels of frequency

when the stimulus amplitude is low. While if high stimulus amplitude is applied, phasic

RGC switches to respond strongly at low frequencies. These results suggest that stimulus

amplitude is a prominent factor in regulating RGCs in encoding periodic signals. Similar

conclusions can be drawnwhen analyzes spike-latency patterns of the three RGCs. More

importantly, the above phenomena can be accurately reproduced by Hodgkin’s three

classes of neurons, indicating that RGCs can perform the typical three classes of firing

dynamics, depending on the distinctions of ion channel densities. Consequently, model

results from the three RGCs may be not specific, but can also applicable to neurons in

other brain regions which exhibit part(s) or all of the Hodgkin’s three excitabilities.

Keywords: retinal ganglion cell, morris-lecar neuron, spike-rate, spike-latency, periodic stimuli

INTRODUCTION

In the vertebrate retinas, ganglion cells are the principal neurons, through which visual information
is effectively processed and then reliably transmitted to the lateral geniculate nucleus (LGN) and
the visual cortex (Kandel et al., 2000). Thus, the capability of retinal ganglion cells (RGCs) in
encoding incoming stimulus becomes extremely important. Previous studies suggested that RGCs
can be classified into several different types based on their response patterns, e.g., repetitive spiking
(Fohlmeister and Miller, 1997; Margolis and Detwiler, 2007; Fohlmeister et al., 2010), tonic firing
(Wang et al., 1997; Tsai et al., 2011), phasic firing (Kawai and Sterling, 2002; Tabata andKano, 2002),
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and adapting activity (Kim and Rieke, 2003; Li et al., 2012;
Xiao et al., 2013a,b). These different firing behaviors may
manifest different codingmanners that RGCs adopt in processing
neural signals.

It has been accepted that neural information can be encoded in
a variety of manners, among which rate coding and time coding
are the two most commonly used (Dayan and Abbott, 2001).
Generally, rate coding refers to the number of spikes within a
time window or cycle (Descalzo et al., 2005; van Brederode and
Berger, 2008), while time coding refers to the first-spike latency of
neural spikes (Chase and Young, 2007) or regularity or sparseness
of population spike trains (Mainen and Sejnowski, 1995; Zhang
et al., 2010). Several reports have revealed that RGCs can encode
incoming signals effectively using these two strategies (van Rullen
and Thorpe, 2001; Gollisch and Meister, 2008; Gütig et al., 2013).
However, response patterns that RGCs produce under periodic
stimuli are not completely clear yet, which need to be figured out.

Previously, Hodgkin classified neurons into three basic classes
based on their firing frequency vs. stimulus intensity (f-I) curves
(Hodgkin, 1948). Generally, Class I neurons fire slowly in
response to weak stimulus, and display a continuous f-I curve;
while class II neurons exhibit a discontinuous f-I curve for their
inability to produce spikes below certain threshold intensities.
Class III neurons, however, fail to spike repetitively, and typically
spike only once at the onset of stimulus (Izhikevich, 2007;
Prescott et al., 2008a; Wang et al., 2013). Functional roles of
the three classes of neurons have been extensively investigated
during the past decades (Marella and Ermentrout, 2008; Bogaard
et al., 2009; Fink et al., 2011). For instance, it has been proposed
that class I neurons act as integrators or coincidence detectors,
while class II neurons act as resonators (Izhikevich, 2000). For
time-varying inputs, class III neurons serve as slope detectors or
band-pass filters (Gai et al., 2010).

In this study, we firstly investigate how RGCs react to periodic
stimuli through spike-rate coding and spike-latency coding.
Ionic models which can characterize the electrophysiological
properties of three RGCs (repetitive spiking, tonic firing, and
phasic firing) are introduced. Simulation results demonstrate that
diverse response patterns can be observed in RGCs, not only
within the same types, but also among different types. In addition,
stimulus amplitude plays a conspicuous role in transforming the
response patterns from one type to another. Finally, we show
that RGCs can exhibit all the Hodgkin’s three classes of firing
dynamics by only adjusting the conductances of several ion
channels.

MODELS AND METHODS

RGC Model
Ionic model of RGCs with repetitive spiking was adopted
from Fohlmeister and Miller (1997). The model had only one-
compartment, which represents the soma, with five voltage-
gated ion channels and a leak channel (IL) distributed on the
soma. The five ion channels were: inactivating sodium (INa),
delayed-rectifier potassium (IK), calcium (ICa), A-type potassium
(IA), and calcium-activated potassium (IKCa) channels. Later,
to simulate the tonic and phasic firings in RGCs, a modified

RGC model was introduced (Wang et al., 2014). The modified
model retained the five voltage-gated ion channels, but revised
the inactivating sodium channel by adding two slow variables.
Numerical results showed that the model can well reproduce the
tonic and phasic firing behaviors by adjusting several parameters.
Adapting activity is another typical firing behavior observed in
RGCs, due to the lack of proper ion channels and corresponding
neuron models, we did not consider adapting activity in the
present study.

