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Several studies have explored brain computer interface (BCI) systems based on auditory

stimuli, which could help patients with visual impairments. Usability and user satisfaction

are important considerations in any BCI. Although background music can influence

emotion and performance in other task environments, and many users may wish to

listen to music while using a BCI, auditory, and other BCIs are typically studied without

background music. Some work has explored the possibility of using polyphonic music in

auditory BCI systems. However, this approach requires users with good musical skills,

and has not been explored in online experiments. Our hypothesis was that an auditory

BCI with background music would be preferred by subjects over a similar BCI without

background music, without any difference in BCI performance. We introduce a simple

paradigm (which does not require musical skill) using percussion instrument sound stimuli

and background music, and evaluated it in both offline and online experiments. The

result showed that subjects preferred the auditory BCI with background music. Different

performancemeasures did not reveal any significant performance effect when comparing

background music vs. no background. Since the addition of background music does

not impair BCI performance but is preferred by users, auditory (and perhaps other) BCIs

should consider including it. Our study also indicates that auditory BCIs can be effective

even if the auditory channel is simultaneously otherwise engaged.

Keywords: brain computer interface, event-related potentials, auditory, music background, audio stimulus

INTRODUCTION

Brain computer interface (BCI) technology has been used to help disabled patients communicate
or control external devices through brain activity (Vidal, 1973; Kübler et al., 2001; Blankertz
et al., 2010; Zhang et al., 2013a). Noninvasive BCI systems typically rely on the scalp-recorded
electroencephalogram (EEG) (Wolpaw et al., 2002; Adeli et al., 2003; Sellers and Donchin, 2006;
Allison et al., 2007; Jin et al., 2011a,b, 2012; Ortiz-Rosario and Adeli, 2013; Li et al., 2014; Zhang
et al., 2016). Many BCIs require the user to perform specific voluntary tasks to produce distinct

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2016.00105
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2016.00105&domain=pdf&date_stamp=2016-10-13
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:jinjingat@gmail.com
http://dx.doi.org/10.3389/fncom.2016.00105
http://journal.frontiersin.org/article/10.3389/fncom.2016.00105/abstract
http://loop.frontiersin.org/people/2539/overview
http://loop.frontiersin.org/people/3713/overview
http://loop.frontiersin.org/people/8324/overview
http://loop.frontiersin.org/people/275332/overview
http://loop.frontiersin.org/people/143026/overview


Zhou et al. Background Music in an Auditory BCI

EEG patterns, such as paying attention to a visual, tactile, or
auditory stimulus (Brouwer and Van Erp, 2010; Höhne et al.,
2011; Jin et al., 2011a; Fazel-Rezai et al., 2012; Kaufmann et al.,
2014; Cai et al., 2015). We refer to these three approaches as
visual, tactile, and auditory BCIs, respectively.

Visual BCIs can yield high classification accuracy and
information transfer rate (Kaufmann et al., 2011; Riccio et al.,
2012; Jin et al., 2014, 2015; Zhang et al., 2014; Chen et al.,
2015; Yin et al., 2016). However, these BCIs are not useful for
patients who cannot see. Tactile BCIs have been validated with
patients with visual disabilities, including persons with a disorder
of consciousness (DOC) (Kaufmann et al., 2014; Edlinger et al.,
2015; Li et al., 2016). Devices that can deliver the tactile stimuli
used in modern tactile BCIs are less readily available and usable
than the tools required for auditory BCIs. Most end users for
BCIs do not have vibrotactile stimulators and experience using
them, but do have headphones, laptops, cell phones, and/or other
devices that can generate auditory stimuli that are adequate for
modern auditory BCIs.

Several groups have shown that an auditory P300 BCI could
serve as a communication channel for severely paralyzed patients,
including persons diagnosed with DOC. Indeed, DOC patients
could also benefit from BCI technology to assess cognitive
function (Risetti et al., 2013; Lesenfants et al., 2016; Käthner
et al., 2013; Edlinger et al., 2015; Ortner et al., accepted). Since
many DOC patients cannot see, and have very limited means
for communication and control, they have a particular need for
improved auditory BCIs.

