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Synaptic transmission is both history-dependent and stochastic, resulting in varying

responses to presentations of the same presynaptic stimulus. This complicates attempts

to infer synaptic parameters and has led to the proposal of a number of different strategies

for their quantification. Recently Bayesian approaches have been applied to make more

efficient use of the data collected in paired intracellular recordings. Methods have been

developed that either provide a complete model of the distribution of amplitudes for

isolated responses or approximate the amplitude distributions of a train of post-synaptic

potentials, with correct short-term synaptic dynamics but neglecting correlations. In both

cases the methods provided significantly improved inference of model parameters as

compared to existing mean-variance fitting approaches. However, for synapses with high

release probability, low vesicle number or relatively low restock rate and for data in which

only one or few repeats of the same pattern are available, correlations between serial

events can allow for the extraction of significantly more information from experiment:

a more complete Bayesian approach would take this into account also. This has not

been possible previously because of the technical difficulty in calculating the likelihood of

amplitudes seen in correlated post-synaptic potential trains; however, recent theoretical

advances have now rendered the likelihood calculation tractable for a broad class of

synaptic dynamics models. Here we present a compact mathematical form for the

likelihood in terms of a matrix product and demonstrate how marginals of the posterior

provide information on covariance of parameter distributions. The associated computer

code for Bayesian parameter inference for a variety of models of synaptic dynamics is

provided in the Supplementary Material allowing for quantal and dynamical parameters

to be readily inferred from experimental data sets.
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1. INTRODUCTION

The statistics and dynamics of stochastic synaptic filtering determine how information is
communicated between neurons. Synapses act as activity-dependent filters on the transfer of
neuronal signals, suppressing or amplifying trains of inputs to the postsynaptic cell relative to
isolated stimuli, in a phenomenon known as short-term plasticity or synaptic dynamics (Zucker
and Regehr, 2002; Abbott and Regehr, 2004; Mongillo et al., 2008). An action potential in the
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presynaptic cell triggers an influx of Ca2+ into synaptic terminals,
causing a probabilistic all-or-none release of neurotransmitter at
each active vesicle docking site on the presynaptic membrane.
The neurotransmitter binds to channels on the postsynaptic cell
resulting in, for example, an excitatory post-synaptic potential
(EPSP) “built up statistically of the all-or-none events that
are similar in size and distribution to spontaneous miniature”
postsynaptic potentials (del Castillo and Katz, 1954). Depletion
of vesicles available at active sites can cause an activity-dependent
reduction in synaptic efficacy (Eccles et al., 1941) whereas a
build-up of Ca2+ in the presynaptic terminal can increase the
probability of neurotransmitter release (Dudel and Kuffler, 1961).
Synaptic transmission is thus both fundamentally stochastic (del
Castillo and Katz, 1954; Fatt and Katz, 1952; Stein, 1965) and
history dependent (Furukawa et al., 1982; Abbott, 1997; Tsodyks
and Markram, 1997).

Initial analyses of paired-cell data used the amplitude
distribution of isolated EPSPs to identify quantal peaks
corresponding to sums of similar mini amplitudes (Boyd and
Martin, 1956; Liley, 1956; Kuno, 1964; Kuno and Weakly, 1972;
Bennett and Florin, 1974; Bekkers, 1994); for a review see Bennett
and Kearns (2000). While this was an effective approach for
extracting the properties of neuromuscular synapses (del Castillo
and Katz, 1954) the greater variation in mini amplitudes at
central synapses (Hanse and Gustafsson, 2001; Franks et al.,
2003; Hardingham et al., 2010) necessitated different techniques
to recover robust results in the central nervous system. Mean-
variance analysis was developed to obtain estimates of the
maximum number of vesicles that can be released by a single
stimulus (Silver et al., 1998; Clements, 2003; Silver, 2003).
Initial applications relied on conducting experiments under a
variety of conditions, in particular varying the extracellular Ca2+

concentration to alter the vesicle release probability (Foster and
Regehr, 2004; Birò et al., 2005). Brémaud et al. (2007) and
Loebel et al. (2009) increased the practicality of the method by
using short-term vesicle depletion to vary the effective release
probability under a single experimental condition. Their analyses
showed that multiquantal release underlies the wide range of
EPSP amplitudes observed (Song et al., 2005; Lefort et al., 2009)
and that, in general, it is not the case that the number of
distinct anatomical contacts equals the maximum number of
readily-releasable vesicles as was put forward by the single-vesicle
hypothesis (Kuno, 1971; Korn et al., 1981).

More recent approaches have introduced a principled
Bayesian approach to infer synaptic parameters. Bayesian
inference determines the extent to which experimental evidence
supports a given set of model parameters. This relies on the
fact that the probability of a certain model being correct given
observed data is proportional to the probability of observing that
data given that the model is correct. As such it makes maximal
use of data, including every observation rather than extracting
moments as in previous approaches. This framework was first
applied to neurophysiological synaptic data by Turner and West
(1993) to extract the number of components in a unitary EPSP.
More recently, McGuinness et al. (2010) used Bayesian analysis
to measure presynaptic Ca2+ concentrations and Bhumbra and
Beato (2013) used an exact Bayesian approach to extract quantal

parameters frommeasurements of isolated EPSPs, demonstrating
that accurate parameter estimates could be obtained from less
data than with existing mean-variance methods.

