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Phase-amplitude coupling (PAC) plays an important role in neural communication and

computation. Interestingly, recent studies have indicated the presence of ubiquitous

PAC phenomenon even during the resting state. Despite the importance of PAC

phenomenon, estimation of significant physiological PAC is challenging because of

the lack of appropriate surrogate measures to control false positives caused by

non-physiological PAC. Therefore, in the present study, we evaluated PAC phenomenon

during resting-state magnetoencephalography (MEG) signal and considered various

surrogate measures and computational approaches widely used in the literature in

addition to proposing new ones.We evaluated PAC phenomenon over the entire length of

theMEG signal and for multiple shorter time segments. The results indicate that the extent

of PAC phenomenonmainly depends on the surrogate measures and PAC computational

methods used, as well as the evaluation approach. After a careful and critical evaluation,

we found that resting-state MEG signals failed to exhibit ubiquitous PAC phenomenon,

contrary to what has been suggested previously.

Keywords: cross-frequency coupling, phase-amplitude coupling, resting state, magnetoencephalography

INTRODUCTION

Cross-frequency coupling between the frequency components of neural oscillatory signals has
incited considerable interest amongst the neuroscientists community (Canolty and Knight, 2010;
Jirsa and Müller, 2013; Aru et al., 2015). Cross-frequency coupling, particularly phase-amplitude
coupling (PAC), where the amplitude of a high frequency component is modulated with the

Abbreviations: LF, Low frequency; HF, High frequency; CFC, Cross-Frequency Coupling; PAC, Phase-Amplitude Coupling;
AAC, Amplitude-Amplitude Coupling. Surrogatemeasures: PhaseRand, Splitting either phase or amplitude time component
of signal into two block at some random time point and then interchanged their positions; RandPerm (c–), Random
permutation of original time series, (c–), Without coloring (introducing 1/f characteristics); RandPerm (c+), Random
permutation of original time series, (c+), With coloring (introducing 1/f characteristics); Gaussian (c–), Gaussian time series
whose length as of original signal, (c–), Without coloring (introducing 1/f characteristics); Gaussian (c+), Gaussian time
series whose length as of original signal, (c+), With coloring (introducing 1/f characteristics); Computational methods:

MI, Modulation Index; PvsV-HF, Peak vs. Valley High Frequency amplitude; corrPAC, Correlation based Phase-Amplitude
Coupling; corrAAC, Correlation based Amplitude-Amplitude Coupling.
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phase of a low frequency component, has been claimed to
play an important role in neural communication and neural
information processing (Canolty and Knight, 2010; Voytek
et al., 2013; Lega et al., 2016). It is believed that nested high-
frequency neural oscillations reflect local cortical processing,
whereas low-frequency neural oscillations are associated with
global neuronal communication in response to external or
internal events. Previously, PAC phenomenon was primarily
evaluated for certain cognitive or physiological tasks or disease
states (Yanagisawa et al., 2012; de Hemptinne et al., 2013; Voytek
et al., 2013; Lega et al., 2016; van Wijk et al., 2016). PAC
phenomenon may play a major role in the resting brain and
in communication among resting-state networks. Recently, an
MEG study on PAC during the resting state showed that 41–61%
of cortical voxels exhibited significant PAC (Florin and Baillet,
2015). Recent invasive (electrocorticogram [EcoG] and local field
potential [LFP]) studies have also suggested ubiquitous PAC
phenomenon during the resting state that assists high-frequency
communication across remote neuronal assemblies even in the
absence of an overt task structure (Wang et al., 2012; Weaver
et al., 2016).

Despite the importance of PAC phenomenon, estimation of a
true physiological PAC is not straightforward. Previous studies
have indicated that any abrupt change or imperfect sinusoids
in the signal can lead to spurious PAC estimation (Kramer
et al., 2008). Thus, non-physiological PAC can be observed for
any signal even in the absence of neurophysiological PAC (Aru
et al., 2015). For example, PAC phenomenon can be detected in
atmospheric noise signals. In practice, one often has to rely on
a surrogate measure to derive the statistical significance of the
computed PAC index. Therefore, the extent of PAC also depends
on the surrogate measure used for evaluation. Essentially, none of
the surrogate measures are ideal, but some are more conservative
than others (Aru et al., 2015). Recent opinions suggest that
good surrogate data, particularly for a longer duration, can be
generated through splitting either the phase or the amplitude
time series components into two blocks at random times and
then interchanging the positions of the blocks (Aru et al.,
2015). This process will destroy the specific PAC, but will have
a minimal detrimental effect on the cyclostationarity of the
phase or amplitude components. Moreover, across the studies,
a wide range of computational methods, such as modulation
index (Özkurt and Schnitzler, 2011; Florin and Baillet, 2015),
general linear model (Penny et al., 2008; Özkurt and Schnitzler,
2011; van Wijk et al., 2015), and oscillation-triggered coupling
based PAC analysis (Dvorak and Fenton, 2014) have been used
to capture the PAC phenomenon. Calculating Kullback–Leibler
divergence between the phase-amplitude coupled distribution
and the uniform distribution (Tort et al., 2010), and correlation-
based PAC (Bruns and Eckhorn, 2004; Penny et al., 2008) have
also been used to capture this phenomenon.