Auditory BCI systems require users to concentrate on a
target sound, such as a tone, chime, or a word (Kübler et al.,
2001, 2009; Hill et al., 2004; Vidaurre and Blankertz, 2010;
Kaufmann et al., 2013; Treder et al., 2014). Auditory BCIs entail
some different challenges from visual BCIs. Compared to vision,
sound perception is relatively information-poor (Kang, 2006).
Concordantly, the event-related potentials evoked in auditory
BCI systems may lead to less effective discrimination between
attended and unattended stimuli (Belitski et al., 2011; Chang
et al., 2013). To improve the performance of auditory P300
BCI systems, many studies focused on enhancing the difference
between attended and ignored events, which could produce more
recognizable differences in the P300 and/or other components
(Hill et al., 2004; Furdea et al., 2009; Guo et al., 2010; Halder
et al., 2010; Nambu et al., 2013; Höhne and Tangermann,
2014). These efforts have made progress, but also show the
ongoing challenge of identifying the best conditions for an
auditory BCI.

Some work has explored BCIs to control music players and
similar systems to improve quality of life. Music could affect
users’ emotions (Kang, 2006; Lin et al., 2014), which could make
BCI users feel comfortable during BCI use. Tseng et al. (2015)
developed a system to select music for users based on their mental
state (Tseng et al., 2015). Treder et al. (2014) explored a multi-
streamed musical oddball paradigm as an approach to BCIs
(Treder et al., 2014). Their article presents a sound justification
for this paradigm: “In Western societies, the skills involved in
music listening and partly, music understanding are typically
overlearnt.”

This paper introduces a simple auditory BCI system that
includes background music, which we validated through offline
and online experiments. This BCI system does not require
musical training or expertise. Percussion sounds from cymbals,
snare drums, and tom tom drums were used as stimuli and
presented over headphones.We chose percussion stimuli because
they are easy to recognize, and easy distinguish from each other
and background piano music. We hypothesized that subjects
would prefer background music, and would not perform worse
while background music is playing. Hence, we explored the
effect of background music on auditory BCI performance and
users’ subjective experience, evaluated via surveys. If successful,
our approach would render auditory BCIs more ecologically
valid.

METHODS AND MATERIALS

Subjects and Stimuli
Sixteen healthy right handed subjects (8 male, 8 female, aged
21–27 years, mean age 24.8 ± 1.5) participated in this study.
Nine of the subjects had prior experience with an auditory
BCI. All subjects’ native language was Mandarin Chinese. Each
subject participated in one session within 1 day. The order of the
conditions was counterbalanced across subjects for each session.

All subjects signed a written consent form prior to this
experiment and were paid 50 RMB for their participation in
each session. The local ethics committee approved the consent
form and experimental procedure before any of the subjects
participated.

Three percussion sounds (cymbals, snare drums, and tom
tom drums) were used as stimuli. The “cymbals” stimulus was
played in the right headphone, the “snare drum” stimulus was
played through both headphones to sound as if it came from the
middle, and the “tom tom drum” stimulus was played in the left
headphone (see Figure 1). For each subject, we confirmed the
subject could hear the stimulus clearly.

Experimental Set Up, Offline, and Online
Protocols
EEG signals were recorded with a g.HIamp and a g.EEGcap
(Guger Technologies, Graz, Austria) with active electrodes,
sampled at 1200Hz and band pass filtered between 0.1
and 100Hz. g.HIamp uses wide-range DC-coupled amplifier

FIGURE 1 | The three percussion stimuli used in this study, and their

spatial distribution.
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technology in combination with 24-bit sampling. The result is
an input voltage of ±250mV with a resolution of <60 nV. The
impedance of the electrodes was less than 30 k�. Data were
recorded and analyzed using the BCI platform software package
developed through the East China University of Science and
Technology.We recorded from 30 EEG electrode positions based
on the extended international 10–20 system (see Figure 2). Active
electrodes were referenced to the nose, using a front electrode
(FPz) as ground. The recorded data was filtered using a high pass
of 0.1 Hz, a low pass of 30Hz, notch-filtered at 50 Hz for analysis
and classification (Käthner et al., 2013). A prestimulus interval of
100ms was used for baseline correction of single trials.

This study compared two conditions: with no background
music (WNB) and with background music (WB). The latter
condition used piano music as the background. The piano
music was titled “Confession” from Falcom Sound Team jdk.
Each subject participated in offline and online sessions for both
conditions within the same recording session.