Inference on isolated EPSPs, however, does not allow recovery
of synaptic parameters associated with short-term plasticity.
Costa et al. (2013) addressed this issue in a Bayesian framework
using the Tsodyks-Markram model of short-term plasticity
(Tsodyks et al., 1998) with a likelihood that approximated
synaptic amplitude distributions during patterned input as
uncorrelated Gaussians around the mean amplitudes. Though
this approach does not account for correlations between closely-
timed synaptic events, the method nevertheless allowed for
accurate inference of a number of synaptic parameters. However,
correlations between successive PSPs, which can be significant
even at stimulation rates below 10Hz, (del Castillo and Katz,
1954; Thomson et al., 1993; Fuhrmann et al., 2002) can provide
a useful source of additional information for inferring model
parameters. This is particularly the case for data sets that
feature only a few repreated stimulations or only one series of
patterned PSPs such as would be the case for spontaneous in-vivo
recordings.

The main barrier to extending the Bayesian approach to a
model that allows simultaneous recovery of both quantal and
dynamic properties is the calculation of the likelihood of seeing
a particular train of amplitudes in response to a certain pattern
of presynaptic stimuli. This probability is dependent on the
correlated vesicle releases during previous events and the number
of possibilities therefore grows exponentially with the number of
PSPs. Naively, this would appear tomake the problem intractable.
However, two independent studies (Barri et al., 2016; Bird, 2016)
recently provided a solution to this problem by exploiting the
underlyingMarkovian nature of the problem thereby allowing for
the computation of the exact probability of a given set of observed
amplitudes with a complexity that grows only linearly with PSP
number. Here we develop the method, originally presented in
Bird (2016), to show how the likelihood may be written in a
compact mathematical form as a matrix product. This allows
for efficient calculation of the posterior distribution from which,
for example, the covariance of the inferred parameters can be
analyzed. Our complete Bayesian method may be thought of
as combining the method for inferring quantal parameters for
isolated PSPs developed by Bhumbra and Beato (2013) with
the method for inferring mean synaptic dynamics (without
including correlations) developed by Costa et al. (2013). As well
as describing the mathematical solution we additionally provide
the software code to perform Bayesian inference for a variety of
models of synaptic dynamics as part of this publication.

2. METHODS

In this section we define the general class of synaptic models
our inference procedure applies to before specifying a commonly
used depression-facilitation model of neurotransmitter release
that will be used for illustrative purposes. The coupling of the
presynaptic model to the post-synaptic voltage response is then
defined.

Frontiers in Computational Neuroscience | www.frontiersin.org 2 November 2016 | Volume 10 | Article 116

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Bird et al. Bayesian Inference for Synaptic Parameters

2.1. The Class of Synaptic Dynamics
Models
The method presented here is applicable to a broad class of
synaptic models. The synapses this method can be applied to
are assumed to have a number n of vesicle release sites to
which neurotransmitter vesicles can dock. On arrival of the
mth presynaptic spike at time tm neurotransmitter is released
independently from each docked vesicle with probability um. The
binary occupancy variable x(t) for single release site obeys

dx

dt
= (1− x)

∑

{tr}
δ(t − tr)− x

∑

{tm}
δmδ(t − tm) (1)

where tr are restock events (which occur at a rate that may be
dependent on the presynaptic action potential times) and δm is
a binary random variable signifying release of neurotransmitter
that is equal to 1 with probability um and 0 otherwise. The
stochasticity in tr and δm is considered to be statistically
independent across the n vesicle release sites. Note also that in
this formulation any dynamic quantity (such as x(t)) multiplying
a Dirac-delta function is evaluated just before the arrival of the
impulse. The expected change in occupancy before and after a
presynaptic action potential can be straightforwardly derived to
give

〈x〉⊕m = 〈x〉⊖m − um〈x〉⊖m (2)

where 〈x〉⊖m is the probability that a release site is occupied just
before and 〈x〉⊕m just after themth spike. Similarly, the probability
of occupancy just before (m + 1)th AP can be related to the
occupancy just after themth AP as

〈x〉⊖m+ 1 = 1− (1− 〈x〉⊕m)(1 − gm) (3)

where gm is the restock probability. For certain models gm can
depend on the history of the presynaptic APs. Together the
recursion relations (2) and (3) give the occupancy probability
for an arbitrary train of presynaptic action potentials. The initial
condition is typically taken as being 〈x〉⊖1 = 1, where all release
sites are stocked. These dynamics cover a range of models such as
vesicle depression (Tsodyks andMarkram, 1997), depressionwith
facilitation (Varela et al., 1997; Tsodyks et al., 1998; Fuhrmann
et al., 2002), frequency-dependent recovery (Fuhrmann et al.,
2004) and augmented recovery (Wang and Kaczmarek, 1998;
Hosoi et al., 2007). For an in-depth discussion, see Appendix A.

2.2. Illustrative Synaptic Model with
Depression and Facilitation
To provide an example of the method we use a commonly used
model that combines a depression mechanism caused by vesicle
release and a constant restock rate with a facilitation mechanism
that models the effect of increased release probability due to
transient increases in calcium concentrations in the presynaptic
terminal (Varela et al., 1997; Tsodyks et al., 1998; Fuhrmann et al.,
2002). The restock process is Poissonian and has constant rate
1/τD, where τD is commonly referred to as the depression time

constant; therefore the restock probability required for Equation
(3) is simply

gm = 1− e−Tm/τD (4)

where Tm = tm+1− tm is the time between themth and (m+1)th
APs. Let p0 be the baseline value of the probability of release,
and p1 be the facilitated release probability immediately after an
isolated spike. Let u(t) be the time-dependent release probability.
In the absence of stimulus, u(t) decays back to p0 with timescale
τF . The dynamics of u(t) therefore obeys

du

dt
=

1

τF
(p0 − u)+ (1− u)