Thus, the objective of the present study was to evaluate PAC
phenomenon in the resting-state MEG source signal considering
various surrogate measures and PAC computation approaches
and to integrate the cognizance of these into our conclusions. In
the present study, we considered five different kinds of surrogate
measures and three different PAC computational approaches,

considering various aspects of the elementary raw input signals
and PAC phenomenon.

MATERIALS AND METHODS

Dataset and Preprocessing
Data used in the preparation of this work were obtained
from the MGH-USC Human Connectome Project (HCP)
database (https://ida.loni.usc.edu/login.jsp). The HCP project
(Principal Investigators: Bruce Rosen, M.D., Ph.D., Martinos
Center at Massachusetts General Hospital; Arthur W. Toga,
Ph.D., University of California, Los Angeles, Van J. Weeden, MD,
Martinos Center at Massachusetts General Hospital) is supported
by the National Institute of Dental and Craniofacial Research
(NIDCR), the National Institute of Mental Health (NIMH),
and the National Institute of Neurological Disorders and Stroke
(NINDS). Collectively, the HCP is the result of efforts of co-
investigators from the University of California, Los Angeles,
Martinos Center for Biomedical Imaging at Massachusetts
General Hospital (MGH), Washington University, and the
University of Minnesota (Larson-Prior et al., 2013). The
preprocessed and cleaned resting state MEG datasets of 27
unrelated subjects were used in the present study. Originally,
the MEG HCP database contained resting-state datasets from
61 subjects. However, we only chose 27 subjects among them
for whom data are available from a resting-state session
with continuous data with a length >4 min without any bad
segments to avoid discontinuities in data. Moreover, at least 10
independent components (ICs) were left out after independent
component analysis (ICA)-based artifactual component pruning
(for subject and session details, refer to the Supplementary Text
A). The detailed experimental set-up and data-preprocessing
pipeline are available at (http://www.humanconnectome.org/
documentation/S500/HCP_S500+MEG2_Release_Reference_
Manual.pdf). In brief, eye open resting-state MEG data were
acquired in three sessions, and each session was 5 min long. MEG
data were recorded using the whole-head MGNES 3600 (4D
Neuroimaging, San Diego, CA) system with 248 magnetometer
channels at a sampling rate of 2034.51Hz. The MEG signals were
filtered using a band-pass (1.3–150Hz) and a notch (59–61/119–
121Hz) Butterworth filter and then downsampled to 508.675Hz.
ECG- and EOG-related artifact data were removed using ICA-
based approach. Anatomical MRI was recorded for each subject.
A single-shell volume conduction model was used for the head
model, and a cortical sheet with 8004 vertices defined on the
normalized space was used for the source model. An elementary
source signal for each of the vertices was reconstructed from
the sensor signal using the weighted minimum norm estimate
(wMNE) inverse solution (Hämäläinen et al., 1993). We used
the publicly available FieldTrip library for the computation
of the inverse solution (Oostenveld et al., 2011). During the
computation of the inverse solution, a channel covariance matrix
was computed using a 5 min empty-room MEG signal, whereas
a regularization parameter (that controls the magnification of
error related to signal-to-noise ratio) and a depth-weighting
factor were set to default values of 3 and 0.5, respectively. We
divided the cortex into 46 partitions based on Brodmann areas
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or groups of Brodmann areas (Figure 1A) and chose one or two
nodes from each of the partitions. Thus, in the present study, we
used a total of 58 nodes distributed over the cortex (as shown
in Figure 1A) for analysis. For more detail, please refer to the
Supplementary Text B.

Surrogate Data Generation
As there is no direct measure available to establish the
significance of an estimated PAC score, one often has to rely
on surrogate data, i.e., the bootstrapping approach (Özkurt and
Schnitzler, 2011; Dvorak and Fenton, 2014; Aru et al., 2015).
In the present study, we generated various kinds of surrogate
data having a null hypothesis of no neurophysiological PAC
phenomenon. The first kind of surrogate data was produced by
splitting either phase or amplitude time series into two blocks at
some random time point and then interchanging their positions.
This process destroys the specific phase-amplitude relationship

but only minimally distorts the cyclostationarity of the low-
frequency (LF) and high-frequency (HF) components (Aru et al.,
2015). We refer to this as the “PhaseRand” surrogate measure
in the subsequent text. Another kind of surrogate dataset was
generated by permuting the data of the elementary source
signal. We refer to this as the “RandPerm” surrogate measure in
the subsequent text. These surrogate random time series have
distributions identical to the elementary source signal. Another
kind of surrogate dataset was generated by simply considering
Gaussian time series with similar duration to that of the original
time series. We refer to this as the “Gaussian” surrogate measure
in the subsequent text. Moreover, the aforementioned RandPerm
and Gaussian surrogate data lack the 1/f signal characteristics
of the elementary source signal. Therefore, another kind of
surrogate data was generated by coloring (introducing 1/f
characteristics) the data in such a way that they have spectral
characteristics similar to the elementary source signal. For the

