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Response latency has been suggested as a possible source of information in the

central nervous system when fast decisions are required. The accuracy of latency

codes was studied in the past using a simplified readout algorithm termed the

temporal-winner-take-all (tWTA). The tWTA is a competitive readout algorithm in which

populations of neurons with a similar decision preference compete, and the algorithm

selects according to the preference of the population that reaches the decision threshold

first. It has been shown that this algorithm can account for accurate decisions among

a small number of alternatives during short biologically relevant time periods. However,

one of the major points of criticism of latency codes has been that it is unclear how can

such a readout be implemented by the central nervous system. Here we show that the

solution to this long standing puzzle may be rather simple. We suggest a mechanism

that is based on reciprocal inhibition architecture, similar to that of the conventional

winner-take-all, and show that under a wide range of parameters this mechanism is

sufficient to implement the tWTA algorithm. This is done by first analyzing a rate toymodel,

and demonstrating its ability to discriminate short latency differences between its inputs.

We then study the sensitivity of this mechanism to fine-tuning of its initial conditions,

and show that it is robust to wide range of noise levels in the initial conditions. These

results are then generalized to a Hodgkin-Huxley type of neuron model, using numerical

simulations. Latency codes have been criticized for requiring a reliable stimulus-onset

detection mechanism as a reference for measuring latency. Here we show that this

frequent assumption does not hold, and that, an additional onset estimator is not needed

to trigger this simple tWTA mechanism.

Keywords: spike latency, winner takes all, fast readout, temporal code, conductance based model, rate model

INTRODUCTION

Neuronal response latency has been shown to be tuned to various features of external
stimuli across many sensory modalities including the somatosensory (Panzeri et al., 2001;
Johansson and Birznieks, 2004; Panzeri and Diamond, 2010), auditory (Brugge et al., 1996,
2001; Klug et al., 2000; Leibold and van Hemmen, 2005; McAlpine, 2005; Zhou et al., 2005;
Chase and Young, 2007; Joris and Yin, 2007; Goodman and Brette, 2010; Grothe et al.,
2010; Ashida and Carr, 2011; Grothe and Koch, 2011; Lüling et al., 2011; Zohar et al.,
2011; Shamir, 2014), and visual systems (Hubel and Wiesel, 1968; Gawne et al., 1996; Van
Rullen and Thorpe, 2001; Gollisch and Meister, 2008; Shriki et al., 2012; Shamir, 2014).
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In addition, latency tuning has been observed in various stations
along the information processing pathway from the receptor
level (Hall et al., 1995; Van Rullen and Thorpe, 2001; Gollisch
and Meister, 2008; McGinley et al., 2012), the brainstem (Klug
et al., 2000; Joris and Yin, 2007; Grothe and Koch, 2011; Zohar
et al., 2011) and up to the cerebral cortex (Hubel and Wiesel,
1968; Brugge et al., 1996, 2001; Shriki et al., 2012). For this
reason, response latency has been suggested as a possible source
of information in cases where fast decisions are required (Gawne
et al., 1996; Gautrais and Thorpe, 1998; Van Rullen and Thorpe,
2001; Johansson and Birznieks, 2004; Chase and Young, 2007;
Gollisch and Meister, 2008; Shamir, 2009, 2014; Goodman and
Brette, 2010; Panzeri and Diamond, 2010; Zohar et al., 2011;
Shriki et al., 2012).

The accuracy of latency codes has been investigated using
the framework of a simple latency based competitive readout,
the “temporal-winner-take-all” (tWTA), in a modeling study
(Shamir, 2009) and more recently in the auditory (Zohar et al.,
2011) and the visual systems (Shriki et al., 2012). The tWTA
estimates the stimulus on the basis of the preferred stimulus
of the neuron (or population) that fired first (or reached a
certain decision threshold). The utility of the tWTA is that
it is sufficiently simple and well-defined to enable analytical
investigation of readout speed and accuracy. It was shown that
the tWTA can account for fast and accurate discrimination
between a small number of alternatives. However, it remains
unclear how the central nervous system implements such a
readout, if at all. This raises crucial questions as to the utility of
latency coding in the brain.