In the offline session, the order of the two conditions was
decided pseudorandomly. Each subject completed fifteen runs
of one condition, then fifteen runs of the other condition, with
a 2min break after every five runs. Each run contained twelve
trials that each consisted of one presentation of each of the
three auditory stimuli. At the beginning of each run, an auditory
cue in Chinese told the subject which stimulus to count during
the upcoming run. The first auditory stimulus began 2 s after
the trial began. The stimulus “on” time was 200ms and the
stimulus “off” time was always 100ms, yielding an SOA of
300ms. The three auditory stimuli were randomly distributed
between stimulus type and corresponding location (see Figure 1),
with the constraint that the same stimuli did not occur twice in
succession. The target to target interval (TTI) was at least 600ms.

FIGURE 2 | The electrode montage used in this study.

There was a 4 s break at the end of each run, and no feedback was
provided. Thus, the offline session took a little over 15min (0.3 s
× three stimuli × twelve trials × fifteen runs × two conditions
+ a two min break× five times). Subjects had a 5min break after
the offline session.

The online session presented the two conditions in the
same order as the offline session. However, there were 24
runs per condition, the number of trials per run was selected
adaptively, and subjects received feedback at the end of each
run (Jin et al., 2011a). This “adaptive classifier” means that
the system would end the run and present feedback if the
classifier chose the same output on two consecutive trials. Thus,
the minimum number of trials per run was two. Each run
still began with an auditory cue (in Chinese) to instruct the
subject which target stimulus to count. At the end of the run,
the target that the BCI system identified was presented to the
subject via a human voice played through the target speaker
(left, right, or front), as well as via the monitor. The time
required for the online session varied because of the adaptive
classifier.

Classification Scheme
The EEG was down-sampled by selecting every 30th
sample from the EEG. The first 1000 ms of EEG after
each stimulus presentation was used for feature extraction.
Spatial-Temporal Discriminant Analysis (STDA) was used
for classification (Zhang et al., 2013b). Data acquired
offline were used to train the STDA classifier model. This
model was then used in the online BCI system. STDA
has exhibited superior ERP classification performance
relative to competing algorithms (Hoffmann et al.,
2008).

Subjective Report
After completing the last run of each session, each subject was
asked two questions about each condition. Each question could
be answered on a 1–5 rating scale indicating strong disagreement,
moderate disagreement, neutrality, moderate agreement, or
strong agreement. Subjects were also allowed to answer with
intermediate replies (i.e., 1.5, 2.5, 3.5, and 4.5), thus allowing nine
possible responses to each question. All questions were asked in
Chinese. The two questions were:

(1) Did you prefer this condition when you were doing the
auditory task?

(2) Did this condition make you tired?

Statistical Analysis
Before statistically comparing classification accuracy, the
“outputs per minute” and “correct outputs per minute”
were statistically tested for normal distribution (One-Sample
Kolmogorov Smirnov test) and sphericity (Mauchly’s test).
Consecutively, repeated measures ANOVAs or t-tests with
stimulus type as factor were conducted. Post-hoc comparison
was performed with Tuckey-Kramer tests. The alpha level was
adjusted according to Bonferoni-Holm. Non-parametric Kendall
tests were computed to statistically compare the questionnaire
replies.
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RESULTS

Figure 3 shows the averaged evoked potentials from the online
data over sites Fz, FCz, C5, Cz, C6, CPz, Pz, and Oz. These
potentials were averaged from subjects who obtained higher than
70% classification accuracy in all conditions. Figure 3 shows
fairly weak negative potentials before 200ms, and less distinct
potentials in occipital areas.

This study had two conditions: WNB and WB. Table 1 shows
the online classification accuracy, “outputs per minute,” and
“correct outputs per minute” for both conditions. The “outputs
per minute” was defined as follows:

N =
60

Na× t1 + t2
(1)

in which N is the “outputs per minute” and Na reflects the
averaged trials in a run. The terms t1 and t2 denote the
time required for a trial and the 4 s break between two runs,

respectively.

CN = n× acc (2)

The CN is the “correct outputs per minute,” and acc is the
accuracy of each subject in the online experiment.

Paired samples t-tests were used to show the differences
between the WNB andWB conditions. There were no significant
differences between theWNB andWB conditions in classification
accuracy [t(1, 15) = −1.2, p > 0.05], in “output characters” per
minute [t(1, 15) = 0.8, p > 0.05] and in “correct outputs” per
minute [t(1, 15) = −0.9, p > 0.05]. This result suggests that
background music did not affect performace.

