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Resting-state and task-related recordings are characterized by oscillatory brain

activity and widely distributed networks of synchronized oscillatory circuits.

Electroencephalographic recordings (EEG) were used to assess network structure

and network dynamics during resting state with eyes open and closed, and auditory

oddball performance through phase synchronization between EEG channels. For this

assessment, we constructed a hyper-frequency network (HFN) based on within- and

cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies

ranging between 2 and 20Hz. We found that CFC generally differentiates between task

conditions better than WFC. CFC was the highest during resting state with eyes open.

Using a graph-theoretical approach (GTA), we found that HFNs possess small-world

network (SWN) topology with a slight tendency to random network characteristics.

Moreover, analysis of the temporal fluctuations of HFNs revealed specific network

topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures

such as strength, clustering coefficient, characteristic path length (CPL), local, and

global efficiency determined for HFNs at different time windows. The different topology

metrics showed significant differences between conditions in the mean and standard

deviation of these metrics both across time and nodes. In addition, using an artificial

neural network approach, we found stimulus-related dynamics that varied across the

different network topology metrics. We conclude that functional connectivity dynamics

(FCD), or NTD, which was found using the HFN approach during rest and stimulus

processing, reflects temporal and topological changes in the functional organization and

reorganization of neuronal cell assemblies.

Keywords: functional connectivity, directional coupling, hyper-frequency network, network topology dynamics,

graph-theoretical approach, resting state, auditory oddball performance

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2016.00108
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2016.00108&domain=pdf&date_stamp=2016-10-17
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:vmueller@mpib-berlin.mpg.de
http://dx.doi.org/10.3389/fncom.2016.00108
http://journal.frontiersin.org/article/10.3389/fncom.2016.00108/abstract
http://loop.frontiersin.org/people/43501/overview
http://loop.frontiersin.org/people/100969/overview
http://loop.frontiersin.org/people/102805/overview
http://loop.frontiersin.org/people/4334/overview
http://loop.frontiersin.org/people/15021/overview


Müller et al. Network Topology Dynamics

INTRODUCTION

As noted by Prigogine and Stengers (1984, p. 77), “Nature
speaks with thousand voices, and we have only begun to listen.”
So does the human brain. The voices are neural oscillations,
interacting with each other, transiently forming ensembles of
varying synchrony across frequency bands, giving rise to an
emergent whole, as voices do in a chorus. Interacting neurons
in the brain dynamically self-organize into coherently oscillating
structures or cell assemblies that are generated and activated
by input from external or internal sources (Mayer-Kress, 1998).
Separate cell assemblies communicate with each other to
integrate the various information flows into a common network
organization. One of the candidate mechanisms underlying
integration and communication between cell assemblies is cross-
frequency coupling, allowing accurate timing between different
oscillatory rhythms (Jensen and Colgin, 2007; Jirsa and Müller,
2013), selective and dynamic control of distributed functional cell
assemblies (cf. Canolty et al., 2010), and promotion of different
dimensions of brain integration (Varela et al., 2001; Buzsáki and
Draguhn, 2004; Buzsáki, 2006). Despite these general claims,
surprisingly little is known about the mechanisms underlying
complex interactions of spatially segregated cell assemblies. The
present article aims to overcome the limitations of previous
studies describing the oscillatory brain dynamics emerging at
individual frequencies. Its purpose is to analyze and elucidate the
network architecture and the network dynamics based on within-
and cross-frequency coupling (WFC and CFC, respectively) in a
common space, termed a hyper-frequency network (HFN), and
how these change during rest and auditory oddball performance.
HFN is defined here as a network that represents all interactions
among frequencies and electrode sites (see below).

It is well known that temporally coherent brain activity
can emerge in the absence of an explicit task (Ghosh et al.,
2008; Deco et al., 2009, 2011). This so-called “resting state”
activity and its underlying coupling dynamics can be captured
at different scales (from a single cortical area to multiple
cortical areas and whole brain dynamics) and frequencies
using both neuroimaging techniques (fMRI and PET) and
electroencephalographic (EEG) or magnetoencephalographic
(MEG) recordings (Biswal et al., 1995; Greicius et al., 2003;
Müller et al., 2003a,b; Damoiseaux et al., 2006; Deco et al., 2009;
Venables et al., 2009). Computational studies (e.g., Ghosh et al.,
2008; Deco et al., 2011) suggest that large-scale resting state
networks are associated with coherent fluctuations that span a
wide range of timescales, including those captured by imaging
and EEG/MEG studies. Computational work also suggests that
intrinsic noise and time delays via propagation along connecting
fibers contribute to the dynamics of resting state networks
(Ghosh et al., 2008; Deco et al., 2011).

There is evidence that CFC might play a crucial role
in neuronal computation, communication, working memory,
learning and other brain functions or processes (Canolty and
Knight, 2010; Fell and Axmacher, 2011; Jirsa and Müller, 2013).
Schack and Weiss (2005) showed that successful encoding
of nouns was accompanied not only by increased phase
synchronization within (measured by phase locking index) and

between selected electrodes (measured by phase coherence) in
the theta and the gamma frequency bands, but also by increased
CFC or 1:6 phase synchronization at selected electrodes and
between them. Isler et al. (2008) reported increased CFC for
delta-theta (1:3) and delta-alpha (1:4) relationships in widespread
fronto-central, right parietal, temporal, and occipital regions
during auditory novelty oddball task. In a MEG study (Palva
et al., 2005), enhanced phase-to-phase CFC was found among
alpha, beta, and gamma frequency oscillations during continuous
mental arithmetic tasks. Interestingly, in full-term newborns,
CFC was reported between two delta rhythms (1–1.5 and 3.5–
4.5Hz) characterizing specific oscillatory interactions during
the typical trace alternant burst activity (Wacker et al., 2010).
Thus, functional connectivity within and between different
oscillation frequencies and brain regions reflects and supports
major cognitive functions, neural communication, and plasticity.

In a previous study, Müller and Lindenberger (2012)
demonstrated that methods and models derived from nonlinear
dynamics are suitable tools for describing resting state networks
and their changes during task performance. Specifically, the
authors showed that nonlinear coupling was higher during
resting state with eyes closed than with eyes open, whereas
the reverse pattern was found for dynamic complexity. During
stimulus processing, there was a significant drop in complexity
and a rise in nonlinear coupling. Using another complexity
measure (MSE, multi-scale entropy) for comparison of resting
state and oddball performance in young and older adults,
Sleimen-Malkoun et al. (2015) found that the EEG of the
attended oddball task, especially in young adults, was less
complex at shorter time scales but more complex at longer time
scales. Furthermore, Müller et al. (2009) found that oscillatory
brain activity and the corresponding phase synchronization
dynamics are modulated during stimulus processing and task
performance. Finally, Jirsa and Müller (2013) recently showed
that CFC measures covering the interaction between different
frequencies add another dimension to the understanding of
complex neural dynamics of the frequency-specific neuronal
networks. The authors suggested that CFC may allow accurate
timing between different oscillatory rhythms, thereby facilitating
communication between different cell assemblies. Specifically,
they found that delta and alpha frequency interactions play
a crucial role in resting state networks (Jirsa and Müller,
2013). Recently, Aru et al. (2015) criticized physiological
interpretations of CFC, in particular phase-to-amplitude CFC.
In simulated data, Jirsa and Müller (2013) provided support
thereof demonstrating that phase-to-amplitude CFC can indeed
show spurious results via smearing of coupling across stimulation
frequencies, whereas phase-to-phase CFC shows high precision
in detecting stimulation frequencies, even in presence of noise.
In the present study, we go a step further by using WFC and
CFC for the construction of a complex network that includes all
interactions within and between the frequencies across space and
time. The advantage of this approach has been recently shown in
an inter-brain study on kissing (Müller and Lindenberger, 2014).

A growing body of evidence from electromagnetic and
neuroimaging studies suggests that functional connectivity (FC)
is non-stationary and that fluctuations of FC-based networks
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produce specific functional connectivity dynamics (FCD) that
can be understood as a manifestation of the self-organized
activity of cortical or neural networks (Chavez et al., 2010; Betzel
et al., 2012; Chu et al., 2012; Hutchison et al., 2013; Leonardi et al.,
2013; Messé et al., 2014; Hansen et al., 2015; Yu et al., 2015). In
these networks in resting state, noise-driven fluctuations far from
equilibrium provide a rich repertoire of characteristic system
trajectories (Hansen et al., 2015).