(

p1 − p0

1− p0

)

∑

tm

δ(t − tm) (5)

where the (1 − u) prefactor of the Delta functions prevents the
probability going above unity. In this setup u = p0 if the previous
spike was a long time ago, then on the arrival of a spike it jumps
to u = p1. Because it is a facilitation model we have p0 < p1 < 1.
Note that this formulation of parameters allows the facilitated
release probability p1 to be fixed independently of the initial
release probability p0 and maps directly to the original quantal
facilitating and depressing synaptic model of Fuhrmann et al.
(2002) with p0 = USE and p1 = USE + (1 − USE)U1 using that
paper’s notation. The values of u(t) just after the mth and before
the (m + 1)th action potentials (u⊕m and um+1 respectively) are
defined by the following recursion relations

u⊕m = um + (1− um)

(

p1 − p0

1− p0

)

and

um+1 = p0 + (u⊕m − p0)e
−Tm/τF (6)

where the initial conditions are that u1 = p0 and u⊕1 =
p1. This gives the release probability before each presynaptic
spike required for Equation (2). The dynamics of the restock
probability g are unaffected and are given by Equation (4). A
special case of this model that has one less free parameter is
when the release probability doubles after an isolated spike and
so p1 = 2p0 (Tsodyks et al., 1998).

2.3. EPSP Amplitude Distribution
The post-synaptic amplitude statistics for single vesicle release
of neurotransmitter is modeled by a gamma distribution with
mean µa and standard deviation σa (µa is assumed to be
greater than σa to ensure that a zero amplitude is not the
most likely). This is preferred over a normal distribution on
empirical grounds and ensures that amplitudes are always
positive (Robinson, 1976; Hanse and Gustafsson, 2001; Bhumbra
and Beato, 2013). However, it is reasonable to assume that
background noise is normal with standard deviation σb and
is independent of EPSP amplitude. Note that this choice of
amplitude generation is identical to that described for isolated
EPSPs in (Bhumbra and Beato, 2013). With this choice, if k
vesicles release neurotransmitter from among the n possible
release sites, the observed EPSP amplitude A is written A =
ψ + φ where ψ is the release-dependent component and φ the
independent Gaussian noise. Becauseψ is the sum of k individual
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quantal amplitudes, each of which are independently identically
gamma distributed, its distribution is also gamma-distributed
with

P[ψ] =
λβ

Ŵ(β)
e−λψψβ−1 where β = k

µ2
a

σ 2
a

and λ =
µa

σ 2
a

.

(7)

The distribution for the measured EPSP amplitude A, given k
release events, is therefore a convolution between the gamma and
normally distributed components of the noise

P[A|k] =
λβ

Ŵ(β)

1

(2πσ 2
b
)
1
2

∫ ∞

0
dye−λyyβ−1e

− (A−y)2

2σ2
b . (8)

An approach for numerically calculating this integral efficiently
is provided in Appendix B.

2.4. Computational Methods and Code
An exhaustive grid-based derivation of the likelihood function
for the depression-only model (see Appendix) is just within
the capabilities of easily accessible computers at the time of
writing. However, for more involved models with a greater
number of parameters this becomes impracticable and a Markov
Chain Monte Carlo (MCMC) approach was used instead. Here
priors are taken to be flat (uninformative) for all parameters
for illustrative reasons: more informative priors can be included
as required. For the MCMC implementation, parameter space
is discretised into a grid and the sampler is initialized at a
random point consistent with any restrictions on the model
parameters. Moves are proposed to each adjacent grid point
with equal probability and accepted or rejected based on
the log-likelihood ratio of the current and proposed points.
Convergence of the sampler was examined by comparing the
distributions resulting from chains initiated in different locations.
It is straightforward to extend this transparent implementation
in our code to include more sophisticated methods such as
slice sampling. We provide MATLAB and JULIA code for the
Bayesian inference of synaptic parameters from measurements
of synaptic amplitudes using the Metropolis-Hastings sampling
method (Metropolis et al., 1953; Hastings, 1970) described
above as part of the Supplementary Material. The code covers
the major synaptic dynamics models including: depression
only, depression-facilitation, release-independent depression and
frequency-dependent recovery. The models are described in the
Appendix.

2.5. Synthetic and Experimental Data
To test the model we used both artificial and experimental
data sets. Synthetic data with known parameters was generated
from the synaptic-dynamics models and consisted of a series
of stimulation times and stochastically determined EPSP
amplitudes. For experimental data sets the data analyzed
consisted of EPSP amplitudes combined with their arrival times.
The data, comprising paired whole-cell patch-clamp recordings
of layer-5 pyramidal neurons, was taken from a previous study
(Kerr et al., 2013). Here data obtained in control conditions and

in the presence of 100µM bath-applied adenosine was used.
Presynaptic cells were stimulated with square-pulse currents
of 5ms duration and magnitude sufficient to reliably induce
a single action potential without causing bursting. Stimulation
consisted of 10 spikes at 20 − 50 Hz with 10 s between
traces ensuring sufficient time for full recovery and statistical
independence for the next sweep. For each presentation of
the same presynaptic stimulus the amplitudes of the individual
EPSPs were extracted from the postsynaptic voltage trace using
the voltage deconvolution method (Richardson and Silberberg,
2008) providing a vector of 10 EPSP amplitudes.