Mathematical description in Equation (1) represents the
common model of RGCs (Fohlmeister and Miller, 1997).

Cm
dV

dt
= −INa − IK − ICa − IA − IKCa − IL + I (1)

where Cm is the specific membrane capacitance, V is the
membrane potential, and I is the stimulus applied to the neuron.
In this study, I = Iamp sin

(

2π ft
)

is used to mimic the
external periodic input, where Iamp is the stimulus amplitude,
f is the stimulus frequency. To avoid the model neurons overly
hyperpolarized, we set the negative values of I to zero, the value
under which the model neurons are quiescent.

For repetitive spiking RGC, INa = gNam
3h(V − VNa), while

for tonic and phasic RGC, INa = gNam
3hs1 s2(V − VNa). The

distinction between tonic and phasic RGCs is that they possess
different combinational values of sodium channel conductance
and potassium channel conductance (Wang et al., 2014).

Specific parameters used in our simulation are given in
Table 1, and detailed expressions and gating variables for each
ion current are provided in Table 2. In the table, gNa, gK , gCa, gA,
gKCa, and gL are the conductances for each currents. VNa, VK ,
and VL are the reversal potentials. m, h, s1, s2, n, c, a, and b are
the gating variables.

In contrast to sodium and potassium channels, which have
constant values of reversal potential, the value of calcium channel
is time-dependent (Equation 2).

VCa =
RT

ZF
ln

(
[

Ca2+
]

e
[

Ca2+
]

i
(t)

)

(2)

where R is the gas constant, T is the temperature in
Kelvin, Z is the ionic valency, F is the Faraday constant,
[Ca2+]e is the concentration of extracellular calcium, and the
variation of intracellular calcium concentration [Ca2+]i obeys the
Equation (3).

d
[

Ca2+
]

i

dt
=

−5ICa

Fr
−

[

Ca2+
]

i
−
[

Ca2+
]

res

τCa
(3)

where r is the depth of the shell beneath the membrane for the
calcium pump, τCa is the time constant for calcium current,
[Ca2+]res is the free intracellular concentration of calcium ions,
and [Ca2+]diss is the calcium dissociation constants (see IKCa in
Table 2).

Morris-Lecar Model
For comparison, the Morris-Lecar (ML) model was employed.
It has been shown that the ML model can generate the three
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TABLE 1 | Specific parameters used in simulations.

RGC ML

Cm = 1µF/cm2 VNa = 35mV VK = −75mV

gNa = 50mS/cm2 (Repetitive spiking) VL = −65mV T = 295K

= 200mS/cm2 (Tonic firing) R = 8.314 J/ (M · K)

= 120mS/cm2 (Phasic firing) F = 96485C/M

gK = 12mS/cm2 (Repetitive spiking) r = 22µm τCa = 1.5ms

= 12mS/cm2 (Tonic firing)
[

Ca2+
]

diss
= 0.001mM/dm3

= 110mS/cm2 (Phasic firing)
[

Ca2+
]

e
= 1.8mM

gCa = 2.2mS/cm2 gA = 36mS/cm2
[

Ca2+
]

res
= 0.001mM

gKCa = 0.05mS/cm2 gL = 0.05mS/cm2

Cm = 2µF/cm2

gNa = 20mS/cm2 gK = 20mS/cm2

gL = 2mS/cm2 VNa = 50mV

VK = −100mV VL = −70mV

βm = −1.2mV 8 = 0.15

γm = 18mV γw = 10mV

βw = 0mV (Class I)

βw = −13mV (Class II)

βw = −23mV (Class III)

TABLE 2 | Specific expressions of ion currents and the corresponding gating variables.

Currents Gating variables

INa = gNam
3hs1s2(V − VNa) αm =

−0.1(V+30)
exp(−(V+30)/10)−1

βh =
1

1+exp(−(V+20)/10)
βs1 =

0.0014
1+exp(−(V+47)/4.7)

βm = 4 exp(−(V + 55)/18) αh = 0.07 exp(−(V + 50)/20) αs1 = 0.00034 exp(−V/63)

αs2 = 0.0008 exp(−V/36)

IK = gKn
4(V − VK ) αn =

0.02(V+40)
1−exp(−(V+40)/10)

βn = 0.4 exp(−(V + 50)/80)

ICa = gCac
3(V − VCa) αc =

0.3(V+13)
1−exp(−(V+13)/10)

βc = 10 exp(−(V + 38)/18)

IA = gAa
3b(V − VK ) αa =

0.006(V+90)
1−exp(−(V+90)/10)

βb =
0.6

1+exp(−(V+40)/10)

αb = 0.04 exp(−(V + 70)/20) βa = 0.1 exp(−(V + 30)/10)

IKCa = gKCa

([

Ca2+
]

/
[

Ca2+
]

diss

)2

1+
(

[Ca2+]/[Ca2+]diss
)2 (V − VK ) IL = gL(V − VL )

In modeling the repetitive spiking behavior, s1 and s2 are both 1, same as in Fohlmeister and Miller (1997).

classes of excitability by only adjusting one parameter (Prescott
et al., 2008a; Wang et al., 2013). Moreover, due to its simplicity
and accuracy in mimicking the three classes of excitability, ML
model has been widely used in analyzing the firing behavior
of single neurons (St-Hilaire and Longtin, 2004; Prescott and
Sejnowski, 2008; Wang et al., 2011) and population activity of
neuronal networks (Marella and Ermentrout, 2008; Fink et al.,
2011).