Here, we present EEG data obtained from 58 electrodes at rest
with eyes closed (REC) and open (REO), and during an auditory
oddball task under attended (AOT) and unattended (UOT)
conditions. To determine WFC and CFC between different
electrodes, we use phase synchronization algorithms described
in previous studies that measure directed and undirected phase-
to-phase coupling (Müller and Lindenberger, 2011, 2014; Müller
et al., 2013). These coupling measures were used to construct
a connectivity matrix or a graph representing the network
properties. In contrast to earlier approaches, where different
brain sites (different electrodes in the case of the EEG) were
defined as nodes in such a graph, we defined nodes as a
combination of site and frequency. This means that each
electrode is represented by 10 different nodes corresponding to
10 frequencies of interest (FOIs) in the frequency range between
2 and 20Hz (in steps of 2Hz) that communicate with other
nodes at the same or different frequencies. The advantages of a
network architecture allowing forWFC and CFC are: (1) not only
connections between, but also within brain areas can be captured,
and (2) different brain areas can communicate with each other
at multiple frequencies (Müller and Lindenberger, 2014). There
were 580 nodes altogether (58 electrodes × 10 frequency bins =
580 nodes) in the common network. In these so-called HFNs, we
computed different graph-theoretical approach (GTA) measures
and investigated their temporal changes in time, i.e., network
topology dynamics (NTD). NTD was investigated by using
six graph-theoretical measures such as in- and out-strengths,
clustering coefficient, characteristic path length (CPL), local, and
global efficiency. The in- and out-strengths indicate incoming
and outgoing connections of the network nodes, respectively, and
are measures of network connectivity. The clustering coefficient
(CC) measures cliquishness of a typical neighborhood and is a
measure of network segregation, whereas the CPL measures a
typical separation between two nodes and shows the degree of
network integration, with a short CPL indicating higher network
integration (Watts and Strogatz, 1998). Like CC, local efficiency
(Eloc) is a measure of the segregation of a network, indicating
efficiency of information transfer in the immediate neighborhood
of each node and showing how fault-tolerant the system is
(Latora and Marchiori, 2001). Similar to CPL, global efficiency
(Eglob) is a measure of the integration of a network, but whereas
CPL is primarily influenced by long paths, Eglob is primarily
influenced by short ones (Latora and Marchiori, 2001). From an
organizational point of view, networks indicated by high CC and
shorterCPL have been described as small-world networks (SWN)
that are also characterized by a high local and global efficiency of
parallel information transfer (Achard and Bullmore, 2007).

In addition, we introduce an approach to reveal stimulus-
related NTD here by using feed-forward neural network (FNN)
classification algorithm for the artificial neural network to learn

to identify clusters in NTD data that are related to the stimulus
structure and then to test the performance of this network by
using training and testing sets, respectively (Alpaydın, 2010). We
investigated the stimulus-related NTD for the six GTA measures
mentioned above under the two oddball-task conditions (UOT
and AOT) separately for 10 different oscillation frequencies
combining 58 electrodes within the HFN.

METHODS

Participants
All participants were volunteers recruited via announcements at
Saarland University and were provided with a description of the
study to obtain written informed consent. All participants were
paid 7.50 Euro per hour to take part in the study. They were
all right-handed, had no reported history of head injuries or
neurological disorders, and were not on medication. The sample
consisted of 31 participants (mean age = 22.6, SD = 1.6, age
range = 18.8–25.1 years, 14 females). The study was approved
by the ethics committee of Saarland University and was thus
performed in accordance with the ethical standards laid down in
the 1964 Declaration of Helsinki.

Procedure
The EEG measurement began with a 3-min relaxation phase
(1.5min with eyes closed and 1.5min with eyes open).
Instructions for the resting states were given on the computer
display and were presented as follows: “A cross will be shown
in the middle of the screen for a minute and a half. Please focus
on the cross and relax” (for the REO condition) and “Keep your
eyes closed for a minute and a half and relax” (for the REC
condition). The rest phases were then followed by the auditory
oddball task. During the recording, the subjects sat in a chair
in a relaxed position in an electrically shielded room. During
the oddball task, which was carried out with eyes closed, the
participants heard two different types of tone pips: a 1000Hz tone
played frequently to form the standard stimulus and a 800Hz
tone played only intermittently to form the deviant stimulus.
The standard and deviant stimuli were presented binaurally
(with a probability of 0.8 and 0.2 for the standard and deviant
stimuli, respectively) through headphones (Sony DJ MDR-V300)
at 70 dB SPL for a duration of 70ms (including a 10-ms rise
and fall period). The stimuli were generated using the Audacity
1.2.4 software. The inter-stimulus interval (ISI) was uniformly
chosen at random between 1200 and 1500ms. Two different
experimental conditions were used: passive listening (UOT) and
active counting (AOT). For the first condition, the subjects were
simply asked to listen to the tone pips without any response,
whereas, for the second condition, the subjects were asked to
listen to the stimuli and count the number of deviant tones. They
only had to report back the number of tones counted once the
session was complete. Each experimental condition contained
152 standard tones and 38 deviant tones presented in a pseudo-
random order fixed for all participants. The conditions were
always presented in the same order, with the passive listening
condition followed by the active counting condition in order to
facilitate the interpretation of between-person differences.
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EEG Recordings and Analyses
The electroencephalogram (EEG) was recorded from 58 Ag/AgCl
electrodes using an elastic cap (Electrocap International) with a
sampling rate of 500Hz in a frequency band ranging between
0.5 and 100Hz. The left mastoid was used as a reference and
the right mastoid was recorded as an active channel. The data
were also re-referenced off-line to an average of the left and
right mastoids for further analysis. The electrodes were placed
according to the international 10–10 system. The vertical and
horizontal electrooculograms (EOG)were recorded for control of
eye blinks and eye movements. Signals were digitally filtered off-
line (Butterworth zero phase filters 1–100Hz, slope 12 dB/octave;
notch filter 50Hz). Eye movement correction was accomplished
by independent component analysis (Vigário, 1997) using
BrainVision Analyzer (Brain Products, Gilching, Germany).
Thereafter, artifacts from head and body movements were
rejected by visual inspection. Finally, data were downsampled to a
sampling rate of 250Hz, segmented in artifact-free 10-s segments
(i.e., comprising Nt = 2500 data points each), and normalized
within segments before further analysis.

Phase Coupling Measures
To investigate phase coupling in a directed and frequency-
resolved manner (cf. Müller et al., 2013), we applied an analytic
or complex-valued Morlet wavelet transform to compute the
instantaneous phase in the frequency range from 0 to 20Hz
in 0.125-Hz steps (see Figure 1A). The complex mother Morlet
wavelet, also called Gabor wavelet, has a Gaussian shape around
its central frequency f :

w(t, f ) =
(

σ2π
)−1/4

e((−t2/2σ2) + 3/2π jft), j =
√
−1 (1)

in which σ is the standard deviation of the Gaussian envelope
of the mother wavelet. The wavelet coefficients were calculated
with a time step of 5, leading to a time resolution of 20ms and
frequency resolution of 0.125Hz. In order to identify the phase
relations within and between any two channels or frequencies,
the instantaneous phase difference was then computed from
the wavelet coefficients for all possible electrode and frequency
pairs (Figure 1B). On the basis of instantaneous phases for
two signals (X and Y) given as: 8X(fm,t) = arg[φX(fm,t)] and
8Y (fn,t)= arg[φY (fn,t)], correspondingly, with φX and φY being
complex numbers, the n:m phase synchronization between two
oscillations at the frequencies fm and fn was determined. The
generalized phase difference (18) according to n· fm =m· fn was
calculated by:

18
(

fm, fn, t
)

= n · 8
(

fm, t
)

−m · 8
(

fn, t
)

,mod2π (2)

In the case of WFC with fm = fn, the phase difference 18 is
calculated in the same way by settingm= n = 1.

The n:m phase synchronization index (PSI) was then
defined by:

PSI
(

fm, fn
)

=
∣

∣

∣

〈

ej·18(fm,fn,t)
〉∣

∣

∣
, j =

√
−1 (3)

where <•> denotes the averaging across time. The PSI is similar
to phase coherence, with the difference that the PSI measures

phase stability or phase invariance across time within a trial or
time series (Figure 1C).

In addition to PSI, which is independent of the phase angle in
the sense that PSI can be high at different phase angle differences
(e.g., signals oscillating in anti-phase would also obtain a high PSI
value), we calculated further synchronization indexes reflecting
in-phase synchronization between two electrodes, that is, the
extent to which the angle of phase differences approximates
0. Given the estimates of the phase difference between pairs
of signals, it is possible to determine for how long the phase
difference remains stable in defined phase angle boundaries by
counting the number of points that are phase-locked in a defined
time window. We adapted and slightly modified the procedure
described in Kitzbichler et al. (2009) in that we divided the
range between−π /4 and+π /4 into two ranges and distinguished
between positive and negative deviations from phase zero. As
shown in Figure 1D, we marked negative deviations in the range
between −π /4 and 0 in blue (coded with “−1”) and positive
deviations in the range between 0 and +π /4 in red (coded with
“+1”). Phase difference values beyond these ranges were marked
green (coded with “0”) and represent non-synchronization. In
the case of two channels, A and B, a blue stripe in the diagram
would mean that the phase of channel B precedes that of channel
A, and a red stripe would mean that the phase of channel A
precedes that of channel B.