FIGURE 1 | (A) Locations of nodes (black dots, 29 nodes) distributed over the cortex (left hemisphere) that were used for the analysis. Each colored partition

represents one or more groups of Brodmann areas (B) Outline of low and high frequency components of the signal that were used for computing PAC score using

various computational methods (MI, modulation index; PvsV-HF, peak vs. valley high frequency amplitude; and CorrPAC, correlation-based PAC). (i) Raw elementary

source time series, (ii) real component of low frequency complex time series (low frequency component), (iii) phase of the low frequency component, (iv) high frequency

amplitude time series (high frequency component), (v) high frequency amplitude time series smoothened with a Gaussian window function. Peak location (red dot) and

Valley locations (blue dot) in a low frequency component.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 November 2016 | Volume 10 | Article 120

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Gohel et al. Resting State PAC in MEG

coloring, we computed Fourier transforms of the surrogate
signal and the elementary source signal. Then, the amplitude
of each Fourier coefficient of the surrogate signal was set as
the amplitude of the corresponding Fourier coefficient of the
elementary source signal without changing phase information.
Then, the inverse Fourier transform was applied to produce
a surrogate signal with 1/f spectral characteristics. In total,
we employed five different kinds of surrogate measures to
evaluate resting state PAC phenomenon, which are “PhaseRand,”
“RandPerm(c–),” “RandPerm(c+),” “Gaussian (c–),” and
“Gaussian(c+).” Here, c– and c+ indicate without applying
coloring and with applying coloring to the surrogate data,
respectively.

PAC Score Computation
PAC implies fluctuation of the HF amplitude in association
with the phase (peaks and valleys) of the LF component of the
signal. Prerequisite to computing the PAC score, the phase and/or
amplitude of the LF component and the amplitude of the HF
component need to be extracted from the elementary source
signal. Earlier studies primarily used either the Hilbert envelope-
based method or a complex wavelet transform to extract the LF
and HF components from the signal (Penny et al., 2008; Dvorak
and Fenton, 2014; Aru et al., 2015). In the present study, the LF
and HF components were extracted through a complex Morlet
wavelet with a time resolution of 1 s (i.e., FWHM = 1) and a
central frequency of 1Hz (i.e., f c = 1Hz). For this, we used the
publicly available Brainstorm Software library for the MATLAB
programming platform (Tadel et al., 2011). The choice of the
frequency value for the LF and HF components differs across
studies. A recent study on resting-state PAC based on MEG
signals showed significant PAC primarily in the delta, theta, and
alpha LF bands (Florin and Baillet, 2015). Therefore, we evaluated
PAC for low frequencies [i.e., 3 Hz(δ, delta), 6 Hz(θ , theta)
and 10 Hz(α, alpha)]. The choice of the high frequency value
also widely varies across the studies, but it is often chosen to
be above 80Hz and evaluated using the LFP or the EcoG signal
(Canolty et al., 2006; Voytek et al., 2013; van Wijk et al., 2016).
However, MEG has a limited signal-to-noise ratio particularly
for high frequency oscillations (Muthukumaraswamy, 2013). We
evaluated PAC for two HF bands [53–93Hz (γL, lower gamma)
and 83–143Hz (γH , higher gamma)]. Thereby, in total, we
evaluated PAC separately for six different frequency pairs— (α −

γL), (α − γH), (θ − γL), (θ − γH), (δ − γL), and (δ − γH).
Frequency resolution is lower at higher frequencies for theMorlet
wavelet transform. Therefore, the amplitude time course for HF
components was first computed for the individual frequency in
10 Hz steps (for γL = 53 : 10 : 93 Hz and for γH = 83 : 10 :

143 Hz) and then summed to obtain the single HF amplitude
time course for lower gamma (γL) and higher gamma (γH) bands
(Equation 2).

C (ω, t) = complex morlet transform(X (t) , ω) (1)

where ω is the frequency and X (t) is the elementary raw signal.

aHF(t) =
∑

ω ǫ HF
|C (ω, t) | (2)

ϕLF (t) = angle(C (ω, t)) , ω ∈ LF (3)

Re_aLF(t) = real(C (ω, t)), ω ∈ LF (4)

As discussed above, a wide range of PAC computation methods
are available in the literature, which find association between
the phase of the LF component and the amplitude of the HF
component. However, in the present study, we used the following
three different PAC computational approaches.

PAC Based on Modulation Index (MI)
Modulation index (MI) is a direct computational approach
for PAC scoring that has been frequently used in various
studies (Özkurt and Schnitzler, 2011; Florin and Baillet,
2015). In the present study, we also used it as one of the
PAC score computation approaches (Equation 5). Higher MI-
values indicate a greater association between the phase of LF
components and the amplitude of HF components.

MI =
1

N

|
∑N

t=1 aHF (t) eiϕLF(t)|
√

∑

t aHF(t)
2

(5)

Where ϕLF represents the LF phase time course, aHF (t)
represents the HF amplitude time course and N is the length of
the data.