The conventional rate winner-take-all (WTA) readout that
estimates the stimulus based on the preferred stimulus of the
neuron that fired the most spikes (rather than the first as
in tWTA) has been widely used and studied in neuroscience
(Fukai and Tanaka, 1997; White et al., 1998; Jin and Seung,
2002; Laing and Chow, 2002). There is a general consensus that
the computation of the WTA decision is based on reciprocal
inhibition between groups of neurons with similar preferences.

Here we show that the basicWTA architecture is also sensitive
to the temporal order of its inputs such that it is able to
implement the tWTA readout. This paper is organized as follows.
First we define the basic reciprocal inhibition architecture of the
tWTA mechanism and analyze the system using the framework
of a rate toy model to facilitate the analytical investigation. Then,
we study the generalization of our analysis to a model of spiking
neurons in a numerical study of conductance-based neurons.
Finally, we discuss the issue of estimating the stimulus onset time
and the implications of the findings.

METHODS

Spiking Neurons Model
In the numerical simulations of spiking neurons we used the
following conductance-based model with typical parameters
taken from Shriki et al. (2003) and Shamir et al. (2009).

C
dVi

dt
= Ileaki + Ineti + Iexti + Iactivei

where Ileaki , Ineti , Iexti , Iactivei denote the leak, reciprocal inhibition,
upstream input and active currents, respectively, and C =

1µF/cm2 is the membrane capacitance. The currents obey

Ileaki = gL(EL − Vi(t)), I
net
i∈{popA}

=
2gS
N

∑

j∈{popB}

sij (t) (Es − Vi),

Iactivei = INa + IK + IAwith INa = gNam
3
∞h(V −

ENa), IK = gKn
4(V − EK), IA = gAa

3
∞b(V − EK). The

parameters EL,Es,ENa,EK denote the reversal potentials of the
ionic currents inm V and are −65,−80, 55,−80, respectively.
Conductance is given in units of ms/cm2, and gL, gNa, gK , gA are
0.05, 100, 40, 20, respectively. The value of gS is discussed below.
The variables sij,m, h, n, a, b obey the following dynamics;

dsij/dt = 1+ (tanh
(

Vpre/10
)

/2)(1− s)/(τR)− s/τD, db/ dt

=
(

b∞ − b
)

/τb

dx/dt = (x∞ − x)τx for x = n, h, b with b∞ =

1/(exp
(

(V + 80)/6
)

+ 1), a∞ = 1/(exp
(

−(V + 50/20)
)

+ 1)
and x∞ = αx/αx + βx for x = m, h, n.

Time constants are measured in ms, and τb, τD, τR are
20, 10, 0.5, respectively, and τx = φ/αx + βx for x = m, h, n,
where φ = 0.1 and

βm = 4 exp
(

−(V + 55)/18
)

,

αm = −(0.1(V + 30)/(exp(−0.1(V + 30)− 1),

βh = 1/(exp (−0.1 (V + 14))+ 1),

αh = 0.07 exp
(

−(V + 44)
)

,

αn = −(0.01 (V + 34))/(exp (−0.1 (V + 34))− 1),

βn = 0.125 exp
(

−(V + 44)/80
)

.

Iextx,i (t) = r2
(

t − [T + τx + δx,i]
)

+ ξx,i(t) is the input current to
neuron i in population x ∈ {1, 2} from the upstream population,
where 2 is the Heaviside step function, T is an absolute delay
in the response and τx is stimulus selective delay (see A with
τi = 0 at the preferred stimulus, and τi = τ ). The input
current contained two sources of noise. One was a random jitter
in the input latency to each neuron, denoted by δx,i, that were
taken to be i.i.d. Gaussian random variables with zero mean and
standard deviation 1, δx,i ∼ N(0,12). The second source was
an additive Gaussian white noise term, ξx,i(t), that was drawn
i.i.d with ξ (t) ∼ N(0, 42). In the numerical simulations we took
r = 5mA/cm2, and the white noise, ξx,i(t), was binned at 1ms
time intervals with 4 = 5mA/cm2.