We then counted the number of data points that are
phase-locked separately in each of these two ranges. Before
counting, successive points in the defined range (between −π /4
and +π /4) with a time interval shorter than a period of the
corresponding oscillation at the given frequency (Ti = 1/fi)
were discarded from the analysis. This cleaning procedure
effectively eliminated instances of accidental synchronization.
Synchronization patterns of WFC (580 lines or electrode pairs
of channel A to all other channels within the 10 frequencies) and
CFC (580 lines or electrode pairs of channel A at FOI= 2Hz to all
other channels at the 10 different frequencies) after the cleaning
procedure are presented in Figures 1E,F, respectively. On the
basis of this counting, we obtained several synchronization
indices: (1) the Positive Coupling Index, PCI, or the relative
number of phase-locked points in the positive range (between
0 and +π /4); (2) the Negative Coupling Index, NCI, or the
relative number of phase-locked points in the negative range
(between −π /4 and 0); (3) the Absolute Coupling Index, ACI,
or the relative number of phase-locked points in the positive
and negative range (i.e., between−π /4 and+π /4) indicating in-
phase synchronization; (4) the Integrative Coupling Index, ICI,
calculated by the formula (Müller and Lindenberger, 2011):

ICI =
PCI + ACI

2 · ACI
·
√
PCI (4)

All these coupling measures are related to all measurement
points in the window and range from 0 and 1. PSI and ACI
are symmetrical measures (i.e., PSIAB = PSIBA and ACIAB =
ACIBA) and have similar properties when synchronization is
in phase, whereas the ICI is asymmetric (ICIAB 6= ICIBA),
indicating the relative extent of positive phase synchronization.
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FIGURE 1 | Schematic presentation of phase synchronization assessment. (A) Complex Morlet wavelet transformation of signals from two channels (A,B) in

the time-frequency domain. (B) Time course of instantaneous phases from these two channels and their phase difference (A, violet curve; B, green curve; A,B, red

curve). (C) The phase difference is depicted in form of the vectors in complex space, where the blue arrows reflect single phase angles and the red arrow represents

the mean vector of the angular dispersions; its length displays the PSI measure. (D) Coding of the phase difference of two signals at a given frequency (−π/4 < A–B <

0: blue stripes; 0 < A–B < +π/4: red stripes; A–B < −π/4 or S1–S2 > +π/4: green stripes = non-synchronization). Note that these phase differences, coded with +1

(Continued)
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FIGURE 1 | Continued

(red), 0 (green), or −1 (blue) at each time point, are used to calculate the four synchronization measures (i.e., PCI, NCI, ACI, and ICI) described in the Methods. (E)

Pair-wise synchronization pattern of WFC from one channel (Fpz) to all other channels at 10 FOIs (58× 10 = 580 lines). Each line represents the coded phase

difference as described above. (F) Pair-wise synchronization pattern of CFC from one channel (Fpz) oscillating at the frequency of 2Hz to all other channels oscillating

at 10 different frequencies (58× 10 = 580 lines). (G) Brain maps of WFC indicated by ICI (Integrative Coupling Index) above the threshold (ICI > 0.45). (H) Brain maps

of CFC indicated by ICI above the threshold (ICI > 0.40). These thresholds in (G,H) were chosen to ensure the visualization of the maps. Only the strongest

connections are depicted.

The ICI is equal to 1 when all points are phase-locked and
are in the positive range; if all phase-locked points lie in
the negative range, the term PCI + ACI

2·ACI will approach 0.5 but

through multiplication with
√
PCI, it will approach 0. The ICI

approximately equals 0.5 when half of the phase-locked points lie
in the positive range, and the other half of phase-locked points
lie in the negative range. Moreover, by using the framework of
“The Virtual Brain” (TVB, www.thevirtualbrain.org), simulation
results in our previous study (Müller et al., 2013) showed that
all three measures (PSI, ACI, and ICI,) capture the intended
coupling properties. Particularly ICI shows a peak in the
middle of the considered positive interval (between 0 and
π /4) at π /8. In this article, we only report results on the ICI
measure, which is the most informative due to its directionality.
Other synchronization measures (e.g., PSI and ACI) were also
computed but will not be reported here for space reasons.
ICI-based brain maps comprising all electrode pairs of WFC
(with ICI > 0.55) and CFC (with ICI > 0.32) are presented in
Figures 1G,H, respectively. Note that for visualization reasons,
only the strongest connections are displayed.

In order to investigate the dynamic changes in phase
synchronization and network topology (see below), we calculated
phase coupling using a moving time window of 2000ms width
and 100ms time delay. Overall, within a segment of 10 s duration,
coupling measures across 81 time widows were collected by this
shifting procedure.

Graph-Theoretical Approach (GTA) and
Network Metrics
Network Construction
The coupling measures (determined in the frequency range from
2 to 20Hz in 2-Hz steps) were used to construct a connectivity
matrix or a graph representing the network properties, where
each node is defined as a combination of electrode location and
oscillation frequency. This resulted in a common network with
580 nodes (58 electrodes × 10 frequency bins). The structure of
such a graph is represented in Figure 2 and is considered as a
directed weighted graph in further analyses.

To investigate the network topology of the HFN, we also
constructed regular (lattice) and random networks with the same
number of nodes and mean degree as our real networks. For
this purpose, we randomized the edges in the respective real
network to achieve a random network with the same number
of nodes and edges. Lattice networks were configured like
random networks, but in addition the edges were redistributed
after an initial random permutation such that they lay close
to the main diagonal with increasing order of their weights.

To do this, each column in the adjacency matrix was split
into two parts at the diagonal element. All edges in these two
parts were sorted by order (with the largest closest to the
diagonal element), and then merged again into one column.
Lattice networks reconstructed in such a way have the same
number of nodes and edges as the initial real network but
are characterized by ring or lattice topology incorporating
nearest-neighbor connectivity (Sporns et al., 2007). These
network reconstructions for random and regular networks were
carried out 10 times for each individual network. Average
network topology was then determined for these repeated
reconstructions.

Threshold Determination
In general, the choice of a threshold plays an important and
non-trivial role in network construction, but is necessarily
always arbitrary. At least two issues appear important in this
study: (1) the connectivity measures should not occur by
chance, and (2) the networks changing in time should have
the same threshold, which correspond to a high sparsity level.
To determine the network properties across the different time
windows, we set the connectivity threshold to 0.26, which was
always higher than the significance level determined by the
surrogate data procedure (see below). At this threshold, the cost
level of the networks (ratio of the number of actual connections
divided by the maximum possible number of connections in
the network) was ∼20%, corresponding to high sparsity of the
resulting networks and allowing more accurate examination of
the network topology.

Surrogate data were created in two ways: (1) by random
permutations of the original time series, and (2) by phase
permutation of the time series. The latter surrogate data
procedure involved: (a) computing the amplitude and phase
spectrum of a real signal using a Fourier transformation;
(b) phase shuffling, whereby the phase values of the original
spectrum are used in random order and the sorted values
of the surrogate sequence are replaced by the corresponding
sorted values of the reference sequence; and (c) inverse Fourier
transformation back to the time domain. In this way, the real and
the surrogate data retain the same power spectrum but a different
time course. Thereafter, we applied a bootstrapping procedure
with 1000 resamples of the coupling measures resulting from
the surrogate data sets and determined the significance level
(p < 0.0001) as the bootstrapping mean plus the confidence
interval. The chosen threshold of 0.26 was always higher than the
determined significance level in both surrogate data procedures
and corresponded to a relatively high sparsity level, i.e., it
matched both of our criteria (see above).
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FIGURE 2 | Schematic presentation of a Hyper-Frequency Network (HFN). (A) Network structure: HFN consists of 580 nodes representing 58 electrodes

oscillating at 10 different frequencies (2, 4, 6, …, 20Hz). Thus, each node is a combination of spatial representation (electrode location) and the oscillation frequency.

HFN constructed in this way integrate WFC and CFC, whereby WFC nodes are placed along the diagonal. To the left of the network examples of WFC (2 and 4Hz)

and CFC (2–4Hz and 4–2Hz) blocks with 58 electrodes each are presented schematically. (B) Electrodes map with electrode positions and the order (indicated by

number), in which they appear in the network.
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Degrees and Strengths
As ICI is a directed measure, we obtained the node in- and
out-degrees in the network, the in-degree being the sum of all
incoming connections of the node i kini =

∑

j∈N aji, and the

out-degree being the sum of all outgoing connections kouti =
∑

j∈N aij. To calculate strengths, we then replaced the sum of

links by the sum of weights, kwi =
∑

j∈N wij, and calculated

the in- and out-strengths, respectively. Thus, the strength can be
regarded as the weighted degree (Rubinov and Sporns, 2010).

Clustering Coefficient and Characteristic Path Length
If the nearest neighbors of a node are also directly connected to
each other, they form a cluster. For an individual node, the CC is
defined as the proportion of the existing number of connections
to the total number of possible connections. In the case of a
weighted directed graph themeanCC is calculated by the formula
(Fagiolo, 2007):

CCwd =
1

n

∑

i∈N
CCwd

i

=
1

n

∑

i∈N

twdi
(

kouti + kini
) (

kouti + kini − 1
)

− 2
∑

j∈N aijaji

(5)

with twdi = 1
2

∑

j,h∈N

[(

w
1/3
ij w

1/3
ih

w
1/3
jh

)

+
(

w
1/3
ji w

1/3
hi

w
1/3
hj

)]3

being the number of weighted directed triangles around a node i.
Another important measure is the CPL. In an unweighted

graph, the shortest path length or distance di,j between two nodes
i and j is the minimal number of edges that have to be passed to
go from i to j. This is also called the geodesic path between the
nodes i and j. The CLP of a graph is the mean of the path lengths
between all possible pairs of vertices (Watts and Strogatz, 1998):

CPL =
1

n

∑

i∈N
Li =

1

n

∑

i∈N

6j∈N,j 6= i dij

n− 1
(6)

where Li = CPLi is the average distance or average shortest path
length between node i and all other nodes. As our networks are
directed weighted graphs, the weight and direction of the links
are used in this calculation.

Local and Global Efficiency
Eloc is similar to the CC and is calculated as the harmonic mean
of neighbor-neighbor distances (Latora and Marchiori, 2001):

Ewloc =
1

n

∑

i∈N

∑

j,h∈N,j 6= i(wijwih

(

[

dw
jh
(Ni)

]−1
)1/3

ki
(

ki − 1
) (7)

Like CC, Eloc is a measure of the segregation of a network,
indicating efficiency of information transfer in the immediate
neighborhood of each node and showing how fault-tolerant the
system is.