Table 2 presents the subjects’ replies to questionnaires about
the WNB and WB conditions. Non-parametric Kendall tests
were used to explore these differences. Results showed a
significant preference for background music (p < 0.05). Only
one subject (AB44) showed a preference for the WNB condition.
AB44 also verbally reported that he felt that the background
music affected his task performance. There was no significant

FIGURE 3 | Averaged evoked potentials of target trials and non-target trials in the high volume session for WNB and WB conditions.
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TABLE 1 | Online classification accuracy, “outputs per minute” (O/min)

and “correct outputs per minute” (CO/min).

Subject Accuracy O/min CO/min

WNB WB WNB WB WNB WB

AB38 79.2 100.0 6.4 6.9 5.1 6.9

AB40 95.8 79.2 7.1 6.5 6.8 5.2

AB44 83.3 58.3 6.3 6.8 5.3 4.0

AB49 50.0 58.3 6.7 6.9 3.4 4.0

AB65 58.3 66.7 6.9 6.5 4.0 4.3

AB76 37.5 33.3 6.3 6.1 2.4 2.0

AB77 83.3 83.3 6.6 6.5 5.5 5.4

AB92 83.3 83.3 6.8 7.2 5.6 6.0

AB109 70.8 87.5 6.8 5.8 4.8 5.1

AB112 91.7 100.0 7.6 7.6 7.0 7.6

AB117 83.3 83.3 7.0 6.7 5.8 5.6

AB118 66.7 95.8 6.6 6.5 4.4 6.2

AB119 29.2 50.0 6.5 6.8 1.9 3.4

AB200 87.5 75.0 7.4 6.9 6.5 5.2

AB201 45.8 66.7 6.6 6.2 3.0 4.2

AB202 66.7 66.7 6.1 6.4 4.0 4.2

AVG±STD 69.5 ± 20.2 74.2 ± 18.6 6.7 ± 0.4 6.7 ± 0.4 4.7 ± 1.5 5.0 ± 1.4

TABLE 2 | Subjective evaluation.

Subject Prefer Tiredness

WNB WB WNB WB

AB38 2 3 4 3

AB40 3 4 3 3

AB44 4 3 3 4

AB49 3 4 3 3

AB65 3 3 2 2

AB76 3 4 3 3

AB77 3 4 3 3

AB92 3 4 4 3

AB109 4 5 4 5

AB112 3 4 3 3

AB117 3 4 4 3

AB118 3 4 4 3

AB119 3 4 3 3

AB200 4 4 3 3

AB201 3 4 2 2

AB202 1 2 2 1

AVG±STD 3.0 ± 0.7 3.8 ± 0.7 3.1 ± 0.7 2.9 ± 0.9

difference between the WNB and WB conditions in tiredness
(p > 0.05).

Figure 4 shows the contributions of ERPs between 1 and
300ms, between 251 and 450ms and between 451 and 800ms
for classification performance across subjects. The independent
variables were the three time windows, and the dependent
variable was the classification accuracy. Figure 4 shows that

ERPs between 1 and 300ms did not contribute strongly to
classification, unlike the P300 potential between 250 and 450ms.
Figure 4 also shows that negative ERPs that were predominant
between 451 and 800ms. A two-way repeated measures ANOVA
was used to show the classification accuracies based on these time
windows [F(2, 30), p < 0.016]. Potentials between 451 and 800 ms
yielded significantly higher classification accuracy than the ERPs
between 251 and 450 ms (p < 0.016) and the ERPs between 1 and
300ms (p < 0.016), and the potentials between 251 and 450ms
obtained significantly higher classification accuracy compared
to the ERPs between 1 and 300ms (p < 0.016). A one-way
repeated measures ANOVA was used to test the contributions to
classification accuracy among ERPs in different time windows for
theWNB condition [F(2, 30) = 14.1, p< 0.016] andWB condition
[F(2, 30) = 19.8, p < 0.016) respectively. The result showed that
the potentials between 451 and 800ms obtained significantly
higher classification accuracy compared to the ERPs between 1
and 300ms (p < 0.016) and the ERPs between 251 and 450ms
(p < 0.016), except for the WB pattern. The potentials between
451 and 800ms did not obtain significantly higher classification
accuracy compared to the ERPs between 251 and 450ms (p =

0.029) in WB condition.