Mathematical expressions for the ML model are in Equations
(4) and (5).

Cm
dV

dt
= −gNam∞(V − VNa)− gKw(V − VK)

−gL(V − VL)+ I (4)

dw

dt
= 8(w∞ − w)/τw (5)

where Cm is the specific membrane capacitance, V is the
membrane potential, w is a slow recovery variable, and I is the
stimulus applied to the neuron which has the same form with
that used in the RGCmodel. gNa, gK , and gL are the conductances
for each currents. VNa, VK , and VL are the reversal potentials. 8
is a scaling factor.

In Equations (4) and (5),m∞ = 0.5 (1+tanh((V−βm)/γm)),
w∞ = 0.5 (1 + tanh((V − βw)/γw)), τw = 1/ cosh((V −

βw)/(2γw))
Other parameters used in simulations are shown in Table 1.
It should be noted that the ML model used in this study is to

generate typical features of the three classes of excitability, and
compare to the performance of RGC model, the ML model itself
cannot generate the repetitive spiking, tonic firing and phasic
firing behaviors of RGCs.

Simulations of the RGC andMLmodels were performed in the
MATLAB environment (R2010a), and the fourth-order Runge-
Kutta algorithm was employed to calculate the voltage values of
neurons with time integration being 0.01ms.

RESULTS

Similar Performance between the Three
Types of RGC and the ML Neurons
Firstly, the repetitive spiking, tonic firing, and phasic firing
behaviors of RGCs are simulated (Figure 1). It is clear that,
the increase of stimulus intensity induces the repetitive spiking
RGC switch from quiescent to fast spiking state, and the larger
the stimulus intensity is, more spikes the neuron would elicit
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FIGURE 1 | Simulated repetitive spiking, tonic firing, and phasic firing activities of RGCs under constant current injections (unit: µA/cm2). (A1–C1)

Repetitive spiking; (A2–C2) Tonic firing; (A3–C3) Phasic firing.

(Figures 1A1–C1), this variation trend is similar to that reported
in Fohlmeister and Miller (1997), Fohlmeister et al. (2010) and
Margolis and Detwiler (2007). For tonic RGC, it is found that the
increase of stimulus intensity induces the neuron change from
low-frequency firing state (Figure 1A2) to high-frequency firing
state (Figure 1B2). However, when the stimulus intensity is too
large, the neuron rapidly accommodates to a steady state in the
late period of stimulation, a phenomenon called depolarization
block (Figure 1C2). This variation trend is quite similar to
previous experimental results (Kawai and Sterling, 2002; Tabata
and Kano, 2002). While for phasic RGC, it is apparent that the
increase of stimulus intensity makes the neuron transform from
resting state (Figure 1A3) to spiking state at the onset of stimulus
(Figures 1B3–C3). This variation trend is also similar to the
experimental observations (Tabata and Kano, 2002; Kawai and
Sterling, 2002).

In Figure 3A, it is clear that spike numbers of repetitive
and phasic RGCs show similar monotonous increasing trends,
with the spikes of repetitive spiking RGC being much more
than those of the phasic RGC. However, spike numbers of tonic
RGC demonstrate a non-monotonous variation trend: a high-
frequency region is observed when the stimulus intensity locates
in [1.5–5], while a low-frequency region is observed when the
stimulus intensity locates in [6–8.5]. In the following analyses,
we will separately discuss the response patterns of RGCs when
stimulus intensity locates in these two different regions.

As observed in Figure 3A, the frequency of a repetitive spiking
RGC varies in a discontinuous manner under weak stimulus,
while the frequency of a tonic RGC varies in a continuous way.
These variation trends are similar to that observed in Class I and
Class II neurons. Moreover, the frequency of phasic RGC always

stays in low states, which is also similar to the property of Class
III neuron.

To make a better comparison, we simulate typical features
of the three classes of excitability using the ML model. Results
in Figure 2 are the typical firing behaviors of the three classes
of neurons under different stimulus intensities. It is shown that
the overall variations of firing activity of the ML neurons are
comparable to the results observed in RGCs (Figure 1).

In Figure 3B, spike counts of the three neurons (ML) with
respect to stimulus intensity are provided, which is clear that
Class I neuron shows a continuous trend under weak stimulus,
Class II neuron shows a discontinuous trend under weak
stimulus, while Class III neuron always fires in low frequency
states. Comparing Figure 3A with Figure 3B, we may conclude
that repetitive spiking RGC exhibit Class II excitability, tonic
RGC exhibit Class I excitability, and phasic RGC exhibit Class
III excitability.