PAC Based on Peak vs. Valley HF Amplitude

(PvsV-HF)
In PAC, the amplitude of the HF component is locked to either
the peaks or the valleys of the LF component (because of ±180◦

ambiguity of power in the MEG signal). Consequently, if PAC is
present, the distribution of the HF amplitude at the peaks should
be higher compared to at the valleys or vice versa. Therefore, PAC
phenomenon can be captured by a direct statistical comparison of
the HF amplitude at the peaks of LF component against the HF
amplitude at the valleys of LF component (Figure 1B). First, we
identified the peak and valley by finding the local maxima and
minima in the LF amplitude time course (Re_aLF(t)), and the
corresponding phase value, i.e., 0◦ ± 15◦ For the peak and 180◦

± 15◦ for the valley in the LF phase time course (ϕLF (t)). The
HF amplitude time course (aHF (t)) was smoothed by convolving
it with a Gaussian window function that had a length one-
fourth of a single cycle of the LF-value in a frequency pair (AHF,
Equation 6). Then, the amplitudes at each of the peaks [red
dot, Figure 1B(v)] and valleys [blue dot, Figure 1B(v)] in this
smoothed HF amplitude time course (AHF) were extracted. In
other words, we extracted weighted mean HF amplitudes at the
peak or valley locations considering a time segment of ±45◦

around the peak or valley time location. Thereafter, distribution
of the HF amplitude at peak locations was statistically compared
against the HF amplitude at valley locations using the non-
parametric Wilcoxon ranksum test [Figure 1B(v)]. The resultant
statistical value (Z-score) represents the magnitude of PAC, as
mentioned before. Higher magnitudes of the Z-score indicate
stronger PAC.

AHF = gwf ∗ aHF (6)
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Where gwf is Gaussian window function of length one-fourth of
the cycle of the low-frequency value in pair.

An LF event (peak or valley) is necessary for PAC
phenomenon; therefore, it is desirable to consider only LF events
with higher amplitude (Aru et al., 2015). Moreover, an LF event
with small amplitude is more likely to be affected by noise.
Keeping these factors in view, we only considered the first q-
percentile of peaks and q-percentiles of valley locations with
higher magnitudes. Then, the distribution of the HF amplitude
at peak and valley locations was statistically compared and the
Z-score was computed. This was performed for q = 95, 75,
50, 25, and 10. We refer to this PAC computation method as
“PvsV-HF(q)” in the subsequent text, where “q” symbolizes the
q-percentile.

Correlation-Based PAC (corrPAC)
We also computed amplitude-amplitude coupling (AAC) and
PAC using the correlation-based approach. The AAC score
(corrAAC) is obtained by computing the correlation between the
HF amplitude time course [i.e., AHF (t)], and the absolute LF
amplitude time course [i.e., |Re_aLF (t) |], considering only peak
and valley time locations (Equation 7). Indeed, in an earlier study
(Penny et al., 2008), PAC scores were derived by computing the
correlation between the absolute HF time course and the real
component of the LF time course. However, this process also
includes underlying AAC that is inappropriate with regard to
the PAC phenomenon (Özkurt and Schnitzler, 2011). Thus, we
computed the correlation-based PAC score in two ways. Firstly,
we computed corrPAC1 by computing the correlation coefficient
between the LF amplitude time course [i.e., Re_aLF (t)], and
the residual of the HF time course after regressing out the HF
time course, [i.e., AHF (t)] from the absolute LF time course
[i.e., |Re_aLF (t) |] (Equations 8 and 9). The regression step used
here suppresses the underlying AAC. Second, we computed
corrPAC2 by computing the correlation between the HF time
course, i.e., AHF (t), and the LF time course after applying the
sign function, [i.e., sign(Re_aLF (t))] (Equation 10). As the sign
function replaces the peak and valley amplitudes with +1 and
–1, respectively, no notion of AAC remains. Thus, both these
measures capture the PAC that is the modulation of the HF
amplitude along with the LF peak and valley events whereas they
are robust to be influenced by the underlying AAC.

corrAAC = corr(AHF(t) , |Re_aLF(t) |),

t ∈
(

peak or valley
)

(7)

res_ AHF(t) = residuals{regress(AHF(t) , |Re_aLF(t) |)},

t ∈
(

peak or valley
)

(8)

corrPAC1 = corr(res_ AHF(t) , Re_aLF(t)),

t ∈
(

peak or valley
)

(9)

corrPAC2 = corrAHF(t) , sign(Re_aLF(t)),

t ∈
(

peak or valley
)

(10)

Statistical Evaluation of PAC Score
For each elementary MEG source signal, we generated 500
surrogate signals using each kind of surrogate approach

separately. After that, we computed the PAC score for
the elementary MEG source signal from each node and
corresponding different surrogate data using the different PAC
computational methods separately (i.e., MI, PvsV-HF and
corrPAC). From the bootstrapped distribution of PAC scores
(500 surrogate iterations), the 99th quantile value (corresponding
to p < 0.01) was determined as a threshold value (TPAC) for
each kind of surrogate measure. A node is said to exhibit PAC
phenomenon if the PAC score for the elementary source signal
exceeds the threshold value (TPAC). The significance of PAC
phenomenon for each of the nodes was evaluated separately for
each of the surrogate measures, computational methods, and
frequency pairs.