RESULTS

We first studied the tWTA readout mechanism using the
framework two-alternative forced choice discrimination in a rate
model. The readout mechanism receives two inputs, I1 and I2.
These inputs represent the activities of two upstream populations
of neurons responding to an external stimulus, each of which is
characterized by its own preferred stimulus. For example, I1 can
be thought of as the response of a population of inferior colliculus
auditory neurons with a preferred sound source azimuth to the
right of the animal, whereas I2 is the response to the left. The

Frontiers in Computational Neuroscience | www.frontiersin.org 2 October 2016 | Volume 10 | Article 107

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zohar and Shamir A Readout Mechanism for Latency Codes

FIGURE 1 | Schematic illustration of the model. (A) The input model: we

consider input from two upstream populations that encode the stimulus

identity by their response latency. The traces show the rate of the two

populations (in different colors) as a function of time, given the preferred

stimulus of population 1 is presented at time t = 0. (B) Network architecture.

The upstream population’s responses serve as input to a reciprocal inhibition

WTA type network.

response latency of the two inputs is assumed to be tuned to
the external stimulus. The task of the readout mechanism is to
infer the stimulus based on the inputs it receives. For purposes
of studying the ability of the readout to select according to the
latency of its inputs, we further assume that both inputs have the
same strength; however, the input corresponding to the “correct
choice” responds faster in some sense. Specifically, we modeled
the inputs as a step function, Ii(t) = 2(t − T − τi), where 2 is
the Heaviside step function, T is an absolute delay in the response
and τi is the stimulus selective delay (latency tuning: τi = 0 at the
preferred stimulus, and τi = τ > 0 otherwise); Figure 1A.

Our tWTA mechanism is based on reciprocal inhibition
between the two populations, Figure 1B. Denoting by ri themean
firing rate of neurons in the ith population (i = 1, 2), the
neuronal dynamics in our model obey

ṙ1 = −r1 + g(I1 − Jr2) (1)

ṙ2 = −r2 + g(I2 − Jr1) (2)

where J is the strength of the reciprocal inhibition, and g(x) is
typically modeled by a sigmoidal function. Here, for simplicity of
the analysis, we used a threshold-linear function, g(x) = x for x >

0 and g(x) = 0 otherwise.We now consider the dynamics in the
case where the stimulus is the preferred stimulus of population 1,

FIGURE 2 | The phase plane of the WTA rate model during different

stages of the dynamics. The arrows show the vector

(

ṙ1
ṙ2

)

in the plane of

[r1, r2]. (A) Before the input populations begin to respond to the stimulus,

t <T, the system is dominated by a single fixed point at the origin. (B) During

the stimulus selective response period of the upstream input, T < t < T + τ ,

the single fixed point shifts to a state in which population 1 outrivals population

2 (in the case of input in the preferred stimulus of population 1, as in the

example in Figure 1). (C) After the stimulus selective response, T + τ < t,

both inputs to the competing populations are the same. The system has two

stable fixed points corresponding to the states in which one population

outrivals the other and fully suppresses it. The identity line (solid black) is the

borderline between the basins of attraction of the two fixed points. The pink

lines show the borderlines between the regions of the phase plane in which

the initial conditions will result in a correct decision (below the line) and an

incorrect decision (above) for different values of τ = 0.2, 0.4, 0.6, and 0.8; that

is, the initial conditions that lead to r2(T + τ ) = r1(T + τ ).