In addition to the spike counts, we also compare the spike
latencies between the three RGCs and the three ML neurons.
Results in Figure 4 demonstrate that RGCs exhibit much similar
variation trends of latency with that of ML neurons, which
further confirm that the three RGCs can exhibit Hodgkin’s three
classes of excitability.

Amplitude-Dependent Firing
Characteristics of RGCs under Periodic
Stimuli
Next, the capabilities of RGCs in encoding periodic signals are
investigated. Two coding measures which have been widely used
to characterize neural signals are employed, one measure is
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FIGURE 2 | Class I, class II, and class III firing behaviors simulated in the ML model under constant current injections (unit: µA/cm2). (A1–C1) Class I

excitability; (A2–C2) Class II excitability; (A3–C3) Class III excitability.

FIGURE 3 | Spike counts of the three types of RGC and the three classes of ML neurons with respect to stimulus intensity (unit: µA/cm2). (A) RGCs; (B)

ML neurons.

the firing rate (spikes/cycle), which was chosen following the
studies from van Brederode and Berger (2008) and Descalzo et al.
(2005). We also did simulations using spikes/second to measure
firing rate, and obtained similar comparison results between the
RGCmodel and MLmodel (see Supplementary Figure); Another
measure is the first-spike latency. The reason we adopt these two
measures is that firing rates and first-spike latency have both
found to effectively encode visual information in RGCs (van
Rullen and Thorpe, 2001; Gollisch andMeister, 2008; Gütig et al.,
2013).

As shown in Figure 5A1, under high Iamp, there is an obvious
region in which the firing rate of a repetitive spiking RGC with
large values are located (dark red area), primarily under low
stimulus frequencies. When low Iamp is applied, the phenomenon
maintains, with only minor differences (Figure 5B1). These
results suggest that repetitive spiking RGCs activate strongly

under low stimulus frequencies, larger frequency would lower
their firing activity. Moreover, the variation of Iamp barely alter
this phenomenon. Figures 5A2–B2 demonstrates the results
from a Class II neuron, which clearly show the similarity with
those in a repetitive RGC.

Results in Figures 6A1–B1 are the case for a tonic RGC. It
is clear that under high Iamp, there is also an obvious region in
which the firing rate with large values are located (dark red area
in Figure 6A1), mainly under low stimulus frequencies. When
low Iamp is applied, the observed feature persists (Figure 6B1),
but a small distinction still can be seen. Under low Iamp, the
increase of stimulus amplitude would enhance the firing rate;
while under high Iamp, the increase of stimulus amplitude
would weaken the firing rate, comparable with the result in
Figure 3. These results indicate that although the variation of
stimulus amplitude will not alter the general response patterns
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FIGURE 4 | First-spike latency of the three types of RGC and the three classes of ML neurons with respect to stimulus intensity (unit: µA/cm2). (A)

RGCs; (B) ML neurons.

FIGURE 5 | Firing rates (spikes/cycle) of a repetitive spiking RGC and a Class II neuron under periodic stimuli. (A1,A2) Firing rates under high stimulus

amplitude (Iamp). (B1,B2) Firing rates under low stimulus amplitude (Iamp).

of a tonic RGC, its detailed modulations are totally opposite
when stimulus amplitude varies in the two different regions.
Similar phenomenon can be observed in a Class I neuron
(Figures 6A2–B2).

Results for a phasic RGC are illustrated in Figures 7A1–B1. It
is apparent that the response characteristics are totally different
between high and low Iamp. Under low Iamp, the phasic RGC
responds vigorously at medium levels of stimulus frequency
(Figure 7A1); while under high Iamp, the phasic RGC switches
to activate strongly at low stimulus frequencies (Figure 7B1).
This group of result reveals that a phasic RGC can perform two
different spike-rate coding operations, depending on the stimulus
amplitude. Similar conclusion can be drawn in a Class III neuron
(Figures 7A2–B2).

In the followings, we continue our study by analyzing the
first-spike latency of RGCs. Results shown in Figures 8A1–B1

are the case for a repetitive spiking RGC, which indicate that
the first-spike latency with large values are mostly located
in a region with low stimulus frequencies (dark red area

in Figures 8A1–B1). Meanwhile, variation of the stimulus
amplitude has little influence on the general response pattern
of the RGC. This result suggests that for a repetitive spiking
RGC, relative high stimulus frequency would lead the neuron
respond more rapidly, consistent with the result in Wang et al.
(2013). Similar phenomenon can be observed in a Class II neuron
(Figures 8A2–B2).