Eglob is defined as the average inverse shortest path length and
is calculated by the formula (Latora and Marchiori, 2001):

Ewglob =
1

n

∑

i∈N

∑

j∈N,j 6= i(d
w
ij )

−1

n− 1
(8)

Like CPL, Eglob is a measure of the integration of a network,
but whereas CPL is primarily influenced by long paths, Eglob
is primarily influenced by short ones. Calculating Eglob is
advantageous over distance in disconnected networks: The
efficiency between disconnected pairs of nodes is set to zero (the
inverse of infinity).

Since we were interested in nodal network characteristics
for our further analyses, we determined all the GTA measures
described above for each node separately.

Small-Worldness
To investigate the small-world (SW) properties of a network it
has become common to compare its clustering coefficient and
CPL to those of regular lattices and random graphs. At least
two specific properties of small-world network (SWN) related
to control networks (random and lattice) are significant: (1)
The CC of the SWN (CCSWN) is much higher than that of
random networks (CCSWN >> CCrand), but the CPL of the SWN
(CPLSWN) is only slightly higher than that of the random network
(CPLSWN ≥ CPLrand), and (2) the CC of the SWN is lower than
that of lattice networks (CCSWN ≤ CClatt), but the CPL of the
SWN is much lower than that of the lattice network (CPLSWN

<< CPLlatt). Specific quantitative SW metrics were developed in
addition to these main graphmetrics. Foremost, the so-called SW
coefficient σ, is related to the main metrics of a random graph
(CCrand and CPLrand) and is determined on the basis of two ratios
γ = CC/CCrand and λ = CPL/CPLrand (Humphries et al., 2006):

σ =
γ

λ
=

CC/CCrand

CPL/CPLrand
(9)

The SW coefficient σ has been used in numerous networks
showing SW properties and has been found to be>1 in the SWN.

The second SW metric was defined by comparing the CC of
the network of interest to that of an equivalent lattice network
and comparing the CPL of the network to that of an equivalent
random network (Telesford et al., 2011):

ω =
CPLrand

CPL
−

CC

CClatt
(10)

This metric normally ranges between −1 and +1 and is close
to zero for SWN (CPLSWN ∼ CPLrand and CCSWN ∼ CClatt).
In addition, positive values of ω indicate a graph with more
random characteristics (CPLSWN ∼ CPLrand and CCSWN <<

CClatt), while negative values indicate a graph with more regular
(lattice-like) characteristics (CPLSWN >> CPLrand and CCSWN

∼ CClatt). The clear advantage of the ω metric as compared to
σ is the possibility to define the extent to which the network of
interest is like its lattice or random equivalents (Telesford et al.,
2011).
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In addition, we reported σE and ωE metrics here, which were
determined on the basis of Eloc and Eglob instead of CC and CPL,
using the same logic. The coefficient σE was calculated by the
formula:

σE =
Eloc/ (Eloc)rand

(

Eglob
)

rand
/Eglob

, (11)

and coefficient ωE was determined as:

ωE =
Eglob

(

Eglob
)

rand

−
Eloc

(Eloc)latt
. (12)

Network Topology Dynamics
Network topology given by the GTA measures specified above
changes across time. To capture the spatiotemporal NTD, we
calculated the GTAmetrics specified above for each time window
and each HFN node (Figure 3A), then built a nodes × time
windows matrix (580 × 81) for each GTA metric (Figure 3B).
First, we gathered means and standard deviations across time
and nodes to estimate the impact of different nodes and its
changes in time as well as variability of GTA metrics in time
and space (electrode positions and oscillation frequencies).
Thereafter, we calculated temporal network similarity, that is, the
correlations among consecutive time windows (Figure 3C), and
spatial or nodal network similarity, that is, the correlations among
consecutive nodes (Figure 3D). For both similarity measures,
similarity was determined by Pearson’s product correlation. We
used modularity analysis for (1) identification of sequences
of coherent states (81 × 81 correlation matrix indicating
temporal network similarity), and (2) identification of node
communities remaining stable or similar across time (580 × 580
correlation matrix indicating spatial/nodal network similarity).
Compared to the k-means clustering analysis, which was used for
investigation of FCD (cf. Hansen et al., 2015), modularity analysis
uses optimization algorithms to detect optimized community
structures and do not require pre-specification of the number
of clusters or modules (Newman, 2004). For this calculation,
the modularity optimization method for weighted networks as
implemented in the Brain Connectivity Toolbox (Rubinov and
Sporns, 2010) was used. The optimal community structure is a
subdivision of the network or graph into non-overlapping groups
of nodes in a way that maximizes the number of within-module
edges, and minimizes the number of between-module edges. The
modularity (Q) is a statistic that quantifies the degree to which the
network may be subdivided into such clearly delineated groups
or modules. For weighted networks, it is given by the formula
(Newman, 2006):

Qw =
1

lw

∑

j∈N

[

wij −
kwi k

w
j

lw

]

· δmimj, (13)

where lw is the total number of edges in the network, N is the
total number of nodes in the network,wij are connection weights,
kwi and kwj are weighted degrees or strengths of the nodes, and

δmi,mj is the Kronecker delta, where δmi,mj = 1 if mi = mj, and 0
otherwise. High modularity values indicate strong separation of

the nodes into modules, while Q will be zero if nodes are placed
into modules at random or if all nodes are in the same module or
cluster. Since spatial/nodal network similarity contains negative
values besides the positive, we used the Louvain modularity
algorithm provided for sign (positive and negative) correlation
values in this case (Blondel et al., 2008). To test the modularity
of the empirically observed networks, we compared them to the
modularity distribution (N = 100) of random networks, that is,
to simulated networks with the same number of nodes and edges
as the original network (Bassett et al., 2010).

Coherent states identified by using modularity analysis are
depicted in Figure 3C as quadrants along the diagonal of
the temporal similarity matrix; they indicate phases with high
temporal similarity. Nodes showing similar NTD are combined
in so-called nodal communities indicated by color in Figure 3E.
On the basis of these modularity analyses, we determined the
number of dynamic states (modules) and the number of nodal
communities, the minimal and the maximal duration of dynamic
states as well as the minimal and the maximal size of nodal
communities for all the GTA measures under the four task
conditions.

Stimulus-Related NTD
To investigate the stimulus-related NTD, we used the FNN
classifier trained by a standard back-propagation algorithm.
The aim of this procedure was to prove whether there is a
specific NTD during the 10-s interval related to the stimuli.
For this purpose, we divided the observed 10-s interval into
6 ISIs, with each time sample within each ISI being provided
with a class number indicating specific ISI (see Figure 4A for
details). To match the stimulation structure with the dynamics
of GTA measures (Figure 4B), we used the same procedure as
used in the case of coupling with a 2-s moving time window
and 100-ms time delay to label samples within ISIs, whereby
the label was set on the time window onset. In general, there
were six different classes corresponding to the six ISIs within
the segment. Thereafter, we trained the FNN classifier on NTD
metrics to automatically recognize the ISI classes and proved
the classification accuracy (CA) of the network classifier. We
used a three-layer FNN with an input layer, a hidden layer, and
an output layer. The input layer contained 58 input neurons
(corresponding to 58 electrodes at a certain frequency), the
hidden layer contained 8 hidden neurons (this number of
neurons was evaluated experimentally), and the output layer
resulted in mostly 6 output neurons, equivalently to the number
of classes (see Figure 4C). We used a hyperbolic tangent (tanh)
transfer function: y = tanh(x). Like the standard logistic sigmoid
function, the tanh function is also sigmoidal (i.e., s-shaped),
but outputs values range between −1 and +1, i.e., negative and
positive inputs to tanh are mapped to negative and positive
outputs, respectively. These properties of the tanh transfer
function make the network more stable and less likely to get
“stuck” during training.

The experimental sets with 58 input variables and 81 samples
were divided into the training set (75%) and the testing set (25%)
consisting of 61 and 20 randomly chosen samples, respectively.
The performance of the FFN classifier was determined by the
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FIGURE 3 | Determination of HFN dynamics with temporal and nodal similarity. (A) Time course of HFNs calculated in the 10-s segment using a moving time

window of 2 s and a time delay of 100ms (81 time windows in total). (B) After the calculation of different GTA metrics for HFN in each time window, a time window ×
nodes matrix (81× 580) was constructed for each GTA metric (e.g., Sout). (C) The temporal similarity matrix was built by calculation of Pearson’s product correlation

among the consecutive vertical lines in the previous matrix (each line represents 580 nodes of a GTA metric in the corresponding time window). Using modularity

analysis, dynamic states were determined in the temporal similarity matrix indicating a similar time course of a GTA metric of HFN. Different dynamic states are

presented as quadrants along the diagonal of the temporal similarity matrix. (D) The nodal similarity matrix was built by calculation of Pearson’s product correlation

among the consecutive horizontal lines in previous 81× 580 matrix (each line represents the time course of a single node of a GTA metric). (E) Using Louvain

modularity analysis, nodal communities were determined in the nodal similarity matrix that comprise nodes with a similar time course. Nodal communities are color

coded in brain maps of 10 different oscillation frequencies.

CA as a ratio (in percent) of correctly classified items to the total
number of items or classes within the testing set. The training and
evaluation procedures were repeated 100 times, and we report
the average CA of these repetitions. We tested the six GTA
measures described above (Sin, Sout , CC, CPL, Eloc, and Eglob)
separately for each oscillating frequency under the two oddball-
task conditions (UOT and AOT). For calculations, we used the

Machine Learning Toolkit from Labview (National Instruments,
Munich, Germany).