consequently population 1 receives the “faster” input. During the
absolute delay period (i.e., from stimulus onset at time t = 0 to
time T, see Figure 1A) the downstream populations have yet to
respond to the stimulus, I1 = I2 = 0. In this case, the system is
governed by a single stable fixed point at the origin, r1 = r2 =
0, to which the system converges exponentially; Figure 2A. For
the duration of the stimulus selective response, t ∈ [T,T + τ ]
the single fixed point changes to (1, 0) in which population 1
“outrivals” population 2, in this case; Figure 2B. This fixed point
will serve as an attractor and the system will be drawn toward it.
At longer times, t > (T + τ ), both populations receive the same
level of input from the upstream population. If the reciprocal
inhibition is weak, J < 1, no population can outrival the other
and the system will converge to a symmetric fixed point in which
r1 = r2. On the other hand, for sufficiently strong inhibition,
J > 1, the system has two stable fixed points in which one

Frontiers in Computational Neuroscience | www.frontiersin.org 3 October 2016 | Volume 10 | Article 107

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zohar and Shamir A Readout Mechanism for Latency Codes

FIGURE 3 | The probability of correct discrimination is shown as a

function of the stimulus selective delay, τ , for different initial

conditions of noise levels, σ (different colors). The solid lines depict the

analytical approximation of Equation (3). The squares show the numerical

estimation obtained by averaging the results of the simulation decision over

104 repetitions. The inset shows the “signal”, τ , required to obtain a specific

level of performance, PC, as a function of noise level, σ . Here we used J = 1.1.

population outrivals the other, Figure 2C. Due to symmetry, the
basin of attraction of the two fixed points is separated by the
identity line, r1 = r2.

In the absence of noise, the initial conditions are expected
to be at the origin. Consequently, any amount of stimulus
selective delay, τ > 0, will tip the system into the correct basin
of attraction. Thus, this trivial architecture produces infinite
sensitivity to response latency, in the sense that it achieves correct
discrimination for every positive τ .

This hypersensitivity results from bi-stable dynamics where
the initial conditions are exactly on the borderline between the
basins of attraction of both fixed points. However, neural activity
is inherently stochastic and it is unreasonable to assume the
WTA type competition will start from such fine-tuned initial
conditions. To study the robustness of this readout mechanism
we added noise to the initial conditions and investigated the
dependence of the tWTA accuracy on the noise level. Thus,
instead of starting the WTA competition exactly at the origin,
r1 = r2 = 0, we now assume that prior to the stimulus selective
response period the activity of both populations fluctuates such
that theWTA dynamics starts from a “cloud” of distribution close
to the origin. Specifically, for the sake of analytical simplicity, we
assume the initial conditions r1(T) and r2(T) to be independent
and identically distributed exponential random variables with a
standard deviation σ, at the onset of the tWTA competition at
the beginning of the stimulus selective response, time t = T.
Assuming further that the noise level is small relative to1/J, one
obtains that for t + T ∈ [T,T + τ ]

r1(T + t) = 1− r1(T)Je
−tt +

(

r1(T)− 1
)

e−t

r2(T + t) = r2(T)e
−t

FIGURE 4 | Typical example of tWTA competition between two

populations of 1000 neurons during a single trial. The Figure depicts a

“population raster” where each row shows the spike times of a single neuron

(black dots). Bottom half shows neurons from population 1, and upper half

population 2. The blue “+” signs depict the specific input latency time for each

neuron (T + τa + δa,i ), and the neurons within each group are arranged

according to their input latency. The dashed vertical line shows the mean

latency for each group, T + τa. Here we used T = 20ms, τ1 = 0ms,

τ2 = 1ms,1 = 5ms, and gL = 0.71mS/cm2.

where we have assumed without loss of generality that stimulus
1 was presented first. During the stimulus selective response the
dynamics attracts the system toward the “correct” fixed point,
“outrival 1” in this case. An incorrect decision will occurs when
the system is at the basin of attraction of “outrival 2” at the end of
the stimulus selective period, namely r2(T+τ ) > r1(T+τ ), which
is translated to r2(T) > ar1(T) + b, where a = 1/(1 + Jτ ), and
b = (eτ −1)/(1+ Jτ ); see pink lines in Figure 2C. Averaging over
the distribution of the initial conditions yields the probability of
a correct discrimination, Pc, in this approximation