For a tonic RGC, its first-spike latency shows a similar
variation trend with that of a repetitive spiking RGC
(Figures 9A1–B1). However, unlike the results in Figure 6,
in which the change of stimulus amplitude can markedly affect
the firing rate of a tonic RGC, stimulus amplitude has little
influence on the patterns of first- spike latency of the tonic
RGC. Similar results can be produced by a Class I neuron
(Figures 9A2–B2)

However, unlike the case for a repetitive spiking and a tonic
RGC, the latency of a phasic RGC exhibits rather different
variation trends. As demonstrated in Figure 10B1, a valley can
be observed when Iamp is low, in which the latency decreases
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FIGURE 6 | Firing rates (spikes/cycle) of a tonic RGC and a Class I neuron under periodic stimuli. (A1,A2) Firing rates under high stimulus amplitude (Iamp).

(B1,B2) Firing rates under low stimulus amplitude (Iamp).

FIGURE 7 | Firing rates (spikes/cycle) of a phasic RGC and a Class III neuron under periodic stimuli. (A1,A2) Firing rates under high stimulus amplitude

(Iamp). (B1,B2) Firing rates under low stimulus amplitude (Iamp).

with the increase of stimulus frequency. When Iamp is high,
the variation of latency with respect to stimulus frequency
begins to change, specifically, the latency also decreases with
the increased stimulus frequency but with a wider frequency
range (Figure 10A1). In short, this group of results indicates
that phasic RGC can perform a stable spike-latency coding
pattern, and the change of stimulus amplitude would alter
the response frequency range but would not alter this pattern
significantly. A Class III neuron can exhibit similar variation
trends (Figures 10A2–B2).

DISCUSSIONS

By revealing the exact mechanisms of various firing patterns
in neurons, one can gain insight to different spiking behaviors
and the nature of transition modes between them. This
understanding is quite inspirational in promoting the exploration

of how different factors might influence neural firing patterns.
In this study, we performed a model investigation on the
response properties of repetitive spiking, tonic firing, and phasic
firing RGCs under periodic stimuli. Two coding measures
(spike-rate and spike-latency) are employed to characterize the
capability of the three RGCs in encoding periodic signals.
The presented results suggest that repetitive spiking, tonic
firing, and phasic firing RGCs can exhibit different firing
characteristics in exposure to periodic stimuli. Meanwhile, our
results further reveal that the dynamic response properties
of RGCs are sensitive to the stimulus amplitude. More
importantly, the results observed from the three RGCs can
be well reproduced by Hodgkin’s three classes of neuron
(ML model).

As the first information processing center in the visual
pathways, RGCs undertake important functions in encoding
the incoming visual signals. However, a frequently encountered
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FIGURE 8 | First-spike latency of a repetitive spiking RGC and a Class II neuron under periodic stimuli. (A1,A2) First-spike latency under high stimulus

amplitude (Iamp). (B1,B2) First-spike latency under low stimulus amplitude (Iamp). White area means there is no response of the neuron.

FIGURE 9 | First-spike latency of a tonic RGC and a Class I neuron under periodic stimulus. (A1,A2) First-spike latency under high stimulus amplitude (Iamp).

(B1,B2) First-spike latency under low stimulus amplitude (Iamp). White area means there is no response of the neuron.

problem for biological neurons is that their signaling capacity
is too limited. Thus, to effectively encode the vast amount
of visual inputs, RGCs must selectively react to some aspects
of input signals, and ignore other aspects. Model results in
this study suggest that different RGCs can perform different
operations in encoding periodic signals. Repetitive spiking and
tonic RGCs prefer to activate strongly under low-frequency
stimulus, but respond weakly to high- frequency stimulus.
On the other hand, phasic RGCs activate vigorously under
medium levels of frequency, but respond sluggishly to low-
and high-frequency stimuli. These distinctions may indicate that
RGCs can expand their dynamic range through complementary
actions. A similar phenomenon has been observed in frog
second-order vestibular neurons (2◦VN) (Beraneck and Straka,
2011), in which the authors suggested that frog tonic 2◦VN
prefer to respond strongly to low-frequency stimulus, like
low-pass filters, whereas phasic 2◦VN prefer to respond

strongly at medium levels of stimulus frequency, like band-
pass filters.

The transformation of incoming signals into spikes by
neurons is recognized to be the basis for neural information
processing (neural coding). During the past decades, several
efficient coding strategies have been proposed, such as: rate
coding (Descalzo et al., 2005; van Brederode and Berger, 2008),
and time coding (Mainen and Sejnowski, 1995; Chase and Young,
2007; Zhang et al., 2010). A recent study suggested that RGCs
can encode input stimulus into both spike-rate and spike-latency
simultaneously (Xiao et al., 2014). In this study, we further
suggest that RGCs with intrinsically heterogeneities may encode
periodic stimuli into different spike-rate patterns and spike-
latency patterns; moreover, the patterns of spike-rate and spike-
latency produced by the same RGCs are quite similar.

