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Good metaphors can help understanding complex systems. The brain-computer metaphor
arguably started when McCulloch and Pitts (1943) put together the idea of an artificial
computational neuron with multiple inputs, either inhibitory or excitatory, a single branching
output and a threshold for firing, proving that in principle a neural network made of these logical
neurons could carry out very general computations. This meant that the brain could be treated
as a computer and the neuron as its basic switching element. Research in cognitive neuroscience
has ever since revealed many important differences between brains and computers, so that the
brain-computer metaphor has gone through difficult days.

While appreciating these differences may be crucial to understanding the mechanisms of
neural information processing, some of the similarities, at the computational, algorithmic, and
implementation levels pointed at in the early days of computer science and artificial intelligence
have their value too. Computers and brains share common goals, i.e., to distribute and process
information. Moreover, several common organizational features, e.g., how memories are stored at
different levels of readiness, and how different computations are performed at different physical
locations prompted suggestions that the brain as a highly complex automaton (Searle, 1990; Litt
et al., 2006; Istrail and Marcus, 2012), giving rise to a large body of literature aimed at representing
the brain as a Boolean system (Baron, 2013). While at micro and meso-scales this respectively
involves understanding how neural spikes may encode Boolean information (Rieke, 1999) and
describing how individual computations are executed, e.g., finding equivalences between neuron
configurations and Boolean operations (Siu and Bruck, 1990; Maass, 1996), at macro-scales an
interesting question is the extent to which CPU architectures and brain regions share functionally
important features.

Neuroscientists’ models of brain functional organization, and in particular of how a given task
recruits brain resources, bear important analogies with the way computer elements are arranged
and activated to perform complex operations. Inmodern CPUs, data are distributed across different
sub-units by a central controller, a structure inspired by the research performed in the 40s by von
Neumann (1993). However, this is not the only possible configuration, and we compare it with
the alternative proposed by Alan Turing in the same decade (Carpenter and Doran, 1986). How
does the underlying model of computer functioning influence the way neuroscientists describe the
brain? For instance, at a system-level of description, neuroscientists typically want to extract the
minimum sub-system of the whole brain necessary to execute a given task. Suppose in particular
that brain activity is endowed with a network representation (Bullmore and Sporns, 2009). What
would the minimal subsystem look like? We propose that Turing’s approach is more representative
of the human brain, and discuss when functional networks may yield misleading results when
applied to such a system.

EDVAC vs. ACE

Modern computer history starts with two different approaches. In 1945, John von Neumann
proposed the first description of the logical design of a computer using the stored-program
conception in the famous First Draft of a Report on the EDVAC. The ACE (Automatic Computing
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Engine), the computer designed by Alan Turing, was presented
nearly a year later, but, the official chronology notwithstanding,
EDVAC was in fact profoundly influenced by ACE (Copeland,
2012). The two approaches share numerous common features,
which are the result of the attempt at implementing the same
theoretical framework, i.e., the Turing’s universal machine.
Yet, they also present some important differences in the way
information is transmitted between the different computation
elements.

The EDVAC configuration includes a central control unit, i.e.,
an element in charge of defining when each computation element
should be activated. Figure 1, top panel, graphically depicts a
computation that requires moving information from the left to
the right unit. In the first step, the information is stored in the
left-most unit; the control unit then activates the central top
element, which receives and processes the information; finally,
the control unit activates the transfer to the right-most element,
which finishes the required computation. Note the efficiency of
this approach: At each step of the computation, only those units
that are required are activated—for instance, the central bottom
unit is never used.

Turing recognized that, in spite of its efficiency, the EDVAC

configuration was difficult to implement, as the control unit

required a large number of vacuum tubes—which, at the time,

were both expensive and unreliable. He thus designed an

alternative solution, in which the sequence of operations was only

controlled by the movement of information through different

memory buffers. In the ACE configuration, at each step of

the computation, the input information is shared among all
elements, so that all elements receive and compute over it; a
memory movement command is then issued, and the result of
interest—i.e., the one required for the next step- is again shared.
Figure 1, bottom panel, represents such process: Note how, at
each step, all elements receive and compute the information
processed in the previous time frame.

FIGURE 1 | Representation of a simple computation, as performed by an EDVAC (top) and ACE (bottom) computers. The two networks on the right depict

the resulting functional networks.

The EDVAC and ACE configurations thus differ in a very
important aspect:While the former requires a specific instruction
for each operation (like addition, rest, etc.), the latter can
theoretically perform all operations with just one command (the
information movement one).

RECONSTRUCTING FUNCTIONAL
NETWORKS

Suppose that one does not know how a specific computation
is performed, and tries to recover the structure created by
information movement through a functional network (Bullmore
and Sporns, 2009; Papo et al., 2014). Functional networks are
created by mapping the elements of the system to nodes, which
are pairwise connected when some common dynamics is detected
between them. When information is transmitted from one
computation unit to another, the internal dynamics of these units
becomes coupled, and a corresponding link is created. For the
systems depicted in Figure 1, one would expect links to appear
between elements that have shared, at some point in time, their
information.