PC = 1−
e−

b
σ

a+ 1
(3)

Figure 3 shows the probability of correct discrimination as a
function of τ for different noise levels in the initial conditions,
σ, in different colors. The solid lines show the analytical
approximation of Equation (3), and the squares depict the
numerical estimation of PC. Note that according to Equations (1)
and (2), τ is measured in units of the neuronal rate dynamics,
which are typically in the range of about 10ms. In the absence of
noise (blue line), the readout mechanism discriminates correctly,
PC = 1, for any positive τ . As the noise level increases, the
probability of a correct discrimination deteriorates for any given
τ , and higher values of τ are required to obtain the same level of
accuracy. Thus, the neural noise sets the scale of the sensitivity
that this readout mechanism can achieve. In other words, for
larger noise levels the signal, τ , has to be scaled up to achieve
the same level of performance; Figure 3 inset. Note that the
accuracy of the tWTA readout has already been addressed in
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FIGURE 5 | The probability of correct response of the tWTA is plotted as a function of the stimulus selective delay,τ , (A) for different levels of noise in

the input latency, 1(different colors, 1 is measured in ms, input population size of N = 50 was used) (B) for different sizes of input populations

(different colors, 1 = 1 ms was used). The open markers show the numerical estimation of the accuracy of the conductance-based tWTA competition between

two populations of N neurons, and the error bars show the SEM. The accuracy was estimated by averaging over 1000 simulated trials. The tWTA decision was the

preferred stimulus of the population that fired the most spikes during the time period of 50–100ms following stimulus onset at t = 0. The solid lines show the analytical

approximation of Equation (3) using J = 2 and fitting σ, with time rescaled by the membrane time constant τm = gL/C. (C) The scaling of the internal noise with the

size of the input population. The (inverse of the square of the) fitted parameter σ is shown as a function of the input population size for different values of 1 (open

symbols in different colors, 1 is measured in ms). The solid lines show linear approximations, for comparison. In the simulations we used T = 20ms, τ1 = 0ms,

τ2 = τ , and gL = 0.71mS/cm2.

the past, (Shamir, 2009; Zohar et al., 2011; Shriki et al., 2012).
Here we focus on the dynamical system that can implement this
computation. However, the parameter σ does not reflect noise
in the input that limits the information in it, but rather an
inherent variability of the readout mechanism itself that limits
its sensitivity.

Rate models describe neural activity by a continuous
parameter, and as a result can react immediately to changes
in their input. Real spiking neurons have an inherent delay
before emitting a spike, and even then their response is sparse
in time. This makes it crucial to test the generalization of our
results beyond the threshold-linear rate model to a model of
spiking neurons. For this purpose, we simulated a tWTA readout
mechanism based on competition by reciprocal inhibition
between two populations of N Hodgkin-Huxley neurons. This
was facilitated by the mapping between rate and conductance-
based models (Shriki et al., 2003). The dynamic equation for the
membrane potential of neuron i in population a ∈ {1, 2} is as
follows

C
dVa,i

dt
= gL

(

EL − Va,i (t)
)

− Iactivea,i + Iexta,i + Ineta,i

where gL and EL are the leak conductance and reversal potential,
C is the membrane capacitance, and Iactivea,i is the voltage

dependent current Iactivea,i = INa + IK + IA. The term Ineta,i denotes
the reciprocal inhibition from the competing population. Unless
otherwise stated, the parameters of the model follow (Shriki et al.,
2003); see Methods. The term Iexta,i denotes the input to cell i
in population a ∈ {1, 2} from the input layer that is latency-
tuned to the stimulus. In our simulations, Iexta,i is the input current
from the upstream population to neuron i in population a, and
is modeled by Iexta,i (t) = r2

(

t − [T + τa + δa,i]
)

+ ξa,i(t), where
r is the strength of the response of the upstream population to
the stimulus, ξa,i(t) is a stimulus-independent white noise of the
upstream population, T and τa are the absolute and stimulus

selective delays, respectively, and δa,i represents the trial-to-trial
variability in the delay of the input to the neuron. We modeled
{

δa,i
}

by i.i.d. Gaussian random variables with zero mean and a
standard deviation 1. The term Inet denotes currents resulting
from the lateral connection. Specifically, in this case Inet is the
reciprocal inhibition, and its strength is governed by the synaptic
strength gs (see Methods for more details).