Excitability is an extraordinary feature in many biological
neurons. Traditionally, neuronal excitabilities can be
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FIGURE 10 | First-spike latency of a phasic RGC and a Class III neuron under periodic stimuli. (A1,A2) First-spike latency under high stimulus amplitude

(Iamp). (B1,B2) First-spike latency under low stimulus amplitude (Iamp). White area means there is no response of the neuron.

categorized into three basic classes (I, II, III) based on their
electrophysiological responses to constant current injections
(Hodgkin, 1948; Izhikevich, 2007). Many types of neurons
have been found to exhibit part(s) or all of the three classes of
excitability, for instance, some neurons were found to exhibit
Class I or Class II firing dynamics (Tateno et al., 2004; Tateno
and Robinson, 2006), or both Class I and II firing dynamics
(Prescott et al., 2008b; Zeberg et al., 2010), while other neurons
were observed to perform all the three classes of excitability
(Prescott et al., 2008a). It has been reported that some ion
channels exhibit crucial roles in distinguishing different classes
of neurons, e.g., Na-K channel density (Johansson and Arhem,
1992; Arhem et al., 2006; Arhem and Blomberg, 2007), and
M-type potassium current (Prescott et al., 2008b). In this model
study, we suggest that RGCs can produce all the three classes
of excitability by adjusting several ion channel densities. This is
important, since RGCs play pivotal functions in encoding visual
signals, to process the vast amount of light inputs efficiently,
RGCs must adopt complementary strategies to expand their
excitation range. Due to the universality of the three classes
of excitability in neuronal systems, the results we observed
from the RGCs model may be not specific, and we further
infer that the results can applicable to other neurons in the
brain regions which show part(s) or all of the three firing
dynamics.

Previous reports have revealed that response patterns of
periodically forced neurons can be modulated by a variety
of factors, e.g., intrinsic ion channels (Cangiano et al., 2007;
Kamiyama et al., 2009) and active dendrites (Zhuchkova et al.,
2013). Besides, our results suggest that in RGCs, stimulus
amplitude is also a critical factor in modulating the capability of
RGCs in encoding periodic signals. In summary, model results
in this study may provide new insights in further understanding
how RGCs encode periodic afferents.

It should be noted that the model we analyze in this study
is a simplified single-compartment neuron model with only one
soma and did not include any dendritic information. During
the past decades, a great number of studies adopt single-
compartment models as basis to simulate firing behavior of
biological neurons and neuronal systems. However, it is still
insufficient and inaccurate, since dendrites also play important
roles in regulating neuronal activities. Thus, one extension of our
studymay concentrate on using more detailed models with active
dendrites to simulate the firing behavior of RGCs using periodic
forces. In addition, RGCs are more prone to activate collectively
than activate independently, previous researches have suggested
that gap junctions are abundant between RGCs, also between
RGCs and other retinal cells (Völgyi et al., 2013). So, another
extension of our study may concentrate on networks of RGCs
coupled with gap junctions, and investigate how periodic forces
would influence the network activity of RGCs.

AUTHOR CONTRIBUTIONS

LW and YQ designed and wrote this paper, LW collected and
analyzed the data, YQ and YZ revised it and approved it.

ACKNOWLEDGMENTS

This work was supported by grants from Beijing
Municipal Commission of Science and Technology (No.
Z151100000915070).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fncom.
2016.00102

Frontiers in Computational Neuroscience | www.frontiersin.org 9 September 2016 | Volume 10 | Article 102

http://journal.frontiersin.org/article/10.3389/fncom.2016.00102
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Wang et al. Models of Retinal Ganglion Cells

REFERENCES

Arhem, P., and Blomberg, C. (2007). Ion channel density and threshold dynamics

of repetitive firing in a cortical neuron model. Biosystems 89, 117–125. doi:

10.1016/j.biosystems.2006.03.015

Arhem, P., Klement, G., and Blomberg, C. (2006). Channel density regulation

of firing patterns in a cortical neuron model. Biophys J. 90, 4392–4404. doi:

10.1529/biophysj.105.077032

Beraneck, M., and Straka, H. (2011). Vestibular signal processing by separate

sets of neuronal filters. J. Vestib. Res. 21, 5–19. doi: 10.3233/VES-201

1-0396

Bogaard, A., Parent, J., Zochowski, M., and Booth, V. (2009). Interaction of cellular

and network mechanisms in spatiotemporal pattern formation in neuronal

networks. J. Neurosci. 29, 1677–1687. doi: 10.1523/JNEUROSCI.5218-0

8.2009

Cangiano, L., Gargini, C., Della Santina, L., Demontis, G. C., and Cervetto,

L. (2007). High-pass filtering of input signals by the Ih current in a

non-spiking neuron, the retinal rod bipolar cell. PLoS ONE 2:e1327. doi:

10.1371/journal.pone.0001327

Chase, S. M., and Young, E. D. (2007). First-spike latency information

in single neurons increases when referenced to population onset.

Proc. Natl. Acad. Sci. U.S.A. 104, 5175–5180. doi: 10.1073/pnas.0610

368104

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience. Cambridge, MA:

MIT Press.

Descalzo, V. F., Nowak, L. G., Brumberg, J. C., McCormick, D. A., and Sanchez-

Vives, M. V. (2005). Slow adaptation in fast-spiking neurons of visual cortex. J.