3. RESULTS

In this section we first summarize the broad class of synaptic
models our methodology applies to. We then describe the nature
of the computational problem involved in calculating exact
correlated likelihoods. We go on to show how the probability
of observing a set of numbered release events for a chain
of presynaptic action potentials can be calculated using a
Markovian property. By coupling this result to the miniature PSP
distribution, the full likelihood for an observed PSP amplitude
train is then derived in the form of a matrix multiplication.
Finally, we demonstrate the method on both synthetic and
experimental data, recovering the shift in synaptic dynamics
caused by the neuromodulator adenosine.

3.1. Synaptic Models
We consider synaptic models that are quantal, stochastic and
exhibit short-term plasticity. The synaptic-dynamics models
feature n sites where a vesicle can be present for release. If a
vesicle is present just before the mth pulse then it is released
with probability um. Between the mth and (m + 1)th pulses
an empty vesicle site can be restocked with probability gm.
Both release (given a presynaptic AP) and restock events are
independent between release sites. The probabilities themselves
are deterministic in that they depend on the model parameters
only and can be calculated in advance if the times of the action-
potentials tm are known. This formulation encompasses a very
broad range of models of short-term plasticity.

When a vesicle is released, the size of the mini PSP it produces
in the postsynaptic cell is modeled by a gamma-distributed
random variable (see Methods). The mini PSPs induced by
different vesicles are assumed to be independently identically
distributed. The mean quantal amplitude is µa and the standard
deviation is σa. In addition there is a normally-distributed
background noise with standard deviation σb that is uncorrelated
with EPSP amplitude.

For illustrative purposes we focus on a model of synaptic
dynamics that features depression and facilitation (Tsodyks and
Markram, 1997; Fuhrmann et al., 2002), though other models for
which computer code is also provided are described in Appendix
A. Activity reduces synaptic efficacy through vesicle depletion;
however, the build-up of Ca2+ in a presynaptic terminal means
that the probability of release given that a vesicle is present u is
increased by presynaptic activity. Thus, the response to sustained
activity can involve larger individual PSPs than the response to
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TABLE 1 | Table of inferred parameters (top) and dynamic variables

(bottom) used in the model of synaptic dynamics.

Parameter Interpretation

n Number of statistically independent release sites

τD Timescale of recovery from depression (s)

τF Timescale at which facilitation decays (s)

p0 Initial release probability from a single site (given that a vesicle is

present)

p1 Release probability after a single isolated spike

µa Amplitude mean in response to neurotransmitter from one vesicle

(mV)

σa Amplitude standard deviation in response to neurotransmitter from

one vesicle (mV)

σb Standard deviation in postsynaptic voltage trace due to

background noise (mV)

Variable Interpretation

u Dynamic release probability

g Probability that an empty release site is restocked

isolated spikes. Here, the model has a probability p0 of release
for an isolated pulse; immediately after an isolated presynaptic
action potential the release probability increases to p1. The release
probability u returns to its initial value p0 with a timescale τF .
Empty release sites are restocked on a timescale of τD. The model
is fully defined in Methods and its parameters are summarized in
Table 1.

3.2. The Nature of the Computational
Problem
We now discuss the aim of Bayesian inference and the difficulties
correlations cause in calculating the necessary quantities. We
consider that the data is in the form of a set of presynaptic action-
potential times t1, t2, · · · , tM and post-synaptic amplitudes A1,
A2 · · · AM . The aim of the inference procedure is to calculate
the probability densities of the parameters of the model θ =
{n, p0, p1, τD · · · } given the observed presynaptic action potential
times {t1, · · · , tM} and postsynaptic amplitudes {A1, · · · AM}.
Bayesian inference utilizes the fact that the probability of a
particular set of parameters being true, given some observed data,
is proportional to the probability of observing that data given that
those parameters are correct:

P(θ |AM ,AM−1, · · · ,A1) ∝ L(AM ,AM−1, · · · ,A1|θ). (9)

The term L on the right-hand side is referred to as the
likelihood function. A-priori calculating the likelihood appears
computationally infeasible as naively it might be expected to grow
exponentially with the number of observed amplitudes M. For
example, consider a case with n possible release sites and a pair
(M = 2 of presynaptic spikes. Then the likelihood L is given by

L(A2,A1|θ) =
n
∑

k2=0

n
∑

k1=0

P[A2|k2]P[A1|k1]P[k2, k1] (10)

where km is the number of vesicles released by the mth spike.
Because of the nested sums there are (n + 1)2 additive terms in
this expansion, and more generally the number of terms in the
expansion grows exponentially with the number of presynaptic
action potentials∼ (n+ 1)M . Written in this form it is clear that
the problem becomes computationally prohibitive for long trains
of presynaptic spikes and this is what makes calculation of the
likelihood difficult for the complete model. The complexity arises
from the quantal part of the likelihood P[k2, k1]; the individual
amplitudes Am are dependent only on the number of vesicles km
released by each action potential.

Note that if correlations are ignored and the approximation
P(k2, k1) ≃ P(k2)P(k1) made, then the likelihood factorizes and
reduces to a product form

L(A2,A1|θ) =





n
∑

k2=0

P[A2|k2]P[k2]









n
∑

k1=0

P[A1|k1]P[k1]





(11)

that is much more computationally tractable in that only 2(n+1)
terms are required. This approach was taken by Costa et al.
(2013) and combined with an additional approximation that
neglected quantal synaptic components to focus on the mean
effects of short-term plasticity. For the full probability density
in which correlations are retained, it is not possible to factorize
the likelihood into a scalar product in this way. However, we
will show in the following sections that it is possible to use a
Markovian property of this likelihood to factorize the calculation
into a matrix product.