RESULTS

Surrogate Data and PAC
We determined the threshold PAC-value (TPAC) that is the
99th quantile value of the PAC score in the surrogate PAC
score distribution for each of the nodes, surrogate measures,
and PAC computation methods. Then, we performed a pairwise
comparison of surrogate PAC score distributions between various
surrogate measures for each of the nodes. In a pairwise
comparison, we identified the proportion of nodes (out of
58 nodes × 27 subjects = 1566 nodes) that had a higher
threshold PAC-value (TPAC) for a particular surrogate measure
compared to another surrogate measure. The probability of
two threshold PAC scores determined from two different
surrogate measures being equal is the lowest. Therefore, we
applied an additional conditionality that there should be a
significant difference (Wilcoxon rank-sum test, p < 0.01, n
= 500) in the surrogate PAC score distribution between
these two surrogate measures. Otherwise, these should be
considered equal. Collectively, these results provide an idea
about the tendency of a particular surrogate measure to
produce higher PAC scores, which indicates the conservativeness
of a surrogate measure. For example, the pie chart in the
first row and second column in Figure 2 [Sx: PhaseRand;
Sy: RandPerm(c–); MI method] is interpreted as follows:
about 78% of nodes [Sx: PhaseRand < Sy: RandPerm(c–);
blue color] showed higher threshold PAC-values (TPAC) for
the RandPerm(c–) surrogate measure than the PhaseRand
surrogate measure, and there was a significant difference in
the surrogate PAC score distributions between them. About
10% of nodes [Sx: PhaseRand > Sy: RandPerm(c–); red color]
showed higher threshold PAC-values (TPAC) for the PhaseRand
surrogate measure than the RandPerm(c–) surrogate measure,
and there was a significant difference in the surrogate PAC
score distributions between them. However, about 12% of
nodes [Sx: PhaseRand ∼ Sy: RandPerm(c–); green color] did
not show a significant difference in surrogate PAC score
distributions. Overall, the RandPerm(c–) surrogate measure
produced higher threshold values (i.e., more conservative)
than PhaseRand surrogate measure. Considering all such
pairwise comparisons among the surrogate measures (Figure 2),
RandPerm, in comparison to the PhaseRand and Gaussian
surrogate measures, showed higher threshold values (i.e.,
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FIGURE 2 | Pairwise comparison of PAC scores among different surrogate measures (Sx, Sy ) for frequency pair alpha-lower gamma (α − γ L), for

different PAC computation methods. (Sx > Sy, red color) or (Sx < Sy, blue color) represents the proportion of nodes (out of 58 nodes × 27 subjects = 1566

nodes) that had higher threshold PAC-value (TPAC, that is the 99th quantile value in surrogate PAC distribution) between two surrogate measures, and additionally

showed significant (Wilcoxon rank-sum test, p < 0.01, n = 500) difference in distribution of PAC score between two surrogate measures. (Sx ∼ Sy, green color)

indicates no difference (Wilcoxon rank-sum test, p > 0.01, n = 500).

more conservative) irrespective of the PAC computational
method. Moreover, surrogate measures without coloring [i.e.,
Randeperm(c–) and Gaussian(c–)] showed higher threshold
values compared to surrogate measures with coloring [i.e.,
RandPerm(c+) and Gaussian(c+)]. In the case of the PvsV-
HF and corrPAC2 PAC computation methods, the majority of
nodes (more than 90%) did not show significant differences
in PAC score distributions among PhaseRand, Gaussian(c+),
and Gaussian(c–) surrogate measures. Overall, as expected, the
significance of the PAC phenomenon depends on the surrogate

measures and PAC computation methods that were used for
evaluation.

We performed a direct comparison of surrogate PAC score
distributions among frequency pairs for each of the nodes,
surrogate measures, and PAC computation methods. A major
proportion (40–100%) of nodes (% out of 58 nodes × 27
subjects= 1566 nodes) showed a significant difference (Friedman
test, p < 0.01, n = 500) in surrogate PAC score distributions
among frequency pairs for each of the surrogate measures and
PAC computation methods except for the PvsV-HF(95) PAC
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computation method with PhaseRand and Gaussian surrogate
measures (D, Figure 3). In addition, the proportion of nodes
(percentage out of 58 nodes × 27 subjects) that showed the
highest threshold values (TPAC) for a particular frequency pair
upon a direct comparison among frequency pairs is depicted in
Figure 3 (color bar). The PAC score computed through MI and
corrPAC methods showed a high proportion of nodes that had
higher threshold values (TPAC) for frequency pairs with delta
frequency than with theta and alpha frequencies irrespective
of the surrogate measure used. As these results indicate that
magnitudes of PAC score vary across different frequency
pairs for the same surrogate data, we should avoid a direct
comparison between PAC score distributions or combine PAC
score distributions across different frequency pairs. Therefore,
first, we should evaluate the significance of the PAC score within a
frequency pair and then we can do comparative analysis between
the various frequency pairs.