As we are interested in a WTA-type competitive readout
mechanism, the reciprocal inhibition must be sufficiently strong
to enable a bi-stable regime in which one population can
outrival the other and fully suppress its activity. For this
reason, we need to set the total maximum conductance of
population internetwork (inhibitory) connection to a level that
causes the network to be in a winner-take-all state (just over
0.7 µF/cm2).

Figure 4 shows the result of a competition between the two
populations of the readout mechanism during a single trial with:
T = 20ms, τ1 = 0ms, τ2 = 1ms (T + τ shown by the dashed
lines), and 1 = 5ms. The blue plus signs (“+”) denote the
specific onset time of the input to each cell within this trial, T +
τa + δa,i. The neurons in each group are arranged in the Figure
according the latency of their input (early to late from bottom to
top). Note that the mean latency difference between the inputs to
the two populations was τ ≡ τ2 − τ1 = 1ms, whereas within
each group input latency varied with a much greater standard
deviation of 5ms. Given the considerable variability in the input
times to single cells, some neurons in population 2 fired up to
three spikes in response to the stimulus. Nevertheless, within
several tens of milliseconds the reciprocal inhibition dynamics
converged to a state in which population 1 fired with a high rate
and the activity of population 2 was fully suppressed (Figure 4).
Thus, even though in their steady state both populations received
the same input level, this relatively small mean latency difference
was sufficient to enable the reciprocal inhibition mechanism to
“choose” the correct group in this specific example.
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FIGURE 6 | Typical example of tWTA competition between two

populations of 50 neurons during a single trial in which a series of five

alternating stimuli were presented every 100ms. Thus, for the first

presentation T = 20ms, for the second T = 120ms, and so on. Each stimulus

lasted 1T = 50ms. (A) Population raster plot: each row shows the spike

times of a single neuron (black dots). Bottom half shows neurons from

population 1, and upper half population 2. The open circles depict the specific

input latency times for each neuron (T + τa + δa,i ) in different colors for the

different presentations. The thick horizontal lines show the mean times in

which each population received input; i.e., from time T + τa to time

T +1T + τa. (B) The population firing rate for population 1 (green) and

population 2 (blue). The rate was estimated by the total spike count in a sliding

window of a 10ms time bin. Horizontal black line shows the decision threshold

of 3.5 spikes/ms used to generate C. (C) The decision of the tWTA network. In

the simulations we used τ = 0ms for the preferred stimulus, τ = 5ms to the

un-preferred, and gL = 1.1mS/cm2.

To evaluate the extent to which the result in Figure 4 is
typical, we estimated numerically the probability of correct
discrimination. To do so, we first needed to define an objective
criterion for a “correct” response by the system. In our
simulations we chose the winner in the WTA competition to be
the population that fired more spikes during the time interval of
50ms ≤ t ≤ 100ms. Other choices yielded qualitatively similar
results.

Figure 5A shows the probability of the Hodgkin-Huxley type
model to discriminate correctly between the two alternatives as
function of the mean input latency difference between the two
populations, τ ≡ τ2 − τ1, for different levels of within-group
onset variation 1 (shown by the different colors). The solid lines
are the analytical approximation of Equation (3) with J = 2 and
fitted values of σ (note that time in Equation (3) is measured in
units of τm = gL/C). As can be seen from the figure, even small
mean latency differences of less than τ ≈ 1ms can be detected
with a high reliability by this simple mechanism. Note, that it
is expected that in the limit of large input population sizes the
results of the rate model will hold, and in particular Equation (3).