How would the EDVAC and ACE configurations be
represented by functional networks? In the former, information
is sequentially moved between the elements involved in the
computation, and this would reflect in the corresponding
network. Figure 1, top right panel, depicts the result as an
unequivocal feed-forward path. On the other hand, the ACE
configuration (bottom right panel) results in a complicated set of
connections, in which such path is blurred. The reader familiar
with functional network representations of the human brain
would recognize Figure 1 bottom right as a typical output of
such analyses. Even a simple cognitive task, e.g., one involving
a motor response to a specific visual stimulus, results in a
network connecting the whole brain, including regions that have
a priori no relation with the computation being performed (e.g.,
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the auditory cortex). If the brain is understood as an EDVAC
system, this means that all brain regions are somehow actively
involved in the computation. On the other hand, an ACE-based
approach would suggest that this is not necessary: All brain
regions are involved in the computation, but only because they
all receive and compute external inputs on a continuous basis,
irrespective of whether the result is used or not at subsequent
steps. Following the previous example, the auditory cortex
may receive information from visual areas, as often auditory
and visual stimuli would need to be integrated; nevertheless,
the result of this computation may not be used under all
circumstances.

While the EDVAC configuration is more efficient from a
technical perspective, as computational units are activated only
when needed, and has indeed been used ever since as the base
of modern CPUs, the brain organization resembles rather more
that of an ACE device. Specifically, the brain has no centralized
control unit, which coordinates how information should be
moved between different regions; coordination is decentralized
and acts locally. Additionally, the main connections between
different brain areas are mostly hardwired; while there exist
mechanisms for inhibiting brain regions and connections not
needed in a given cognitive task (Desimone and Duncan, 1995;
Chawla et al., 1999), such mechanisms are far from being
perfect on/off switches. As a result, the functional network
representation associated with an ACE system is not strictly
isomorphic to that of the underlying hardware, as in an EDVAC
one: The dynamics within an ACE can only very partially be
accounted for by looking at the physical circuitry in which the
dynamics takes place. In this respect, then, an ACE computer
more closely resembles a disordered spatially extended system
such as the brain than an EDVAC computer and is more
consistent with the redundancy and degeneracy characterizing
the brain.

INTERPRETING FUNCTIONAL NETWORKS

Most neuroscientists implicitly assume that the brain has an
EDVAC-like structure, and therefore use functional networks
as a way of extracting the minimum necessary and sufficient
sub-system to execute a given task. While it is reasonable to
assume an EDVAC structure for sensory tasks, for which the
brain evolved dedicated and largely segregated hardware, this
metaphor becomes less accurate the more complex the cognitive
task. If the brain is more like an ACE, as what we said above
seems to suggest, can the minimal information structure still
be extracted from functional networks representation of brain
activity? As depicted in Figure 1, this is not as straightforward
as the EDVAC case, as an ACE generates many indirect
connections.

The functional network framework is flexible enough to
allow representing both EDVAC and ACE systems, and neutral
as to the true nature of the underlying system. One may
further hypothesize that the equivalent of the EDVAC network
is present within the ACE representation, though masked by

noise. Therefore, the neuroscientists’ task of extracting the
minimum sub-system may be seen as tantamount to extracting
an EDVAC backbone from the ACE system, such that only
primary information movements (i.e., links) are highlighted.
There may be (at least) two possible ways of performing such
extraction. As Figure 1 suggests, the only connections really
involved in the computation are those that connect the input
with the final output. If one was able to exactly define the
start and end points of a computation (e.g., in the previously
discussed example, respectively the visual and the motor cortex),
then it would be possible to isolate only those connections that
form a connected path between these two regions. However, the
path is hardly ever a single one, as information can be split,
processed and then recombined several times. Furthermore, the
information seldom travels according to the shortest connectivity
path, though this is assumed by most complex network metrics
(DeDeo and Krakauer, 2012). Finally, the identification of the
starting point is often non-trivial: For instance, information
may be retrieved from memory and integrated, even if the task
itself may not a priori require this. One may also resort to
information theoretic measures, to understand to what degree
a brain region affects the output of a task. For instance,
one may try to assess whether the information stored in the
dynamics of a given region is related to the associated behavior,
e.g., by means of Mutual Information or similar metrics. If a
given computation element only receives information, but does
not provide any relevant output, its incoming and outgoing
connections can be safely deleted.While this approach is typically
used at micro- and meso-scales, e.g., in single-cell studies, it has
not yet been applied to the macro-level of functional network
reconstruction. In the general case, though, if a backbone does
indeed exist its nature is non-trivial and supposes a conceptual
framework that is as yet non-standard in system-level cognitive
neuroscience.

In conclusion, while complex networks represent a powerful
instrument for the analysis of brain dynamics, this does
not dispense with interpreting the results that they yield
(Papo et al., 2014; Zanin, 2015). In turn, interpretation
crucially depends on the computational and algorithmic
properties of the underlying model of brain activity. In
particular, we argued that an ACE-like structure represents
the brain’s decentralized information processing structure
better than and EDVAC-like one, but that delineating the
corresponding network structure necessary and sufficient for
the execution of a given task is conceptually more arduous.
The extraction of a brain subsystem mediating the execution
of a given cognitive task based on the assumption that the
underlying structure is EDVAC-like may be an important
factor explaining why results of network theoretical analyses of
brain activity have not yet the specificity required for clinical
applications.
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