Data Reduction and Statistical Analyses
For statistical analyses, the network vertices of 58 electrode
locations oscillating at 10 different frequencies were collapsed
into 5 brain sites at each frequency: F (frontal electrodes: Fp1,
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FIGURE 4 | Determination of stimuli-related NTD using the FNN approach. (A) Stimulation structure with different classes representing certain ISIs. (B) Time

windows × HFN nodes matrix used in the FNN approach. For each calculation, 58 nodes at a certain oscillation frequency and 81 time windows or samples (indicated

by a rectangle) were used to train the FNN on 61 randomly chosen samples and to test it on the remaining 20 samples. (C) Three-layer FNN containing input (58

neurons), hidden (8 neurons), and output (6 neurons) layers.

Fpz, Fp2, F7, . . . F6, F8), C (central electrodes: FC3, FC1, . . . , C1,
Cz, C2, . . . , CP2, CP4), P (parieto-occipital electrodes: P7, P5, . . . ,
PO8, O1, Oz, O2), LT (left temporal electrodes: FC5, T7, C5, TP7,
CP5), and RT (right temporal electrodes: FC6, T8, C6, TP8, CP6).
We first analyzed the WFC and CFC connectivity strengths (ICI
values) using a three-way repeated measures ANOVA with three
within-subject factors Condition (REC, REO, AOT, and UOT),
Site (F, C, P, LT, and RT), and Frequency (10 frequency bins).
This analysis was performed separately for the WFC and CFC
connectivity data determined during the entire 10-s time interval
and averaged across all available segments. Next, we determined
GTA measures described above for the common network using
the moving window within one arbitrary chosen trial for each
experimental condition. Using the nodes× time windows matrix
(580 × 81, Figure 3B) described above, we calculated means
and standard deviations across time and nodes. Both the means
and the standard deviations (SD) for each GTA metric averaged
across all time points and all nodes were then subjected to a one-
way repeated measures ANOVA with the within-subject factor
Condition. The NTD was assessed by calculating the numbers

of dynamic states and of nodal communities, the minimal and
the maximal durations of dynamic states as well as the minimal
and the maximal sizes of nodal communities, which were then
analyzed using a two-way repeated measures ANOVA with the
two within-subject factors Condition and GTA measures (GTAs:
Sin, Sout ,CC,CPL, Eloc, and Eglob). A three-way repeatedmeasures
ANOVA with the three within-subject factors Condition, GTA
measures, and Frequency was used to analyze the CA in the
stimulus-related NTD approach. Greenhouse-Geisser epsilons
were used in all ANOVAs for non-sphericity correction when
necessary. Fischer’s LSD test was employed for post-hoc testing.

RESULTS

Synchronization Patterns within and
between Frequencies
Figure 5 shows the synchronization patterns for WFC
(Figure 5A) and CFC (Figure 5C), corresponding dynamic
coupling waveforms for the 10 oscillation frequencies
(Figures 5B,D), a marker indicating stimulus-onset (Figure 5E),
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FIGURE 5 | Synchronization patterns and HFN brain maps for WFC and CFC at REC and AOT conditions both with eyes closed. (A) Synchronization

patterns for WFC from one channel (Fpz) to all other channels at 10 FOIs (58× 10 = 580 lines) across time (10-s segment). (B) Time course of ICI averaged across 58

electrode pairs (Fpz to all other electrodes as presented in A) for the 10 FOIs (indicated by color). (C) Synchronization patterns for CFC from one channel (Fpz)

oscillating at the frequency of 2Hz to all other channels oscillating at 10 FOIs (58× 10 = 580 lines) across time (10-s segment). Note that the first 58 lines are the same

as in A, representing the coupling of 2–2Hz, i.e., a WFC or 1:1 CFC, displayed here for comparison. (D) Time course of ICI averaged across 58 electrode pairs (Fpz

(Continued)
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FIGURE 5 | Continued

oscillating at 2Hz to all other electrodes as presented in C) for the 10 FOIs (indicated by color). (E) Stimulus marker in AOT condition indicating stimulus-onset. Red

markers indicate deviant stimuli and blue markers indicate standard stimuli. (F) Brain maps of WFC (ICI > 0.55) and CFC (ICI > 0.32) at the 10 FOIs. Only the

strongest connections are displayed. Note the directionality of the coupling, which is indicated by color in CFC maps; in the WFC maps the directionality of the

coupling is not displayed.

and brain maps within and between frequencies (Figure 5F)
displayed for the rest (REC) and task (AOT) conditions, both
with eyes closed. Synchronization patterns for WFC at the Y-axis
comprise 580 coupling traces of the Fpz electrode to all other
electrodes at the 10 FOIs. Synchronization patterns for CFC are
displayed for 580 coupling traces of the Fpz electrode at a 2-Hz
oscillation to all other electrodes at the 10 FOIs (note that the first
58 traces in both diagrams are similar, representing coupling of
2–2Hz). The coupling waveforms represent averages across the
58 electrodes at each frequency (Figure 5B) or combination of
frequencies (Figure 5D). The brain maps of coupling calculated
across the entire 10-s window are shown for WFC and CFC at
the 10 different frequencies. As expected, synchronization within
the frequencies is stronger than between the frequencies, but
there are no recognizable differences between the conditions for
both WFC and CFC.

Statistical analyses of WFC and CFC data using a three-way
repeated measures ANOVA with the three within-subject factors
Condition (REC, REO, AOT, and UOT), Site (F, C, P, LT, and
RT), and Frequency (10 frequency bins) revealed a significant
main effect of Condition for CFC but not for WFC (see Table 1
and Figure 6 for details). The post-hoc Fischer’s LSD test for
CFC values showed significantly higher coupling in REO than
in other conditions (REO > REC, P < 0.0001; REO > UOT,
P < 0.0001; REO > AOT, P < 0.0001), and significant
differences between AOT and REC conditions (AOT > REC,
P = 0.029). Condition differences were modulated by frequency
and electrode site, as shown by the significant interactions
Condition× Site, Condition× Frequency, and Condition× Site
× Frequency for both CFC and WFC (see Table 1 and Figure 6).
These differences were strongest at frontal and parietal sites for
both WFC and CFC, and stronger in the beta frequency band
for WFC and in the high theta/low alpha (e.g., 6 and 8Hz) band
for CFC.

Network Structure and Network Dynamics
For representation of network structures and network dynamics,
network coupling and corresponding network structures were
determined for each moving window of 2 s with a time delay
of 100ms during the 10-s time period (81 windows in total).
To determine the network properties, we set the connectivity
threshold to 0.26, which was always higher than the significance
level determined by the surrogate data procedure, that is,
networks at this threshold level always included significant
connections. At this threshold, the cost level of the networks (i.e.,
the ratio of the number of actual connections divided by the
maximum possible number of connections in the network) was
approximately 20%, corresponding to high sparsity networks and
allowing more accurate examination of the network topology.

TABLE 1 | ANOVA results for the WFC and CFC.

Factors F-value P-value Partial eta

squared

WITHIN-FREQUENCY COUPLING (WFC)

Condition F(3, 30) = 0.92 P = 0.44 η2 = 0.03

Site F(5, 145) = 59.95 P < 0.0001 η2 = 0.67

Frequency F(9, 261) = 24.19 P < 0.0001 η2 = 0.45

Condition × Site F(5, 145) = 2.51 P < 0.05 η2 = 0.08

Condition × Frequency F(9, 261) = 2.92 P < 0.05 η2 = 0.09

Site × Frequency F(5, 1305) = 5.98 P < 0.0001 η2 = 0.17

Condition × Site ×
Frequency

F(45, 1305) = 1.74 P = 0.052 η2 = 0.06

CROSS-FREQUENCY COUPLING (CFC)

Condition F(1, 29) = 57.65 P < 0.0001 η2 = 0.66

Site F(5, 145) = 35.31 P < 0.0001 η2 = 0.54

Frequency F(9, 261) = 2094.43 P < 0.0001 η2 = 0.99

Condition × Site F(5, 145) = 13.66 P < 0.0001 η2 = 0.31

Condition × Frequency F(9, 261) = 20.18 P < 0.0001 η2 = 0.40

Site × Frequency F(5, 1305) = 15.00 P < 0.0001 η2 = 0.33

Condition × Site ×
Frequency

F(45, 1305) = 2.62 P < 0.0001 η2 = 0.08

In Figure 7, we present the common network structures based
on WFC and CFC depicted on corresponding brain maps for
six different time windows around the six stimulus events in
the AOT condition. It can be seen that both WFC and CFC,
and corresponding network structures change across time with
different connectivity patterns within and between the different
frequencies. For the investigation of the network topology and its
changes in time, we determined in- and out-strengths, clustering
coefficient and path length as well as local and global efficiency
for each node in the network and each time window. We initially
calculated the means (M) and standard deviations (SD) both
across time windows and across nodes. For statistical analyses,
we averaged and subjected them to a one-way repeated measures
ANOVA with a within-subject factor condition. If the average
mean provided the same results for both averaging procedures
(across time and nodes), the average standard deviation was
different. Results of these analyses are summarized in Table 2

and Figure 8. It can be seen that both the mean and SD
differentiate well between conditions. REO and AOT conditions
were characterized by greater strength and shorter path length
as well as stronger Eglob; Eloc was higher in the REC compared
to the REO condition. SD calculated both across nodes and time
windows was mostly lowest in the REO condition (see Figure 8
for details).