FIGURE 7 | The tWTA onset detection accuracy. The stimulus detection

ROC is presented, depicting hit probability (correct detection) as function of

false alarm. Here, onset detection corresponds to a “detection” of a stimulus

during the absolute delay period, 0 < t < T. Consequently, false alarm may

scale with the absolute delay period, T. Moreover, a false alarm may be

flagged in the absence of stimuli due to spontaneous firing of the neurons.

Thus, a more relevant characterization of false alarm for stimulus onset

detection task would be the false alarm rate during spontaneous activity. The

inset shows average decision time and STD for different criterions (dots and

bars, respectively) and the probability of having at least one false alarm during

1 s of spontaneous activity as a function of the detection threshold (asterisk).

The parameters used for the simulation are the same as the parameters in

Figure 6.

Figure 5B shows the probability of the spiking neurons model to
discriminate correctly between the two alternatives as function
of the mean input latency difference, τ ≡ τ2 − τ1, for different
sizes of input populations (shown by different colors). As can
be seen from the figure, even though discrimination accuracy
deteriorates with the decrease in population size, this simple
readout mechanism is still able to extract information from the
neuronal response latencies. Furthermore, fitting the analytical
approximation of Equation (3) (solid lines), we find that the
parameter that reflects the noise in the input population in the
rate model, σ, decays to zero as one over the square root of
the input population size, Figure 5C. Hence, one may attribute
the deterioration in discrimination accuracy to a decrease in
signal-to-noise ratio in the responses of the input populations for
smaller population sizes.

DISCUSSION

Previous studies of the WTA algorithm have focused on
the conventional rate-WTA decision mechanism. However, a
number of studies reported that the WTA is also sensitive to
the temporal structure of its inputs (Coultrip et al., 1992; Lee
et al., 1999; Jin and Seung, 2002; Sheliga et al., 2006; Standage
et al., 2005; Kurt et al., 2008). Here we focused on the ability of a
dynamical system to implement a specific latency-based decision
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FIGURE 8 | Typical example of tWTA competition between two

populations of 50 neurons during a single trial in which a series of five

alternating stimuli were presented every 60ms. Thus, for the first

presentation T = 20ms, for the second T = 80ms, and so on. Each stimulus

lasted 1T = 50ms. During the odd presentations (first, third, fifth…)

population 1 received the faster input whereas in the even presentations

population 2. (A) Population raster plot. Each row shows the spike times of a

single neuron (black dots). Bottom half shows neurons from population 1, and

upper half population 2. The open circles depict the specific input latency

times for each neuron (T + τa + δa,i ) in different colors for the different

presentations. The thick horizontal lines show the mean times in which each

population received input; i.e., from time T + τa to time T +1T + τa. (B) The

population firing rate for population 1 (green) and population 2 (blue). The rate

was estimated by the total spike count in a sliding window of a 10ms time bin.

Horizontal black line shows the decision threshold of 3.5 spikes/ms used to

generate C. (C) The decision of the tWTA network. In this simulations we used

τ = 0ms for the preferred stimulus, τ = 5ms to the non-preferred stimulus,

and gL = 1.1mS/cm2.

mechanism; namely, the tWTA readout. We found that the
simple reciprocal inhibition architecture of the WTAmechanism
is sufficient to implement the tWTA. To implement the tWTAwe
assumed that the system was in the “strong inhibition” regime
(J > 1), such that it was bi-stable when the inputs to the two
competing population were similar. This condition was needed,
as we assumed that the input strength to both populations
was similar and that response latency alone depended on the
stimulus. However, in many cases neurons tend to respond with a
higher firing rate to the same stimuli to which they respond with
a shorter latency (Zohar et al., 2011; Shriki et al., 2012). In these
cases the assumption of “strong inhibition” can be relaxed.