DISCUSSION

Effects of Background Music
The main goal of this study was to assess the effects of
background music on the performance and user preferences on
an auditory BCI. Results showed that the subjects preferred the
WB condition over the WNB condition (see Table 2). There
were no significant differences in classification accuracy between
these two conditions. These results indicate that background
music could make auditory BCI users more comfortable without
impairing classification accuracy (see Figure 4, Tables 1, 2).

The classification accuracy and information transfer rate in
WB condition in the present study were at least comparable
to related work. For example, Halder and colleagues presented
results with a three stimulus auditory-based BCI (Halder et al.,
2010) and discussed training with an auditory-based BCI (Halder
et al., 2016). The information transfer rate of the three stimuli
BCI was lower than present study (the best of them was
1.7 bit/min). Käthner and colleagues reported that the average
accuracy of their auditory-based BCI is only 66% and the SD is
24.8 (Käthner et al., 2013). Some other studies also reported that
the average accuracies of their auditory-based BCI were about
70% (Schreuder et al., 2009; Belitski et al., 2011; De Vos et al.,
2014). Compared to these studies, the accuracy and information
transfer rate in the present study were very common for auditory-
based P300 BCI.

Trial-to-Trial Interval (TTI) and Number of
Stimuli
This study used a fairly long SOA (300ms) because our paradigm
only used three stimuli. Although we avoided successive
repetition of the same stimulus in the same position, shorter
TTIs could have made it difficult for subjects to distinguish the
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FIGURE 4 | The contributions of the evoked potentials between 1 and 300ms, between 251 and 450ms and between 451 and 800ms to BCI

classification performance, across subjects.

different stimuli and reduced P300 amplitude (Gonsalvez and
Polich, 2002).

Most P300 BCIs use more than three stimuli. Adding more

stimuli and making them more distinct could make a shorter

SOA feasible. For example, Höhne and Tangermann (2014)
used an 83.3 ms ISI with 26 stimuli, with a duration of 200–

250ms (Höhne and Tangermann, 2014). In their study, the target

stimulus was presented after 6–10 non-target stimuli, and the TTI
was at least 600 ms, which should be enough for the subjects to
detect the target stimulus.

ERPs and Relative Contributions to
Classification Accuracy
Figure 4 showed that ERPs before 300 ms contributed to
classification accuracy less than ERPs from the other two time
windows that we analyzed. Some auditory studies reported that
their paradigms could evoke clear mismatch negative potentials
(MMNs) (Hill et al., 2004; Kanoh et al., 2008; Brandmeyer
et al., 2013). However, there were no clear negative potentials
from target trials around 200 ms, due to differences in our
stimuli and task instructions. Several factors can affect the MMN,
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including modality, stimulus parameters, target probability,
sequence order, and task instructions (Näätänen et al., 1993;
Pincze et al., 2002; Sculthorpe and Campbell, 2011; Kimura,
2012).

Figure 4 shows that the time window between 451 and 800ms
yielded significantly higher classification accuracy than the other
time windows (1–300ms and 251–450ms) in most comparisons.
Thus, late potentials (after 450ms) contributed to classification
accuracy more than early potentials (before 450ms) in this study.

The evoked potentials were weak in occipital areas (see
Figure 3). This result suggests that the BCI presented here might
be practical with a reduced electrode montage that does not
include occipital sites. Thus, a conventional electrode cap may
not be necessary. Alternate means of mounting electrodes on
the head (such as headphones) might reduce preparation time
and cost while improving comfort and ease-of-use. This could
be especially important in long-term use for patients with DOC
or other severe movement disabilities, when occipital electrodes
can become uncomfortable if the head is resting on a pillow or
cushion.

CONCLUSION

The main goal of this paper was to explore the effects of
adding background music to an auditory BCI approach
that used three stimuli (Halder et al., 2010). Results showed
that the users preferred background music to the canonical
approach (no background music) without significant
changes in BCI performance. While auditory BCIs have

been validated in prior work (Hill et al., 2004; Kübler et al.,

2009; Treder et al., 2014; Lesenfants et al., 2016; Ortner
et al., accepted), this outcome suggests that future auditory,
and perhaps other, BCIs could improve user satisfaction by
incorporating background music. Further work is needed to
explore issues such as: the best signal processing methods
and classifiers; performance with target patients at different
locations; improving performance with inefficient subjects;
and different types of auditory stimuli and background music,
including music chosen based on each subject’s mental state
(Tseng et al., 2015).
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