3.3. Joint Probability for Serial Release
Events
The quantal component of the likelihood is most problematic; to
illustrate the method of tractably calculating the full likelihood
we will first consider the joint probability of paired release events
P(k2, k1). The generalization to a train ofmany presynaptic action
potentials is straightforward. Note that knowing the number of
release events at a particular action potential does not specify the
state of the system; however, knowing the number of occupied
release sites before a spike does fully specify the state of system.
This is the Markovian property that makes likelihood calculation
possible. We call ym the number of available vesicles present just
before the mth action potential. Note that the expected value of
ym, E[ym] = n〈x〉⊖m, where 〈x〉⊖m obeys Equation (2). Using this
notation we can write the paired release probability in a more
verbose form

P(k2, k1) =
n
∑

y2=0

n
∑

y1=0

P(k2, y2, k1, y1). (12)

It is now possible to factorize the probability on the right-hand-
side of the above equation. First we use the product rule to expand
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as follows

P(k2, y2, k1, y1) = P(k2, y2, k1|y1)P(y1) (13)

= P(k2, y2|k1, y1)P(k1|y1)P(y1) (14)

= P(k2|y2, k1, y1)P(y2|k1, y1)
P(k1|y1)P(y1) (15)

= P(k2|y2)P(y2|k1, y1)P(k1|y1)P(y1) (16)

where in the last step we have used the Markovian property
of the occupancy variable. Note also that this is an iterative
procedure, in which we can factorize the joint probability starting
with the first action potential and then the second, that can
be continued for joint probabilities that are comprised of an
arbitrary number of spikes. For example, for the case of three
action potentials it is only necessary to multiply the two-spike
case by P(k3|y3)P(y3|k2, y2) with the generalization to higher
numbers of spike trains obvious. Inserting the final result in
Equation (16) of this factorization into Equation (12) results in
the following form for the two-spike case

P(k2, k1) =
n
∑

y2=0

n
∑

y1=0

[

P(k2|y2)
] [

P(y2|k1, y1)P(k1|y1)
] [

P(y1)
]

(17)

where the square parentheses have been used to isolate
components depending on k2 or k1 or neither. This form looks
like an inner product and can be written in matrix-vector form
(using bra-ket notation) as

P(k2, k1) = 〈l2|q1|r0〉 (18)

where 〈l2| is a row vector dependent on k2, q1 is an (n + 1) by
(n + 1) matrix dependent on k1 and |r0〉 is a column vector that
comprises the initial conditions. Typically P(y1) = δy1 ,n so that
|r0〉 has one non-zero entry to indicate that the synapse is initially
fully stocked with vesicles. Note also that the case of three action
potentials is straightforward

P(k3, k2, k1) = 〈l3|q2q1|r0〉 (19)

with obvious generalization to higher numbers of spikes. The
joint release probability can therefore be reduced to matrix
multiplication. The entries of the left row vector and matrices
generally comprise two forms. The first form is simply the
number of release events km chosen from the occupancy ym,
using the current probability of release um and is therefore
binomial

P(km|ym) =
(

ym

km

)

ukmm (1− um)
ym−km . (20)

The second form gives the occupancy ym+1 given km releases
from an occupancy ym at the previous action potential. This
implies that there were n− ym + km empty release sites just after
the mth pulse. We require there to be n − ym+1 empty sites just
before the (m + 1)th pulse which means that ym+1 − ym + km

sites were restocked. Let gm be the restock probability of a single
empty release site between time tm and tm+1

P(ym+1|km, ym) =
(

n− ym + km

ym+1 − ym + km

)

g
ym+1−ym+km
m

(1− gm)
n−ym+1 (21)

where this quantity depends on the time between spikes for
the synaptic-dynamics model (and all other common synaptic
models).

3.4. Joint Probability for Serial EPSP
Amplitudes
We can now use the factorized form for the serial quantal
release events to calculate the full likelihood, which is the joint
probability density of seeing amplitudes A1 and A2 given the
parameter set.

L(A2,A1|θ) =
∑

y2

∑

y1





n
∑

k2=0

P[A2|k2]P[k2|y2]









n
∑

k1=0

P[y2|k1, y1]P[A1|k1]P[k1|y1]





[

P(y1)
]

. (22)

The probabilities P[A1|k1] and P[A2|k2] for the observed
amplitudes given that a certain number of vesicles were released
are defined by Equation (8). The form of Equation (22) can again
be interpreted as an inner product which can be written in bra-ket
notation

L(A2,A1|θ) = 〈L2|Q1|R0〉 (23)

where 〈L2| is a row vector dependent on A2, Q1 is a matrix
dependent on A1 and |R0〉 is a column vector with the initial
configuration before the first action potential. This quantity is
relatively straightforward to compute and, importantly, does
not grow exponentially in computational complexity for higher
numbers of action potentials. For example, for three spikes we
have

L(A3,A2,A1|θ) = 〈L3|Q2Q1|R0〉 (24)

with the generalization to higher numbers of presynaptic spikes
straightforward.

3.5. Inferring Quantal Parameters from
Synthetic Data
The methodology just described is first applied to synthetic
data to test how well the correlated likelihood function can
recover quantal and dynamic parameters (Figure 1). Here the
synaptic-dynamics model is used to generate sweeps of synthetic
amplitude trains. For this model, the eight parameters to infer
are the release site number n, initial release probability p0,
facilitated release probability after an isolated spike p1, depression
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FIGURE 1 | Bayesian inference provides parameter distributions from

five sweeps of synthetic data comprising 30 regular spikes at 30Hz.