The robustness of the reciprocal inhibition mechanism for
latency coding was tested against noise in the initial conditions.
Additional parameters that govern the tWTA dynamics may also
vary. In particular, we assumed that the reciprocal inhibition
between the two populations is identical. This assumption
contributed to the symmetry that is underlying the infinite
sensitivity of the tWTA mechanism in the absence of noise. How

will asymmetry in the reciprocal inhibition affect the tWTA?
Assume, for example that the effective inhibition from population
2 to 1, J1←2, is stronger than from population 1 to 2, J2←1. We
find that as long the system is in the strong inhibition regime,
i.e., J2←1, J1←2 > 1, then for sufficiently large τ the system will
converge to the correct fixed point (in the absence of noise).
However, for any positive difference, (J2←1 − J1←2) > 0, there
exists a critical value τc, such that for any τ < τc (here positive
τ denotes input to population 1 preceding input to population
2) population 2 will win the tWTA competition. The critical
value τc decays to zero as the system approaches symmetry,

(J2←1 − J1←2) → 0. Consequently, an additional “learning
mechanism” that can fine-tune the reciprocal inhibition is
required if high sensitivity for very short latencies is necessary.
Note that the parameter J reflects the effective inhibition strength
that is a product of the strength of a single synapse by the number
of synapses.

It has been argued that latency code readouts require an
additional stimulus onset detector which serves as a reference
from which latency can be measured. A number of studies have
reported that onset can be detected by pooling information
from neurons that show poor latency tuning (Zohar et al.,
2011; Brasselet et al., 2012; Shriki et al., 2012). Here we suggest
that such an additional mechanism is not essential. Figure 6A
shows the spiking response of the tWTA network to a series
of stimuli. In the first, third and fifth presentations the mean
latency of the inputs to population 1 was shorter, whereas in the
second and fourth presentations population 2 received the fastest
input (on average). By examining the population firing rate in
Figure 6B, stimulus1, stimulus 2, and no stimulus can easily be
discriminated, by adding a decision threshold (black horizontal
line in Figure 6B). Setting a reasonable value for the decision
threshold results in correct detection and discrimination for all 5
presentations without the use of an additional neural population
or detectors; Figure 6C. Figure 7 quantifies the tradeoff between
generating false alarms at a high rate by setting the decision
threshold too low, and failing to detect the stimulus by setting
the threshold too high. The considerable difference between the
spontaneous firing rate and the firing rate in response to the
stimulus allows for a high detection probability and a negligible
false alarm rate, as shown by the sharp ROC curve. However,
decision threshold also affects the speed of the response and the
probability of false alarm during spontaneous activity; Figure 7
inset.

The tWTA mechanism does not operate like a working
memory but rather more like a sensory system. Thus, in the
example in Figure 6 the neural activity decays to a spontaneous
firing rate after each stimulus offset. However, this decay is
not instantaneous. Therefore, if the inter-stimulus-interval is
very brief, the tWTA decision may be affected by its past. This
scenario is illustrated in Figure 8, in which due to the short
inter-stimulus-interval the tWTA decision is dictated by the
preceding decision rather than by the stimulus itself. This is a
hallmark of tWTA competition which may serve as an empirical
prediction both on the psychophysical as well as the neural level.
In this respect the well-studied psycho-acoustical phenomenon
termed the precedence effect (Litovsky et al., 1999) may have some
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bearing. In the precedence effect, when estimating sound source
location, the perception of the delayed stimulus is suppressed.
This is believed to assist in overcoming the corrupting
effects of echoes in the computation of the sound source
location.

Conventional rate-WTA mechanisms have been suggested to
play an important role in various computations in the brain and
in numerous systems (Lee et al., 1999; Standage et al., 2005;
Sheliga et al., 2006, 2007; Kurt et al., 2008). Their implementation
only requires a very rudimentary reciprocal inhibition design.
Nevertheless, even this simple architecture yields a mechanism
that is intrinsically sensitive to the response latency of its inputs.
Consequently, by construction, almost every conventional WTA
mechanism is highly sensitive to latency cues as well. This

highlights the possible role of latency as a source of information
in the central nervous system.
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