We also compared the topology of our real networks with that
of the regular and random networks having the same number
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FIGURE 6 | ANOVA results for WFC and CFC. (A) Diagrams of WFC (left) and CFC (right) under the different task conditions. (B) Diagrams of WFC (left) and CFC

(right) for the different electrode sites under the four task conditions. (C) Diagrams of WFC (left) and CFC (right) for the different FOIs under the four task conditions.

of nodes and edges (see Method Section for details), and tested
whether our real HFNs were SWNs and how they were positioned
in topological space compared to regular and random networks.
To do this, we calculated average GTA measures (CC, CPL,
Eloc, and Eglob) across all nodes and time windows for the three
network types (real, lattice, and random) and then determined
corresponding metrics related to the random networks (γ, λ,
γE, and λE) and corresponding small-world coefficients (σ,
ω, σE, and ωE). The graph metrics for the control networks
(regular and random) and the respective topology changes were
determined only for the AOT condition, because we expected
other conditions to show similar relationships between real
and control networks. All these network topology metrics are
presented in Figure 8 as box plots. As expected, CC (Figure 9A),
and respectively Eloc (Figure 9C), of the real networks are
higher than those of random networks and lower than those
of regular or lattice networks. CPL (Figure 9B) is shorter and

Eglob (Figure 9D) correspondingly higher in real networks as
compared to both control networks, especially, as compared to
the lattice network with very long CPL and very low Eglob. All
the differences between the different network types were highly
significant (p < 0.0001). High local clustering (γ and γE) and
short global path length (λ and λE) normalized to the random
network in this case (Figure 9E) indicate that the networks are
SWNs. This is also confirmed by the small-world coefficients
(Figure 9F) with sigma (σ and σE) much higher than 1 and
omega (ω and ωE) ranging between 0 and 1. Positive values of
omega small-world coefficients indicate that real networks are
SWNs with more random characteristics.

Temporal and Nodal Network Similarity
Using the HFN topology changes described above, we built
a nodes × time windows matrix (580 × 81) for each
network metric and analyzed it for temporal network similarity
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FIGURE 7 | HFNs and corresponding brain maps of WFC and CFC. The different HFNs and the brain maps of WFC (ICI > 0.65) and CFC (ICI > 0.40) are

displayed for the six time windows related to the six stimulus onsets in the AOT condition.
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TABLE 2 | ANOVA results for the mean (M) and standard deviation (SD) of

the six GTA measures.

GTA measures F-value P-value Partial eta

squared

MEAN (M)

Sin F(3, 90) = 27.16 P < 0.0001 η2 = 0.48

Sout F(3, 90) = 27.16 P < 0.0001 η2 = 0.48

CC F(3, 90) = 1.09 P = 0.35 η2 = 0.04

CPL F(3, 90) = 12.67 P < 0.0001 η2 = 0.30

Eloc F(3, 90) = 1.69 P = 0.18 η2 = 0.05

Eglob F(3, 90) = 17.35 P < 0.0001 η2 = 0.37

STANDARD DEVIATION (SD) ACROSS TIME

Sin F(3, 90) = 1.04 P = 0.38 η2 = 0.03

Sout F(3, 90) = 2.81 P < 0.05 η2 = 0.09

CC F(3, 90) = 13.38 P < 0.0001 η2 = 0.31

CPL F(3, 90) = 11.03 P < 0.0001 η2 = 0.27

Eloc F(3, 90) = 14.07 P < 0.0001 η2 = 0.32

Eglob F(3, 90) = 3.44 P < 0.05 η2 = 0.10

STANDARD DEVIATION (SD) ACROSS NODES

Sin F(3, 90) = 1.86 P = 0.14 η2 = 0.06

Sout F(3, 90) = 1.89 P = 0.14 η2 = 0.06

CC F(3, 90) = 5.35 P < 0.005 η2 = 0.15

CPL F(3, 90) = 11.25 P < 0.0001 η2 = 0.27

Eloc F(3, 90) = 7.59 P < 0.0001 η2 = 0.20

Eglob F(3, 90) = 1.53 P = 0.21 η2 = 0.05

Sin, In-Strength; Sout, Out-Strength; CC, Clustering Coefficient; CPL, Characteristic Path

Length; Eloc, Local Efficiency; Eglob, Global Efficiency.

(correlations among consecutive time windows) and for spatial
or nodal network similarity (correlations among consecutive
nodes). In both cases, similarity was determined by Pearson’s
product correlation. Resulting correlation matrices were used
for (1) identification of sequences of coherent states (81 ×
81 correlation matrix indicating temporal network similarity),
and (2) identification of node communities remaining stable or
similar across time (580 × 580 correlation matrix indicating
nodal network similarity). We used modularity analyses in both
cases. Given that nodal network similarity entails both positive
and negative values, we used the Louvain modularity algorithm
in this case. Dynamic changes of out-strengths for the 580
nodes across the 81 time windows and corresponding correlation
matrices for the four experimental conditions are presented in
Figure 10. Similarity matrices show that network out-strengths
(and also other topological network measures) vary both across
time and space/nodes (Figure 10A). Temporal similarity was
generally very high but modularity analyses were able to
distinguish different regions or dynamical states as indicated
by the quadrants across the diagonal in temporal similarity
matrices (Figure 10B). Nodal similarity varied much more
strongly than temporal similarity (Figure 10C), although there
are mostly three blocks of nodes that varied differently in time,
as indicated by color in the brain maps of nodal communities
(Figure 10D). Interestingly, different nodal communities had
their agents mostly (with some exceptions) at all oscillation
frequencies, but at the same time there were specific brain

regions oscillating at certain frequencies that were organized
into specific communities. In the REC condition, for example,
the blue community mostly comprises nodes in the delta-theta
(2–6Hz) and also high alpha (12Hz) frequency ranges, whereas
the green community mostly comprises nodes in the delta
(4Hz) and low alpha (8 and 10Hz) frequency, and the red
community mainly comprises nodes in the beta frequency (14–
20Hz) with a relatively strong participation of nodes oscillating
at delta (2Hz) and alpha (10Hz) frequencies. This community
structure differed as a function of condition (cf. Figure 10D
for details). In addition, we calculated the number and the
duration/size of the dynamic states and nodal communities for
each condition. The data for all GTA measures and conditions
are summarized in Tables 3, 4 for temporal and nodal similarity,
respectively. Figure 11 presents box plots of these data. It can
be seen that the number of dynamic states varied between
two and four, with a mode at three, whereby some measures
(Sin, Sout , CC, and especially Eloc) tend to indicate four states,
whereas other measures (e.g., CPL) point to two states. The
minimal duration of dynamic states varied at around 20 time
windows, which corresponds to ∼2.5 s. The maximal duration
of dynamic states varied around 35 time widows, which
corresponds to approximately 4.3 s. Statistical analyses showed
reliable differences among the GTA measures but did not reveal
any reliable differences between conditions (see Table 5 for
details). The numbers of nodal communities practically did not
vary and is mostly equal to three. The minimal nodal community
size varied around 150 nodes, and the maximal nodal community
size varied around 220–230 nodes. CC showed the largest nodal
community, comprising on average 243 nodes. Again, statistical
analyses showed reliable differences among the GTA measures,
which were restricted to the maximal nodal community size, but
no reliable condition differences (see Table 5 for details).

Stimuli-Related Network Dynamics
The fact that conditions did not differ for both dynamic states
(number and duration) and nodal communities (number and
size) indicates that there are certain invariances in network
dynamics. Moreover, the duration of dynamic states, which is
equal during the oddball task and resting state, is longer than
the ISI during the task. In other words, this dynamics is not
related to the stimulus impact. This poses a question: Does
another network dynamics exist that would be able to describe
the network changes related to the task stimulation? To answer
this question, we labeled the ISIs during the 10-s segment
with different levels that serve as different classes for the FNN
classifier. The experimental sets with 58 input variables and 81
samples were divided into the training and the testing set. The
performance of the FFN classifier was determined by the CA
as a ratio (in percent) of correctly classified items to the total
number of items or classes within the testing set. We tested
the six GTA measures described above (Sin, Sout , CC, CPL, Eloc,
and Eglob) under two oddball-task conditions (UOT and AOT)
separately for the 10 oscillating frequencies. We found that the
FFN classifier was able to differentiate between different ISIs
with a total accuracy of 91.6%. A three-way repeated measures
ANOVA with the three within-subject factors Condition, GTA
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FIGURE 8 | Box plots of the means and standard deviations of the six GTA measures across the four task conditions. Box plots of the means calculated

across all network nodes and then averaged across the 81 time windows. SD was calculated in two different ways: (1) across all network nodes at each time window

and then averaged across the 81 time windows, and (2) across all time windows at each node and then averaged across the 580 network nodes. The first represents

the variability of nodes’ magnitude within the network in time, and the second reflects the variability or dynamic changes of nodes. The data are presented for the six

GTA measures and the four task conditions: Sin, In-Strength; Sout, Out-Strength; CC, Clustering Coefficient; CPL, Characteristic Path Length; Eloc, Local Efficiency;

and Eglob, Global Efficiency. Significant differences between conditions are indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 9 | Box plots of the mean of the small-world metric for the real and control networks (random and regular/lattice). (A) Clustering Coefficient (CC);

(B) Characteristic Path Length (CPL); (C) Local efficiency (Eloc); (D) Global efficiency (Eglob); (E) Normalized Clustering Coefficient (γ = CCreal/CCrand ) and

Characteristic Path Length (λ = CPLreal/CPLrand ) as well as normalized Local Efficiency (γE = Eloc(real)/Eloc(rand)) and Global Efficiency (λE = Eglob(real)/Eglob(rand));

(F) Small-world coefficients: σ, ω, σE, and ωE.

measures, and Frequency showed a significant main effect GTA
measures only [F(5, 150) = 3.74, P < 0.01], with lower CA for CC
and Eloc compared to the other GTA measures (see Figure 12 for
details). There were no reliable differences between frequencies
or conditions. In all cases, there was a high classification accuracy
indicating that there are dynamic states or dynamic patterns
that describe neuronal network changes related to processing
of stimuli, which apparently differ from the dynamics described
above.