Marginal posterior distributions (black), maximum a-posteriori estimates

(orange crosses) and true parameter values (light blue dots) for the parameters

of the synaptic model summarized in Table 1. Posteriors shown after 106

Metropolis-Hastings samples. The true values were n = 7, τD = 0.25 s,

τF = 0.2 s, p0 = 0.6, p1 = 0.8, µa = 0.25 mV, σa = 0.1 mV and σb = 0.05

mV.

timescale τD, facilitation timescale τF , mean quantal amplitude
µa, standard deviation in quantal amplitude σa, and standard
deviation of background noise σb.

Figure 1 shows marginal posterior distributions of these eight
parameters given five simulated sweeps, each of 30 regular
spikes at 30Hz. The posterior distributions reflect the true
parameters well for all synaptic parameters with the exception
of the facilitation timescale τF and quantal amplitude standard
deviation σa. These parameters have been observed to be
hard to estimate in previous studies, with Costa et al. (2013)
finding broad distributions for τF , and Bhumbra and Beato
(2013) and Barri et al. (2016) noting similar uncertainties in
their estimates of quantal variability. The correlated Bayesian
method does not qualitatively change these results, but makes
the best use of available data to accurately estimate the
uncertainty. The posterior distributions narrow with more data,

but it is also possible to change experimental protocols to
improve estimates. Costa et al. (2013) note that when the
stimulation process is Poisson, rather than periodic, estimates
of the time constants τD and τF using their method are
improved due to the broader range of interspike intervals. This
is equally true of the correlated Bayesian method. Estimates
of σa could be improved by a very high stimulation rate
that typically causes either 0 or 1 vesicles to release with
each spike. Note that with typical delays between sweeps
of 15 s, collecting this dataset required just over a minute
of experimental time, giving a relatively sparse dataset that
nevertheless still allows good estimates of the underlying synaptic
parameters.

A major advantage of the Bayesian method over a maximum
likelihood approach is that it can recover the full distribution
of parameters. This allows determination of the covariances
between different parameters. Figure 2 plots the joint posterior
distributions of certain pairs of parameters (in total there are
28 possible pairs for the synaptic-dynamics model considered
here). Figure 2A shows the relationship between release site
number n, depression timescale τD, initial release probability
p0, and mean quantal amplitude µa. The inverse relationship
between estimates of n and µa can be anticipated beause the
mean EPSP size will always depend on the product of these
two quantities. Note in particular that the relationship between
release probability and both n and τD has a characteristic curved
shape that is not apparent from looking at the individualmarginal
distributions. This is even more apparent (Figure 2B) for larger
values of n that can be seen in some central synapses (Loebel et al.,
2009, 2013).

3.6. Experiment: Changing Synaptic
Dynamics under Adenosine Application
The neuromodulator adenosine is implicated (Kerr et al.,
2013) in the developmental shift from dominant depression
at juvenile synapses to weak facilitation at mature synapses
(Reyes and Sakmann, 1999). Adenosine acts via A1 receptors to
ultimately reduce the probability of vesicle release (Dunwiddie
and Fredholm, 1989). Measurement of synaptic dynamics
under control conditions and then during bath-application of
adenosine therefore provides a convenient experimental protocol
to test the inference method. For the control case an initially
depressing juvenile connection was stimulated 40 times with nine
periodic presynaptic spikes at 40 and 20 Hz (see Figure 3A)
followed by a recovery spike, with the postsynaptic response
recorded. Adenosine (100µM) was then bath-applied to the slice
(see Methods) and the stimulus protocol repeated.

Figure 3A plots individual postsynaptic voltage traces before
and after the application of adenosine; Figure 3B shows
the change in average EPSP size. The marginal maximum-
likelihood estimates for the depression timescale τD and
mean quantal amplitude µa are similar between the control
and adenosine datasets (Figure 3C). However, the suppressive
effect of adenosine on synaptic transmission is clearly visible
in the effective number of release sites n and the initial
release probability p0 that drives the shift from predominantly
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FIGURE 2 | Joint parameter estimates for the synaptic-dynamics model. (A) Pairwise and individual posterior marginals for release-site number n, depression
timescale τD, initial release probability p0, and mean quantal amplitude µa. True parameter values and data are the same as Figure 1. Colorbars for the values of the

posterior distributions are not shown; the relative differences in value show the shape and sharpness of the pairwise posteriors for each pair of parameters. (B)

Pairwise posterior marginal for release site number n and initial release probability p0 for a case where the true values were n = 35 and p0 = 0.50 showing a strong

anticorrelation. All posteriors shown after 106 Metropolis-Hastings samples.

depressing to weakly facilitating synapses. It is also possible to
examine the changes in covariance between pairs of parameters
inferred from the experimental data (Figure 3D). Considering
active release sites n and initial release probability p0 together
makes particularly apparent the shift in synaptic transmission.

3.7. Comparison with Methods that
Neglect Serial Correlations
Previous Bayesian inference methods have demonstrated that
an uncorrelated likelihood function can accurately infer the
quantal (Bhumbra and Beato, 2013) and mean dynamic (Costa

et al., 2013) parameters of a synapse. It can therefore be

asked under what conditions does the exact likelihood function,
which accounts for correlations, provide an improvement over

existing methods. Synapses with low numbers of release sites
n, high release probabilities u, or long depression timescales

τD have the strongest correlations between EPSPs. High release

probabilities u can arise either at strongly depressing synapses,
with a high value of p0, or facilitating synapses where the

stimulation protocol causes large values of u(t) to arise. In

addition to these, at least partly, physiological factors, the
correlated likelihood function is superior in conditions of sparse
data. When only a few PSPs are available per sweep or, more
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FIGURE 3 | Bayesian inference captures the shift in synaptic dynamics under application of adenosine. (A) Individual postsynaptic voltage traces under

control (top) and adenosine (bottom) conditions. (B) Mean EPSP size for each spike in the stimulation protocol under control (blue) and adenosine (red) conditions.