Neurophysiol. 93, 1111–1118. doi: 10.1152/jn.00658.2004

Fink, C. G., Booth, V., and Zochowski, M. (2011). Cellularly-driven differences

in network synchronization propensity are differentially modulated by

firing frequency. PLoS Comput. Biol. 7:e1002062. doi: 10.1371/journal.pcbi.

1002062

Fohlmeister, J. F., Cohen, E. D., and Newman, E. A. (2010). Mechanisms and

distribution of ion channels in retinal ganglion cells: using temperature

as an independent variable. J. Neurophysiol. 103, 1357–1374. doi:

10.1152/jn.00123.2009

Fohlmeister, J. F., and Miller, R. F. (1997). Impulse encoding mechanisms of

ganglion cells in the tiger salamander retina. J. Neurophysiol. 78, 1935–1947.

Gai, Y., Doiron, B., and Rinzel, J. (2010). Slope-based stochastic resonance: how

noise enables phasic neurons to encode slow signals. PLoS Comput. Biol.

6:e1000825. doi: 10.1371/journal.pcbi.1000825

Gollisch, T., and Meister, M. (2008). Rapid neural coding in the retina

with relative spike latencies. Science 319, 1108–1111. doi: 10.1126/science.

1149639

Gütig, R., Gollisch, T., Sompolinsky, H., and Meister, M. (2013). Computing

complex visual features with retinal spike times. PLoS ONE 8:e53063. doi:

10.1371/journal.pone.0053063

Hodgkin, A. L. (1948). The local electric changes associated with repetitive

action in a non-medullated axon. J. Physiol. 107, 165–181. doi:

10.1113/jphysiol.1948.sp004260

Izhikevich, E. (2000). Neural excitability, spiking and busting. Int. J. Bifurcat. Chaos

10, 1171–1266. doi: 10.1142/S0218127400000840

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience: The Geometry of

Excitability and Bursting. Cambridge, MA: MIT Press.

Johansson, S., and Arhem, P. (1992). Membrane currents in small cultured rat

hippocampal neurons: a voltage-clamp study. J. Physiol. 445, 141–156. doi:

10.1113/jphysiol.1992.sp018916

Kamiyama, Y., Wu, S. M., and Usui, S. (2009). Simulation analysis of bandpass

filtering properties of a rod photoreceptor network. Vision Res. 49, 970–978.

doi: 10.1016/j.visres.2009.03.003

Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (2000). Principles of Neural Science.

New York, NY: McGraw-Hill.

Kawai, F., and Sterling, P. (2002). cGMP modulates spike responses of retinal

ganglion cells via a cGMP-gated current. Vis. Neurosci. 19, 373–380. doi:

10.1017/S0952523802193138

Kim, K. J., and Rieke, F. (2003). Slow Na+ inactivation and variance adaptation in

salamander retinal ganglion cells. J. Neurosci. 23, 1506–1516.

Li, H., Liu, W. Z., and Liang, P. J. (2012). Adaptation-dependent

synchronous activity contributes to receptive field size change of bullfrog

retinal ganglion cell. PLoS ONE 7:e34336. doi: 10.1371/journal.pone.0

034336

Mainen, Z. F., and Sejnowski, T. J. (1995). Reliability of spike timing in neocortical

neurons. Science 268, 1503–1506. doi: 10.1126/science.7770778

Marella, S., and Ermentrout, G. B. (2008). Class-II neurons display a higher degree

of stochastic synchronization than class-I neurons. Phys. Rev. E 77:041918. doi:

10.1103/physreve.77.041918

Margolis, D. J., and Detwiler, P. B. (2007). Different mechanisms generate

maintained activity in ON and OFF retinal ganglion cells. J. Neurosci. 27,

5994–6005. doi: 10.1523/JNEUROSCI.0130-07.2007

Prescott, S. A., De Koninck, Y., and Sejnowski, T. J. (2008a). Biophysical basis

for three distinct dynamical mechanisms of action potential initiation. PLoS

Comput. Biol. 4:31000198. doi: 10.1371/journal.pcbi.1000198

Prescott, S. A., Ratté, S., De Koninck, Y., and Sejnowski, T. J. (2008b).

Pyramidal neurons switch from integrators in vitro to resonators under

in vivo-like conditions. J. Neurophysiol. 100, 3030–3042. doi: 10.1152/jn.906

34.2008

Prescott, S. A., and Sejnowski, T. J. (2008). Spike-rate coding and spike-time coding

are affected oppositely by different adaptation mechanisms. J. Neurosci. 28,

13649–13661. doi: 10.1523/JNEUROSCI.1792-08.2008

St-Hilaire, M., and Longtin, A. (2004). Comparison of coding capabilities

of Type I and Type II neurons. J. Comput. Neurosci. 16, 299–313. doi:

10.1023/B:JCNS.0000025690.02886.93

Tabata, T., and Kano, M. (2002). Heterogeneous intrinsic firing properties of

vertebrate retinal ganglion cells. J. Neurophysiol. 87, 30–41.