DISCUSSION

Neural network oscillations are a fundamental mechanism for the
establishment of precise spatiotemporal relationships between
neural responses that are in turn relevant for cognition, memory,
perception, and consciousness. When neurons discharge, the

subsequent oscillatory activity propagates through the network
recruiting other brain regions, thereby dynamically binding
widely distributed sets of neurons into functionally coherent
ensembles, hypothesized to represent neural correlates of
a cognitive or behavioral content (Singer, 1999). As the
transient wave evolves, it establishes a spatiotemporal pattern
characteristic for cognitive processes (Bressler, 1995; Roelfsema
et al., 1997), sensory (Engel et al., 1991), motor and sensorimotor
tasks (Kelso, 1995), resting state (Allen et al., 2014; Hansen
et al., 2015), and stimulation paradigms (Spiegler et al., 2016).
Simple activation paradigms lack the functional complexity to
explain the richness of observed spatiotemporal behaviors linked
to these brain dynamics (Bressler, 1995). Mechanisms based on
organizing oscillatory activity into network patterns have been
proposed, including synchronization and some derivatives such
as communication through coherence (Fries, 2005; Bastos et al.,
2014). These mechanisms have been limited so far to interference
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FIGURE 10 | HFN dynamics with temporal and nodal similarity during resting state (REC and REO) and oddball task (UOT and AOT). (A) Temporal

changes of a GTA metric (Sout ) calculated for each HFN node and resulting in a time window × GTA metric matrix (81× 580); (B) The temporal similarity matrix was

built by calculation of Pearson’s product correlation among the consecutive vertical lines in the previous matrix (in A). Using modularity analysis, dynamic states were

determined in the temporal similarity matrix indicating a similar time course of a GTA metric of HFN. Different dynamic states are presented as quadrants along the

diagonal of the temporal similarity matrix. (C) Nodal similarity matrix was built by calculation of Pearson’s product correlation among the consecutive horizontal lines in

the previous 81× 580 matrix (in A). (D) Brain maps of nodal communities determined using Louvain modularity analysis. Nodal communities are indicated by color.
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TABLE 3 | Mean (M) and standard deviation (SD) for the number of

dynamic states and their minimal and maximal duration across the GTA

measures and task conditions.

Measure Condition Number of Minimal Maximal

states duration duration

M SD M SD M SD

Sin REC 3.1 0.5 20.0 4.9 34.1 6.4

REO 3.2 0.6 18.8 6.9 33.8 6.7

UOT 3.2 0.6 20.1 6.9 34.0 6.2

AOT 2.9 0.5 22.5 7.2 36.3 6.0

Sout REC 3.0 0.6 21.7 7.9 34.8 6.4

REO 3.1 0.6 20.9 6.2 34.1 6.4

UOT 3.1 0.5 19.8 6.1 33.7 6.1

AOT 3.2 0.6 20.5 7.7 33.8 6.6

CC REC 2.9 0.6 21.8 8.1 36.3 6.0

REO 2.9 0.6 21.6 8.7 36.5 6.1

UOT 3.1 0.7 21.4 9.3 33.8 6.0

AOT 3.3 0.6 18.7 6.3 31.6 6.3

CPL REC 2.8 0.5 23.5 9.3 37.2 6.0

REO 2.9 0.5 21.1 6.4 37.0 5.9

UOT 2.8 0.5 23.5 8.1 37.5 6.3

AOT 2.7 0.6 24.9 9.4 37.5 6.6

Eloc REC 3.3 0.6 20.0 6.9 32.3 6.4

REO 3.2 0.8 19.5 8.2 34.5 7.3

UOT 3.3 0.6 18.2 7.2 33.0 5.9

AOT 3.1 0.7 20.5 9.4 34.4 7.6

Eglob REC 3.0 0.5 21.5 7.7 34.6 5.7

REO 2.9 0.6 22.7 8.3 36.3 7.0

UOT 3.0 0.6 22.4 8.2 34.2 6.0

AOT 2.8 0.6 24.6 8.5 36.3 6.7

The minimal and maximal duration was calculated as the number of time windows.

at one frequency. Here we have proposed a generalization of these
mechanisms extending oscillatory interference patterns across
frequencies binding information into HFN. We demonstrate the
existence of HFNs, which are constructed by WFC and CFC
and possess SWN topology with different NTD. The dynamics
are characterized by variances and invariances during resting
state and stimulus processing with and without attentional
load (cf. also Sleimen-Malkoun et al., 2015). Importantly,
dynamic network reorganization differentially affects different
network topologies indicating that these dynamic changes are
heterogeneous.

More specifically, we systematically examined network
structure and network dynamics during rest with eyes closed and
eyes open, and during auditory oddball performance. The main
findings are that: (a) in general, CFC better differentiates between
task conditions than WFC; (b) HFNs constructed in this way
possess small-world topology with a slight tendency to random
characteristics; (c) mean and standard deviation of GTA metrics

TABLE 4 | Mean (M) and standard deviation (SD) for the numbers of nodal

communities and their minimal and maximal nodal sizes across the GTA

measures and task conditions.

Measure Condition Number of Minimal Maximal

blocks size size

M SD M SD M SD

Sin REC 3.0 0.2 156.3 25.9 222.0 17.2

REO 3.0 0.0 149.4 36.0 229.1 21.1

UOT 3.0 0.2 150.8 50.0 233.7 28.3

aot 3.0 0.0 143.8 39.1 230.2 22.8

Sout REC 3.0 0.0 146.8 29.4 232.5 17.9

REO 3.0 0.2 152.1 42.5 222.5 28.3

UOT 3.0 0.0 154.7 28.8 226.4 18.5

AOT 3.0 0.0 155.5 29.5 221.7 18.0

CC REC 3.0 0.0 140.5 53.5 238.2 30.9

REO 2.9 0.3 141.4 71.4 250.6 35.5

UOT 2.9 0.3 145.5 62.1 240.0 34.4

AOT 2.9 0.3 142.0 55.4 242.5 32.1

CPL REC 3.0 0.0 145.0 43.8 231.7 24.3

REO 3.0 0.0 145.2 42.7 229.5 22.6

UOT 3.0 0.3 152.8 48.3 229.0 26.9

AOT 2.9 0.3 148.8 52.1 237.7 28.9

Eloc REC 3.0 0.2 162.7 33.6 223.8 24.5

REO 3.0 0.2 136.3 46.8 230.0 30.1

UOT 3.0 0.0 149.1 33.9 224.5 20.4

AOT 3.0 0.0 143.4 49.0 231.3 29.0

Eglob REC 3.0 0.2 155.2 23.0 221.1 14.6

REO 3.0 0.0 147.8 39.1 227.1 21.3

UOT 2.9 0.4 163.4 85.8 236.4 67.1

AOT 2.9 0.5 142.2 48.5 250.7 90.3

The minimal and maximal nodal size was calculated as the number of nodes in the

corresponding nodal community.

calculated across time and different HFNnodes indicate temporal
and spatial differences between metrics; (d) temporal changes
of network topology reveal relatively high network similarity,
however, several dynamic states could be distinguished; (e)
nodal similarity indicates several (mostly 3) nodal communities
showing similar NTD within these communities; (f) in addition
to dynamic states, which were invariant across conditions, we
found stimulus-related dynamics that referred to stimulation
structure.

The fact that CFC was stronger in the REO than in other
conditions was not unexpected, although there is evidence
that linear and non-linear coupling decreases during resting
state with eyes open as compared with eyes closed (Müller
and Lindenberger, 2012; Tan et al., 2013). However, in a
previous study (Jirsa and Müller, 2013), it has been found
that at least half of the connections in the case of delta-alpha
phase to phase coupling were stronger in the REO condition
than in the REC condition. It should be noted here that
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FIGURE 11 | Box plots of the characteristics of dynamic states and nodal communities. Characteristics of dynamic states are presented on the left: number

of dynamic states, minimal duration of dynamic states, and maximal duration of dynamic states. Characteristics of nodal communities presented on the right: number

of nodal communities, minimal size of nodal communities, and maximal size of nodal communities.

WFC only showed significant interactions related to the factor
condition, indicating greater strength in the REO condition,
as compared to the rest, only in the beta frequency range
and only fronto-parietally. Interestingly, fMRI studies (Yan
et al., 2009) showed higher functional connectivity in the DMN

(Default Mode Network) during resting state with eyes open
as compared with eyes closed and also a stronger correlation
between DMN and EEG alpha activity (Mo et al., 2013).
Moreover, the strongest differences in functional connectivity
among the resting state conditions (EO > EC) have been
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TABLE 5 | ANOVA results for the different measures of dynamic states and

nodal communities.