Bars show standard error. (C) Marginal posterior distributions for the parameters of the synaptic model in the control (blue) and adenosine (red) conditions. (D)

Pairwise posterior marginals for number of active release sites n and initial release probability p0 before (left) and after (right) application of adenosine. Posteriors

shown after 5× 106 Metropolis-Hastings samples.

importantly, only a few sweeps are available correlations within
a spike train are relatively more important. To quantify this,
we compared the full likelihood function described above with
an approximated likelihood calculated by ignoring correlations
(calculated using forms like Equation 11). The approximate
likelihood did not account for the observed previous PSP
amplitudes within a sweep, only their distribution of probabilities
given by the model parameters and previous spike times. As
expected, the uncorrelated likelihood function gave broader
posterior distributions (Figure 4A) with this effect diminishing
as more data is added, either in the form of more EPSPs per
sweep or more independent sweeps (Figure 4B). Overall, the

exact likelihood function that accounts for correlations provides
superior inference on synaptic parameters. It is possible to obtain
accurate constraints on synaptic parameters with only a few
sweeps, meaning that experiments could capture a snapshot of
synaptic properties in a small time window during protocols that
change synaptic properties on timescales of tens of seconds rather
than tens of minutes.

4. DISCUSSION

We have presented a method for exactly and efficiently
calculating the probability of a given train of PSP amplitudes
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FIGURE 4 | Comparison of likelihood functions that do or do not

account for serial correlations in synaptic amplitudes. (A) Posterior

distributions for release site number n computed by correlated (solid) and

uncorrelated (dashed) likelihood functions for three different values of n (n = 8

dark black; n = 15 middle blue; and n = 35 light blue) for a single sweep of 5

spikes regularly distributed at 30Hz. (B) 95% confidence intervals for

correlated (solid) and uncorrelated (dashed) likelihood functions as a function

of the number of sweeps for different numbers of spikes per train. Spikes

occur at 30Hz, the true value of n is 35, and averages are taken over 10

realizations. Other parameters are the same as for Figure 1 (light-blue dots).

for dynamical synapses with the utility and robustness of
the method demonstrated on synthetic and experimental data.
This method, presented earlier in Bird (2016) is equivalent
to that simultaneously and independently discovered by Barri
et al. (2016) in their expectation-maximization approach, and
represents a combination and extension of the recent work of
Bhumbra and Beato (2013) on the exact likehood of isolated
events and Costa et al. (2013) on the approximated likelihood
of serial events. By considering quantal and dynamic properties
together, the method described accounts for information that
is necessarily neglected when each component is examined in
isolation. The advance renders the calculation of the likelihood
required for Bayesian inference practical for a variety of models
of short-term synaptic plasticity. Moreover, unlike approaches
that have relied on mean-variance analysis, it is applicable

to single-sweep experiments and so is suitable for in-vivo

scenarios where presynaptic firing is uncontrolled, but can be
monitored.

The likelihood calculation that makes this inference possible
is flexible and can be extended to a number of common synaptic
models, allowing for examination of augmented recovery
(Wang and Kaczmarek, 1998; Hosoi et al., 2007), release-
independent depression with frequency-dependent recovery
(Fuhrmann et al., 2004), and receptor desensitization (Jones
and Westbrook, 1996; Otis et al., 1996). Four such models
are described in Appendix A with associated computer code
in the MATLAB and JULIA environments to be found in the
Supplementary Material. Another natural and straightforward
extension of the methodology presented here is to not assume
that all sites are initially occupied but have the initial state
of the system as a parameter to be inferred. This scenario
is relevant for in-vivo experiments where there is no natural
break in the presynaptic activity: in this case the release site
occupancy and state of the dynamic release probability would be
unknown.
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APPENDIX A

Extension to Other Synaptic Models
The likelihood calculation that was illustrated in the main text for
a model with depression and facilitation can be straightforwardly
adapted to other commonly used models of synaptic dynamics.
These comprise models in which the restock probability gm
between presynaptic action potentials m and m + 1 and
probability of release at the arrival of the mth action potential
um depends only on the pattern of presynaptic activity. As
part of the Supplementary Material we provide computer code
for four such models, which are now described below with
the synaptic parameters and dynamic variables tabulated in
Table A1.

(i) Depression only - DEP model
This is perhaps the simplest model of short-term synaptic
plasticity and features only vesicle depletion and restock (Tsodyks
and Markram, 1997; Fuhrmann et al., 2002). The occupation
of a single release site is governed by the stochastic differential
Equation (1). The mean-occupancy recursion relations for the
model are given by Equations (2) and (3) with a constant release
probability um = p0. The Poissonian restock of empty release
sites occurs at a constant rate 1/τD and so in this case the restock
probability gm is given by Equation (4).

(ii) Depression and facilitation - DAF model
This is the model described in the main text (Varela et al.,
1997; Tsodyks et al., 1998; Fuhrmann et al., 2002) and applies
to facilitating synapses. The probability of restock is defined
by Equation (4) and the probability of release um is given by
recursion Equation (6).

TABLE A1 | Extended table of inferred parameters (top) and dynamic

variables (bottom) used in the synaptic models discussed in Appendix A.