Resting-State PAC
The PAC score from a resting-state MEG source signal for
a particular node is significant if it exceeds the threshold
value (TPAC) that is the 99th quantile (p < 0.01) value in

the surrogate PAC score distribution (500 iterations). The
distribution of proportions of nodes (percentage out of 58
nodes) across the subjects that showed significant PAC scores
for various surrogate measures, frequency pairs, and PAC
computation methods is illustrated in Figure 4. There was a
significant difference (Friedman test, p < 0.01, n = 27) in the
distribution of proportions of nodes with significant resting-state
PAC phenomenon across the subjects among different surrogate
measures (in any frequency pairs, Figure 4[any pair]). In post-
hoc analysis (pairwise Wilcoxon signed-rank tests, p < 0.01;
Bonferroni correction applied, n = 27), the smallest proportion
of nodes with resting-state PAC was seen for the RandPerm(c–)
surrogate measure, whereas the highest proportion of nodes
with resting-state PAC was seen for the Gaussian(c+) surrogate
measure when evaluated with the MI and corrPAC1 methods.
However, there was no significant difference in the outcome
using the PhaseRand, Gaussian(c–), and Gaussian(c+) surrogate
measures when evaluated using the PvsV-HF and corrPAC2
methods. Considering the least conservative surrogate measures
[any frequency pair, Gaussian(c+), Figure 4], about 25% of
nodes for the MI method, 36% of nodes for the PvsV-
HF(25) method, and 41% of nodes for the corrPAC1 method

FIGURE 3 | Proportion of nodes (percentage out of 58 nodes × 27 subjects = 1566 nodes) that showed higher threshold PAC-value for a particular

frequency pair after a direct comparison amongst frequency pairs. D, proportion (%) of nodes that showed a significant difference in PAC score distribution

amongst frequency pairs (Friedman test, p < 0.01).
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FIGURE 4 | Resting state PAC phenomenon in MEG source imaging. Distribution of proportion of nodes (percentage out of 58 nodes) across the subjects that

showed significant PAC phenomenon. Here, “any pair” represents significant PAC in any one or more frequency pairs. Significance was evaluated using different

surrogate measures i.e., PhaseRand, RandPerm(c–), Gaussian(c–), RandPerm(c+), and Gaussian(c+), and using different PAC computation methods i.e., MI,

PvsV-HF(p95), PvsV-HF(p25), corrPAC1, and corrPAC2.
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showed significant resting-state PAC phenomenon. Considering
the most conservative surrogate measures [any frequency pair,
RandPerm(c–), Figure 4], about 7% of nodes for the MI method,
13% of nodes for the PvsV-HF (25) method, and 16% of
nodes for the corrPAC1 method showed significant resting-
state PAC. While comparing outcomes from frequency pairs,
primarily the alpha-lower gamma (α − γL) frequency pair
showed a higher proportion of nodes with resting-state PAC
phenomenon, whereas the extent of the resting-state PAC
phenomenon was comparatively low or nearly absent in other
frequency pairs (Figure 4). There was a significant difference
(Friedman test, p < 0.01, n = 27) in the outcome between PAC
computational methods for a given surrogate measure. In post-
hoc analysis (pairwise Wilcoxon signed-rank tests, p < 0.01;
Bonferroni correction applied, n = 27), the MI method showed
the lowest proportion of nodes, whereas the corrPAC1 method
showed the highest proportion of nodes with significant resting-
state PAC phenomenon. In regards to LF events with higher
amplitudes, there was a significant increase (about 7–10%) in the
number of nodes with resting-state PAC phenomenon (PvsV-
HF method, Figure 4; Supplementary Figure S1). Moreover,
surrogate measures showed more impact on the extent of
resting-state PAC compared to PAC computational methods. In
node-specific analysis across the subjects (Supplementary Figure
S3), none of the nodes showed significant resting state PAC
phenomenon in more than 60% of subjects (<50% subjects for
the majority of nodes) even using the least conservative surrogate
measure and PAC computation method.

Dynamic Resting-State PAC
We evaluated resting-state PAC phenomenon over multiple
windows (time segments) with short durations from continuous
resting-state MEG signals. Here, we considered window lengths
of 15 and 2 s. Continuous resting state MEG source signals
were segmented into multiple windows of 15 or 2 s with an
overlap of 7.5 or 1 s, respectively, between two successive
windows. The PAC score for each window was computed and
evaluated similarly to the continuous signal described above.
For shorter signals, it is only feasible to use the MI (for 2 s
window) or MI and PvsV-HF(95p) (for 15 s window) PAC
computation methods to measure PAC scores. For a window
length of 15 s, on average about 70% (median) and 90% (median)
of nodes showed <10% of windows to have significant PAC
when evaluated with the least and more conservative surrogate
measures, respectively (Figure 5). However, the majority of
nodes (more than 95%) showed <20% of windows as having
significant PAC scores even when they were evaluated using the
least conservative surrogate measure (Figure 5). However, the
proportion of windows with significant PAC further dropped for
a window length of 2 s. In this case, the majority of nodes (more
than 95%) showed <10% of windows to have significant PAC
scores even when evaluated with the least conservative surrogate
measure (Figure 5). In the node-specific analysis, none of the
nodes showed more than 10% of windows to have significant
PAC scores in more than 60% of subjects even when the least
conservative surrogate measure was used (Supplementary Figure
S4). Overall, the results indicate that resting-state MEG signals

failed to exhibit ubiquitous PAC phenomenon over multiple
time segments even when evaluated using the least conservative
surrogate measure.

DISCUSSION

In the present work, we analyzed the within a node PAC
phenomenon in the resting-state brain using MEG source
imaging modality. We also investigated the impact of different
surrogate measures and PAC computational methods on the
extent of PAC phenomenon. Our results indicate that the extent
of PAC phenomenon mainly depends on surrogate measures,
PAC computational methods, and evaluation approaches.
Therefore, the approach to PAC phenomenon evaluation is
critical for drawing conclusions about the outcome.