Factors F-value P-value Partial eta

squared

NUMBER OF DYNAMIC STATES

Condition F(3, 90) = 0.20 P = 0.88 η2 = 0.01

GTAs F(5, 150) = 7.65 P < 0.0001 η2 = 0.20

Condition × GTAs F(15, 450) = 1.54 P = 0.13 η2 = 0.05

MINIMAL DURATION OF THE DYNAMIC STATES

Condition F(3, 90) = 0.58 P = 0.62 η2 = 0.02

GTAs F(5, 150) = 3.89 P < 0.01 η2 = 0.12

Condition × GTAs F(15, 450) = 1.11 P = 0.36 η2 = 0.04

MAXIMAL DURATION OF THE DYNAMIC STATES

Condition F(3, 90) = 0.40 P = 0.73 η2 = 0.01

GTAs F(5, 150) = 6.22 P < 0.0001 η2 = 0.17

Condition × GTAs F(15, 450) = 1.49 P = 0.15 η2 = 0.05

NUMBER OF NODAL COMMUNITIES

Condition F(3, 90) = 2.35 P = 0.090 η2 = 0.07

GTAs F(5, 150) = 2.22 P = 0.087 η2 = 0.07

Condition × GTAs F(15, 450) = 1.28 P = 0.28 η2 = 0.04

MINIMAL SIZE OF THE NODAL COMMUNITIES

Condition F(3, 90) = 0.69 P = 0.54 η2 = 0.02

GTAs F(5, 150) = 0.66 P = 0.61 η2 = 0.02

Condition × GTAs F(15, 450) = 0.69 P = 0.71 η2 = 0.02

MAXIMAL SIZE OF THE NODAL COMMUNITIES

Condition F(3, 90) = 1.08 P = 0.35 η2 = 0.04

GTAs F(5, 150) = 4.00 P < 0.05 η2 = 0.12

Condition × GTAs F(15, 450) = 1.35 P = 0.25 η2 = 0.04

GTAs = GTA measures.

FIGURE 12 | Box plots of the CA for FNN performance across different

GTA measures. The data are presented for the six GTA measures: Sin,

In-Strength; Sout, Out-Strength; CC, Clustering Coefficient; CPL,

Characteristic Path Length; Eloc, Local Efficiency; and Eglob, Global Efficiency.

Significant differences between conditions are indicated as follows: *p < 0.05,

**p < 0.01.

found in the PCC (posterior cingulate cortex) and the MPFC
(medial prefrontal cortex) regions within the DMN (Yan et al.,
2009). Notably, the strongest differences between REO and REC
conditions for both WFC and CFC in our study were found
in parietal and also frontal brain regions. Given the relatively

low spatial resolution of EEG, we can only speculate about the
neuronal circuitry contributing to these resting state differences.
It has been suggested that PCC is associated with the general
monitoring of sensory information (Yan et al., 2009), the flow
of which is reduced during eyes closed, apparently leading to
WFC and CFC reduction during REC or enhancement during
REO.

Using WFC and CFC, we constructed HFN and investigated
network topology and dynamic changes of this topology across
time. To investigate the small-world properties of the HFNs,
we compared their CC and CPL as well as Eloc and Eglob to
those of regular lattices and random graphs with the same
numbers of nodes and mean degrees as our real networks,
and calculated two different small-worldness coefficients (i.e.,
σ and ω as well as σE and ωE). In general, random networks
have a low average clustering coefficient, whereas complex or
SWNs have a high clustering coefficient (associated with the
high local efficiency of information transfer and robustness),
which is, however, much lower than that in regular networks.
Random and SWNs have a short CPL (high global efficiency of
parallel information transfer), whereas regular networks (e.g.,
lattices) have a long CPL and low global efficiency of parallel
information transfer, respectively. We have shown that HFNs
are fully in line with the topological characteristics of SWNs
providing high local and global efficiency, supporting segregation
and integration of neural processes. In addition, the small-
world coefficient σ (and σE), which was much greater than
one, indicated that HFNs correspond to SWNs. In line with
a study on FCD reporting small-worldness of time-variant
networks (Chavez et al., 2010), we regard this as a remarkable
result indicating permanent network optimization by a dynamic
reconfiguration of network connections. The fact that the small-
worldness coefficient ω (and also ωE) lies in the positive range
indicates that HFNs are SWNs characterized by a topology
with a slight tendency to random characteristics (cf. Telesford
et al., 2011). This randomness of HFNs is conditioned above
all by long-range connections, with low-frequency oscillations
(delta and to some extent theta and alpha) playing a leading
role. HFNs are organized in such a way that if there is WFC
only, such a network would be akin to a regular network, and
increasing CFC would increase its randomness. SWN would
represent a balance between WFC and CFC. The positive small-
worldness coefficient ω indicates a slight shift in the balance to
CFC.

It has been shown that these networks are characterized
by greater strength and the shortest path length as well
as by enhanced nodal or global efficiency during REO and
also during AOT. In other words, brain activation through
opening the eyes (REO) or increasing attentional load (AOT)
evokes stronger connectivity and also stronger integration
processes in the brain. Interestingly, this activation reduces
variability (SD) of topological characteristics in the REO but
not in the AOT condition. Thus, stimulus processing is not
only characterized by enhanced connectivity and efficiency
but also by enhanced variability, at least as compared to
the REC condition regarding out-strength and to the REO
condition regarding other GTA measures. In our previous study
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(Müller and Lindenberger, 2012), we found an increase in
nonlinear coupling during stimulus processing accompanied
by complexity reduction, and an increase in complexity in
resting state with eyes open as compared with eyes closed
(compare also Mayer-Kress and Layne, 1987; Rapp et al.,
1989; Stam et al., 1994; Müller et al., 2003a,b; Sleimen-
Malkoun et al., 2015). How enhanced variability of coupling
strength and of other network topology measures are related to
complexity reduction during stimulus processing remains to be
seen.

To further investigate HFN dynamics, we calculated temporal
and nodal network similarity using a network nodes × time
windows matrix (580 × 81) for all GTA measures. We
found that temporal similarity was generally very high but
modularity analyses of similarity (correlation) matrices were
able to distinguish different regions or dynamical states that
are separated through phase transitions. It has been shown
that the number of dynamic states varies between two and
four with a preferential number of three, with some measures
(S-out, CC, and especially Eloc) being characterized by four
states, and others (e.g., CPL) characterized by only two
states. The minimal duration of dynamic states corresponds
to approximately 2.5 s, whereas the maximal duration of
dynamic states corresponds to approximately 4.3 s. These
dynamics were invariant across conditions but showed significant
differences in minimal and maximal duration and the numbers
of dynamic states between the different GTA measures. This
is a remarkable result, which indicates that different HFN
topologies can have different temporal patterns, which appear
to depend on dynamic changes of network configuration or
network reorganization (e.g., changes in CC do not obviously
coincide in time with changes in CPL or other metrics).
The number of nodal communities showing similar network
dynamics within communities practically did not vary and is
mostly equaled 3. The minimal nodal community size varies
around 150 nodes, and the maximal nodal community size
varies around 220–230 nodes. These variations in the number
of nodes of nodal communities were also invariant across
conditions. Most interestingly, nodal communities comprise
nodes with different oscillation frequencies and also with
different electrode sites that exhibit similar network dynamics. In
fact, Betzel et al. (2012) who investigated EEG synchronization
dynamics using another approach revealed three families of
dynamic states for a broadband (4–30Hz) network, whose edges
were subdivided into three edge communities (i.e., a set of
edges whose time courses are strongly correlated with one
another).

As mentioned above, the duration of dynamic states
determined by network similarity analyses, which is equal during
oddball task and resting state, was longer than the ISI during
the task. In other words, this dynamics was not directly related
to stimulus impact and can hardly describe neural processes
related to the stimuli. To answer the question whether there is
another network dynamics that would be able to describe the
network changes related to the task stimulation, we used the FNN

classifier trained by a standard back-propagation algorithm. We
found that the FFN classifier was able to differentiate between
different ISIs with a total accuracy of 91.6%. This classification
was independent of the task condition (attended or unattended)
and the driving oscillation frequency. However, there were
significant differences in CA between different GTA measures;
CC and Eloc differentiated between different ISIs less accurately
than other GTA measures. CC and Eloc are measures of network
segregation indicating cliquishness of a typical neighborhood and
efficiency of information transfer in the immediate neighborhood
of nodes (Watts and Strogatz, 1998; Latora and Marchiori, 2001).
Apparently, the local dynamics described by these two measures
is more similar for different ISIs. We consider this result to be
important, and worth further investigation.

Finally, some limitations of the present study need to be
acknowledged. First, the present analyses considered only low
frequency oscillations. However, a broader frequency range
including high frequency oscillations (e.g., gamma) may provide
additional information about network dynamics. Second, we
used a sliding window approach to determine the coupling
dynamics; probably some pointwise coupling measures may be
more appropriate. Third, we used a phase-to-phase CFC; other
types of CFC (e.g., phase-to-amplitude, phase-to-frequency,
amplitude-to-amplitude, or amplitude-to-frequency; cf. Jirsa and
Müller, 2013) may be (additionally) used for HFN construction
providing additional information to frequency, phase, and/or
amplitude interaction in brain dynamics. Finally, there are other
different approaches to characterize and to differentiate brain
state dynamics via hidden Markov models (Ou et al., 2015;
Sourty et al., 2016; Vidaurre et al., 2016), dynamic Bayesian
variable partition model (Smith et al., 2006; Zhang et al., 2014)
or other models or algorithms (Dinov et al., 2016). It would
be interesting to know whether there is a convergence in the
determination of brain state dynamics when using different
approaches.

We conclude that the NTD during rest and stimulus
processing found using HFN approach reflects temporal
and topological changes in the functional organization and
reorganization of cortical networks and underlying neuronal cell
assemblies.
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