Parameter Interpretation

n Number of statistically independent release sites

τD Timescale of recovery from depression (s)

τF Timescale at which facilitation decays (s)

p0 Initial release probability from a single site (given that a vesicle is

present)

p1 Release probability after a single isolated spike

µa Mean voltage response to neurotransmitter from a single vesicle

(mV)

σa Standard deviation of voltage response distribution to

neurotransmitter contained in a single vesicle (mV)

σb Standard deviation in postsynaptic voltage trace due to

background noise (mV)

τI0 Initial recovery timescale from RID (s)

τI1 Recovery timescale from RID after a single isolated pulse (s)

ςI Decay timescale of FDR (s)

u Dynamic release probability

g Probability that an empty release site is restocked

τI Dynamic RID recovery timescale (s)

(iii) Release-independent depression - RID model
This model was introduced (Fuhrmann et al., 2004) for synapses
that do not display facilitation and considers a different form
of depression which is uncorrelated with the preceding EPSP
amplitudes. Release-independent depression is a reduction in
release probability um caused by spiking activity which decays on
a timescale τI0 (it can be thought of as a kind of anti-facilitation).
The release probability immediately after an isolated pulse is
again called p1 but in contrast to facilitation p1 < p0. In this
formalism the release probability u(t) obeys

du

dt
=

p0 − u

τI0
−

u

p0
(p0 − p1)

∑

tm

δ(t − tm) (A1)

where tm are the times of the presynaptic action-potentials. The
values of u(t) just after the mth and before the (m + 1)th
action potentials (u⊕m and um+1 respectively) are defined by the
following recursion relations

u⊕m = um − um

(

p0 − p1

p0

)

and

um+1 = p0 + (u⊕m − p0)e
−Tm/τI0 . (A2)

The restock probability gm is given by Equation (4) and is
common to the previous two models.

(iv) Release-independent depression with frequency

dependent recovery - FDR model
The recovery from release-independent depression is often seen
to be frequency dependent (Fuhrmann et al., 2004). To account
for this the timescale τI(t) is now a dynamic variable with initial
value τI0 , magnitude after an isolated spike of τI1 and decay
timescale ςI . The relevant equations are now

du

dt
=

p0 − u

τI
−

u

p0
(p0 − p1)

∑

tm

δ(t − tm) (A3)

dτI

dt
=
τI0 − τI
ςI

−
τI

τI0
(τI0 − τI1 )

∑

tm

δ(t − tm) (A4)

The dynamic RID recovery timescale τI(t) obeys Equation (A4).
The values of τI(t) just after the mth and before the (m + 1)th
action potentials (τ⊕Im and τ⊖Im+1 respectively) are defined by the
following recursion relations

τ⊕Im = τ⊖Im − τ⊖Im

(

τI0 − τI1
τI0

)

and

τ⊖Im+1 = τI0 + (τ⊕Im − τI0 )e−Tm/ςI . (A5)

The release probability u(t) obeys Equation (A3) and can also
be defined recursively, with um+1 the release probability at the
(m+ 1)th spike at time tm+1 given by

um+1 = p0 +
(

u⊕m − p0
)(

τ⊕Im
)

ςI
τI0

[

τ⊕Im − τI0
(

1− e
Tm
ςI

)]

ςI
τI0

(A6)
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where u⊕m = um − um

(

p0−p1
p0

)

is the release probability

immediately following themth spike.

APPENDIX B

THE LIKELIHOOD CONVOLUTION
INTEGRAL

The convolution integral for the amplitude distribution Equation
(8) is computed a large number of times. There are two difficulties
in doing this efficiently: (i) evaluating a gamma function for large
shape parameters and (ii) finding reasonable bounds for the range
of integration.

Evaluating Gamma Functions
When µa ≪ σa the argument of the gamma function in the
denominator of Equation (8) can grow very large in order to
normalize the distribution. To avoid issues with this, we note that
Stirling’s approximation allows evaluation of the gamma function
with large arguments

Ŵ(n+ 1)

≈
√
2πn

(n

e

)n
(

1+
1

12n
+

1

288n2
−

139

51840n3
−

571

2488320n4

)

and introduce a variable κ(n) such that

κ(n) =
1

Ŵ(n+ 1)

√
2πn

(n

e

)n

≈
(

1+
1

12n
+

1

288n2
−

139

51840n3
−

571

2488320n4

)−1

.

For small values of n the function κ(n) can be evaluated exactly,
whereas for larger arguments the second, approximate form is
used.

Bounding the Range of Integration
The second difficulty involves finding bounds for the range of
integration in Equation (8). Introducing γ = β − 1 and y∗ =
γ /λ, and substituting κ(γ ) for the gamma function, Equation (8)
can be rewritten as

P[A|k] =
κ(γ )

2πσb

1
√

y∗/λ

∫ ∞

0
dy

exp

(

−λ(y− y∗)+ γ log
(

y/y∗
)

−
(A− y)2

2σ 2
b

)

which is in a form that is straightforward to integrate
numerically, once reasonable integration bounds are identified.
To this end we note that by completing the squares in the
exponential and introducing z = y/σb the integrand (ignoring
constant prefactors) can be written as

f (z) = zγ e−(z−2t)2/2

where t = (A/σb − λσb)/2. The integrand has a single positive

maximum z∗ = t +
√

t2 + γ (note that γ = β − 1 > 0
because the assumption is made that µa > σa, see Methods).
Our method then is to perform the y integral over an equivalent
range of z for which f (z) > f (z∗)e−x where x is some sufficiently
large power (typically in the range 10–15) with the boundaries
of the z range efficiently found using a Newton-Raphson
method.
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