Surrogate data generated through the shuffling of either the
LF phase or the HF amplitude time course is frequently used
for PAC evaluation (Penny et al., 2008; Özkurt and Schnitzler,
2011; van der Knaap and van der Ham, 2011; Dvorak and
Fenton, 2014). PhaseRand surrogate measure used in the present
study (by introducing a minimum shuffling) destroys specific
cyclostationarity but maintains non-specific cyclostationarity
and it was considered to be a more appropriate conservative
measure (Aru et al., 2015). The PhaseRand and Gaussian
surrogate measures showed a similar level of conservativeness.
This similarity was present probably because MEG signals
themselves are non-stationary or quasi-stationary. Consequently,
the concept of cyclostationarity between the LF and HF
components had no impact even after a minimum shuffling of
either the amplitude or the phase time course, particularly for
a long, continuous signal. In the present study, the RandPerm
surrogate measure appeared to be the most conservative
compared to Gaussian and PhaseRand surrogate measures. Data
with an asymmetric distribution, for instance, with more positive
or negative spikes, is likely generate false positive PAC. The
RandPerm surrogate measure partly considers such asymmetry
in the data distribution related to a non-physiological PAC.
However, this is not the case for Gaussian surrogate data
(that have a symmetric distribution) and PhaseRand surrogate
measure (particularity for continuous signals). Nevertheless,
we maintain the notion that none of the surrogate measures
mentioned above are perfect and can completely capture the
specific PAC, but they are robust to non-specific PAC. Indeed, the
PhaseRand and RandPerm surrogate measures still take certain
considerations of data properties that affect the PAC score.
However, it is worth mentioning that the Gaussian surrogate
measure hardly takes into account any knowledge of data related
to a non-physiological PAC and, therefore, is the least suitable
surrogate measure. Coloring of the signal (introducing 1/f
spectral characteristic) lowers the PAC score value in surrogate
data. Hence, it is less conservative than without coloring, because
coloring the signal destroys all of the spikes or nonlinearity, but
this is not the case for the elementary raw signal.

In the present study, we used three different kinds of PAC
computation approaches, not with the aim to find the best one
but to see their effects on PAC estimation. The MI computation
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FIGURE 5 | Dynamic resting state PAC phenomenon in MEG source imaging. Distribution of proportion of nodes (out of 58 nodes) across the subjects against

the proportion of windows with significant PAC in any one or more frequency pairs, for PhaseRand, RandPerm(c–), RandPerm(c+) and Gaussian(c+) surrogate

measures, and for MI and PvsV-HF(95) PAC computation methods (A) for window time length 15 s, (B) for window time length 2 s.

method has frequently been used as a PAC measure in many
prior studies. However, it does not consider the amplitude of LF
events, and it is susceptible to HF outlier events (noisy spikes
with high amplitude) as they directly contribute to the PAC
score. In contrast, the PvsV-HF method considers the LF events
with a higher amplitude that are essential for PAC phenomenon
(Aru et al., 2015). Moreover, it is a statistical approach and
less susceptible to HF outlier events (few noisy spikes with
high amplitude), as they do not directly contribute to the PAC
score. Correlation-based PAC scoring methods as proposed here
provide another way to capture PAC phenomenon and are
robust to be influenced by the underlying AAC. Moreover,
they provide an identical way to compute AAC and PAC so
that they can be directly compared. In contrast to the MI
and PvsV-HF computation methods, correlation-based PAC
estimation is mainly suitable for continuous signals with longer
durations. Interestingly, the extent of PAC phenomenon, i.e.,
the proportion of nodes with significant PAC phenomenon, is

almost similar for the MI and PvsV-HF(95p) PAC computational
methods. However, the inclusion of LF events in the PvsV-HF
method increases the extent of PAC phenomenon. Moreover,
the corrPAC1 computational method produced a greater extent
of PAC than the other alternatives used in the present study.
Nevertheless, it is hard to assert a choice for one particular
method over another for PAC estimation in longer-duration
continuous signals.

We observed greater PAC phenomenon for alpha-lower
gamma frequency pair (α − γL), which is consistent with
others studies on PAC phenomenon in the resting-state brain
(Wibral et al., 2013; Berman et al., 2015). However, a spike
(physiological or non-physiological) in the signal evokes a
broadband frequency response. Therefore, closer values of LF
and HF frequencies in frequency pairs are likely to contribute
to the non-physiological PAC that results from the broadband
response from spikes (Kramer et al., 2008). Thus, this could
be a contributing factor to the observed high PAC scores for
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alpha-lower gamma frequency pair, and, consequently, for PAC
phenomena in general. Many previous studies have analyzed PAC
phenomenon using EcoG/LFP data and often focused on HF
components higher than 80Hz (Canolty and Knight, 2010; de
Hemptinne et al., 2013; Voytek et al., 2013). In contrast, MEG
signals have lower signal-to-noise ratios, particularity for such
high-frequency oscillations (Muthukumaraswamy, 2013). Thus,
this could be one of the factors for the observed minimal or
absent PAC phenomenon in resting-state MEG data. However,
it cannot be considered as the only contributing factor, as we can
see ubiquitous AAC phenomenon even for frequency pairs with
high gamma frequency (Supplementary Figure S2). In contrast to
MEG, EcoG and LFP signals have higher signal-to-noise ratios
for high frequency oscillations, but also have comparatively more
positive or negative spikes that are susceptible to producing false
positives.