Tateno, T., Harsch, A., and Robinson, H. P. (2004). Threshold firing frequency-

current relationships of neurons in rat somatosensory cortex: type 1 and type 2

dynamics. J. Neurophysiol. 92, 2283–2294. doi: 10.1152/jn.00109.2004

Tateno, T., and Robinson, H. P. (2006). Rate coding and spike-time variability

in cortical neurons with two types of threshold dynamics. J. Neurophysiol. 95,

2650–2663. doi: 10.1152/jn.00683.2005

Tsai, D., Morley, J. W., Suaning, G. J., and Lovell, N. H. (2011). Frequency-

dependent reduction of voltage-gated sodium current modulates retinal

ganglion cell response rate to electrical stimulation. J. Neural Eng. 8:066007.

doi: 10.1088/1741-2560/8/6/066007

van Brederode, J. F., and Berger, A. J. (2008). Spike-firing resonance in hypoglossal

motoneurons. J. Neurophysiol. 99, 2916–2928. doi: 10.1152/jn.01037.2007

van Rullen, R., and Thorpe, S. J. (2001). Rate coding versus temporal order

coding: what the retinal ganglion cells tell the visual cortex. Neural Comput.

13, 1255–1283. doi: 10.1162/08997660152002852

Völgyi, B., Kovács-Oller, T., Atlasz, T., Wilhelm, M., and Gábriel, R. (2013). Gap

junctional coupling in the vertebrate retina: variations on one thems? Prog.

Retinal Eye Res. 34, 1–18. doi: 10.1016/j.preteyeres.2012.12.002

Wang, G. Y., Ratto, G., Bisti, S., and Chalupa, L. M. (1997). Functional

development of intrinsic properties in ganglion cells of the mammalian retina.

J. Neurophysiol. 78, 2895–2903.

Wang, H. T., Chen, Y. L., and Chen, Y. (2013). First-spike latency in

Hodgkin’s three classes of neurons. J. Theor. Biol. 328, 19–25. doi:

10.1016/j.jtbi.2013.03.003

Wang, H. T., Wang, L. F., Yu, L. C., and Chen, Y. (2011). Response of Morris-Lecar

neurons to various stimuli. Phys. Rev. E 83:021915. doi: 10.1103/physreve.83.

021915

Wang, L., Liang, P. J., Zhang, P. M., and Qiu, Y. H. (2014). Ionic mechanisms

underlying tonic and phasic firing behaviors in retinal ganglion cells: a model

study. Channels 8, 298–307. doi: 10.4161/chan.28012

Xiao, L., Zhang, D. K., Li, Y. Q., Liang, P. J., and Wu, S. (2013a). Adaptive neural

information processing with dynamical electrical synapses. Front. Comput.

Neurosci. 7:36. doi: 10.3389/fncom.2013.00036

Xiao, L., Zhang, P. M., Wu, S., and Liang, P. J. (2014). Response dynamics of

bullfrog ON-OFF RGCs to different stimulus durations. J. Comput. Neurosci.

37, 149–160. doi: 10.1007/s10827-013-0492-2

Xiao, L., Zhang, P. M., Xing, D., Liang, P. J., and Wu, S. (2013b). Shifted

encoding strategy in retinal luminance adaptation: from firing rate to

neural correlation. J. Neurophysiol. 110, 1793–1803. doi: 10.1152/jn.0022

1.2013

Frontiers in Computational Neuroscience | www.frontiersin.org 10 September 2016 | Volume 10 | Article 102

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Wang et al. Models of Retinal Ganglion Cells

Zeberg, H., Blomberg, C., and Arhem, P. (2010). Ion channel density regulates

switches between regular and fast spiking in soma but not in axons. PLoS

Comput. Biol. 6:e1000753. doi: 10.1371/journal.pcbi.1000753

Zhang, Y. Y., Jin, X., Gong, H. Q., and Liang, P. J. (2010). Temporal and spatial

patterns of retinal ganglion cells in response to nature stimuli. Prog. Biochem.

Biophys. 37, 389–396. doi: 10.3724/SP.J.1206.2009.00617

Zhuchkova, E., Remme, M. W., and Schreiber, S. (2013). Somatic versus dendritic

resonance: differential filtering of inputs through non-uniform distributions

of active conductances. PLoS ONE 8:e78908. doi: 10.1371/journal.pone.

0078908

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Wang, Qiu and Zeng. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 September 2016 | Volume 10 | Article 102

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Coding Properties of Three Intrinsically Distinct Retinal Ganglion Cells under Periodic Stimuli: A Computational Study
	Introduction
	Models and Methods
	RGC Model
	Morris-Lecar Model

	Results
	Similar Performance between the Three Types of RGC and the ML Neurons
	Amplitude-Dependent Firing Characteristics of RGCs under Periodic Stimuli

	Discussions
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