The evaluation of resting-state MEG signals with the least
conservative surrogate measure revealed limited extent of nodes
with significant PAC phenomenon. On the other hand, an
assessment with a more conservative approach showed that
resting-state MEG signals failed to exhibit ubiquitous PAC
phenomenon.We observed a greater extent of PAC phenomenon
for frequency pairs containing alpha (10Hz) compared to theta
(6Hz) and delta (3Hz) LF-values. In contrast to the current
outcome, a recent study on resting-state MEG signals (Florin
and Baillet, 2015) showed that about half of voxels across the
cortex exhibited significant PAC phenomenon, and, among them
(60% of voxels), the maximum PAC phenomena occurred in
a frequency pair with delta frequencies. In their method, the
PAC score was measured using the MI computation method
and colored Gaussian noise data that were used as a surrogate
measure (similar to Gaussian(c+)) for significance evaluation.
They determined the threshold PAC-value by considering the
95th quantile value in the surrogate distribution that was
generated after combining all surrogate PAC scores from all
frequency pairs. In the present study, we showed that a direct
comparison or consideration of PAC scores across the frequency
pairs is not appropriate, particularly for PAC scores computed
using the MI method in which they are unsurprisingly higher
for the delta frequencies irrespective of the surrogate measure.
Therefore, the detected ubiquitous PAC phenomenon in resting-
state MEG signals in the (Florin and Baillet, 2015) study is more
likely a false positive outcome related to evaluation approach
used, whereas the maximum PAC phenomenon in frequency
pairs with delta frequencies is the incorrect conclusion.

Neural information processing in the brain is complex and
flexible, and emerging views suggest that PAC phenomenon is
dynamic over multiple time segments or epochs during the
execution of sensory-motor tasks (Gupta and Chen, 2016).
Similarly, dynamic functional connectivity analysis using MEG
source imaging also reveals the appearance and disappearance
of various sensory or sensory-motor networks over time in the
resting brain (de Pasquale et al., 2010; Brookes et al., 2014).
Moreover, recent studies have also suggested a possible role of
ubiquitous PAC in assisting the resting state network (Wang
et al., 2012; Weaver et al., 2016). However, in the present study,
PAC phenomenon appeared to be very limited (for the 15 s

window length) or almost absent (for the 2 s window length) over
multiple time segments across the nodes (Figure 5). On the other
hand, PAC phenomenon has often been observed in task-related
activity for even shorter epochs in MEG/EEG imaging modalities
(Demiralp et al., 2007; Papadaniil et al., 2015) or EcoG/LFP
imaging modalities (Canolty et al., 2006; Voytek et al., 2013).
For this discrepancy between resting-state and task conditions,
we have two views. First, resting-state MEG signals have failed
to reveal significant dynamic PAC phenomenon. Second, there
is significant PAC phenomenon in post-stimulus epochs in task-
related data. However, it may partially or entirely be comprised
of false positive PAC phenomenon resulting from event-related
potential spikes (or imperfect sinusoidal waveforms) in the post-
stimulus epoch. PAC phenomenon evaluation in task-related
epochs has frequently employed the “PhaseRand” surrogate
measure (Voytek et al., 2013). In fact, classical methods that
are used to capture PAC signatures are inherently ambiguous in
differentiating between physiological PAC and non-physiological
false positive PAC related to non-linear properties of an
oscillatory signal (Aru et al., 2015). However, a using more
conservative surrogate measure such as the “RandPerm,” can at
least control such false positive PAC phenomenon to a certain
extent.

In the present study, our focus was on the within a
node PAC phenomenon where low frequency phase and high
frequency amplitude components were taken from a single
time series. Many researchers have often shown an interest
in PAC phenomenon between nodes, where low frequency
phase and high frequency amplitude components are taken
from two different time series (nodes) (Wibral et al., 2013;
Dimitriadis et al., 2016). PAC phenomenon between nodes
has different interpretations and issues (Aru et al., 2015), and
the findings and issues in the present study are not directly
applicable to it. A recent MEG study (Florin and Baillet, 2015)
suggested a synchronized gating hypothesis with respect to
within a node PAC phenomenon as evaluated in the present
study. Within a node PAC phenomenon essentially bridges the
communication-through-coherence (Fries, 2005) and binding-
by-synchronization hypotheses (Varela et al., 2001) in one
proposition. However, in the present study, the resting-state
MEG source signal did not show widespread and consistent
within a node PAC phenomenon in any of the nodes in the brain.
Therefore, it requires further evaluation using EcoG/LFP imaging
modalities, and superior within a node PAC estimation method
that is robust to non-physiological PAC.

In conclusion, resting-state MEG signals failed to exhibit
ubiquitous PAC phenomenon. As PAC phenomenon is highly
susceptible to non-physiological PAC, a more conservative
approach is desirable to control false positive PAC. Moreover,
PAC phenomenon involves the high frequency component of a
signal, where MEG has a lower signal-to-noise ratio; we need to
take great care to evaluate significant PAC.
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