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Steady state visual evoked potentials (SSVEPs) are steady state oscillatory potentials

elicited in the electroencephalogram (EEG) by flicker stimulation. The frequency of

these responses maches the frequency of the stimulation and of its harmonics and

subharmonics. In this study, we investigated the origin of the harmonic and subharmonic

components of SSVEPs, which are not well understood.We applied both sine and square

wave visual stimulation at 5 and 15Hz to human subjects and analyzed the properties of

the fundamental responses and harmonically related components. In order to interpret

the results, we used the well-established neural mass model that consists of interacting

populations of excitatory and inhibitory cortical neurons. In our study, this model provided

a simple explanation for the origin of SSVEP spectra, and showed that their harmonic

and subharmonic components are a natural consequence of the nonlinear properties of

neuronal populations and the resonant properties of the modeled network. The model

also predicted multiples of subharmonic responses, which were subsequently confirmed

using experimental data.

Keywords: steady state visual evoked potentials, SSVEP, flicker stimulation, computational modeling, harmonics,

entrainment

INTRODUCTION

Steady state visual evoked potentials (SSVEPs) are oscillatory brain responses to periodic
light stimulation, and are observable in the electroencephalogram (EEG) (van der Tweel and
VerduynLunel, 1965; Regan, 1966). These responses exhibit the same frequency as the frequency of
the stimulation as well as its harmonics and subharmonics (Herrmann, 2001). Although, SSVEPs
have widespread application in cognitive and clinical neuroscience (reviewed in Vialatte et al.,
2010) and engineering (e.g., Müller-Putz et al., 2005; Bin et al., 2009; Guger et al., 2012), the
mechanisms responsible for their generation are not yet fully understood. One feature still awaiting
an explanation is related to the harmonic components in the response.

One stimulus commonly used to measure SSVEPs is a flickering stimulus, consisting of
a periodic square wave with a 50% duty cycle and a Fourier spectrum containing only odd
components (i.e., n•f0, n = 1, 3, 5,..., where f0 is the fundamental frequency). The SSVEP evoked
by such a stimulus may contain both odd and even harmonics as well as subharmonic components.

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
https://doi.org/10.3389/fncom.2016.00129
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2016.00129&domain=pdf&date_stamp=2016-12-27
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:maciej.labecki@fuw.edu.pl
https://doi.org/10.3389/fncom.2016.00129
http://journal.frontiersin.org/article/10.3389/fncom.2016.00129/abstract
http://loop.frontiersin.org/people/125073/overview
http://loop.frontiersin.org/people/322024/overview
http://loop.frontiersin.org/people/317556/overview
http://loop.frontiersin.org/people/32726/overview
http://loop.frontiersin.org/people/313942/overview


Labecki et al. Modeling of SSVEPs

Harmonic frequencies also appear in the SSVEP elicited by sine
wave stimulation in animals (Lopes da Silva et al., 1970a) and
humans (van der Tweel and Spekreijse, 1969; Donker, 1975;
Teng et al., 2011). These responses cannot be attributed to the
harmonics of the stimulus, as a perfect sine wave does not contain
higher harmonics.

It has been proposed that the first harmonic response (n = 2)
of an SSVEP may be generated by a subset of cells in the
visual system. Clynes et al. (1964) attributed the frequency
doubling effect to “on” and “off” receptors in the retina.
Similarly, McKeefry et al. (1996) showed that an achromatic
stimulus, known to activate the magnocellular visual pathway,
produced the maximum first harmonic component, and this
result was diminished with a chromatic stimulus, known to
activate the parvocellular visual pathway. The small parvocellular
neurons (P cells), having more tonic (sustained) characteristics,
generated larger responses for the onset of the stimulus than
for the offset, and the response signal was dominated by the
fundamental component. Conversely, the large magnocellular
neurons (M cells), having more phasic (transient) responses,
produced similar responses to the onset and offset of the stimulus
and therefore contributed predominantly to the first harmonic
component.

The association of first harmonic responses with
magnocellular activity has been challenged on a number of
grounds by Skottun and Skoyles (2007). They stated that
although frequency doubling by individual receptors or neurons
may contribute to the first harmonic component, this type
of nonlinearity related to single cell properties probably
cannot be the only factor affecting the characteristics of the
SSVEP spectrum, e.g., the subharmonic and higher harmonic
components. In general, it has been commonly assumed that
harmonic and subharmonic frequencies are generated by
nonlinearities of the visual system (Kelly, 1966; van der Tweel
and Spekreijse, 1969; Lopes da Silva et al., 1970a; Regan and
Regan, 1988; Vialatte et al., 2010; Roberts and Robinson, 2012;
Norcia et al., 2015). These nonlinearities could be related to
retinal, subcortical or cortical properties but their exact sources
have never been explicitly shown.

In order to further clarify the mechanisms of the generation of
the spectral components of SSVEPs, we analyze EEG recordings
of SSVEP responses to square and sine wave stimulation at two
different frequencies. The stimulation frequencies were lower and
higher than frequencies within the alpha range (7–13Hz)—at
5 and 15Hz. We interpret the results using the computational
neural mass model by Lopes da Silva et al. (1974), which takes
into account the nonlinear properties of populations of cortical
networks. Due to its simplicity, this model is considered as a basic
model of brain rhythmicity, with output corresponding to EEG
signals, and therefore it is well suited for our purpose.

It should be noted that Roberts and Robinson (2012)
developed a corticothalamic neural field model consisting of
four neuronal populations, which was able to reproduce many
phenomena related to experimentally observed driven brain
responses and predict new ones. Our aim is to show that an
even simpler model of only two interacting populations can
reproduce key features of SSVEP spectra and provide an easily
understandable explanation of their origin. Our model generates

testable predictions, which are subsequently validated using
experimental data.

METHODS

Experimental Data
Subject and Data Collection
Ten healthy volunteers participated in this study (5 males and
5 females, mean age 24 years, range 21–29 years). The EEG
signals and photodiode trigger signals were collected using the
TMSiPorti 7 amplifier and modified 10–20 EEG cap (Easycap
EC20). EEG signals were recorded with a linked ears reference
(A1, A2) with a sampling frequency of 512Hz, and were filtered
offline with a high-pass third order Butterworth filter with a cut
off frequency of 1Hz to remove the DC component, and with
a band stop 50Hz first order Butterworth filter to remove line
noise.

Visual Stimulation
Subjects were seated on a comfortable chair, in a dim room.
Visual stimulation was delivered using a custom-made SSVEP
stimulator constructed for this experiment, placed 60 ± 20 cm
in front of the subject. The stimulator consisted of an arbitrary
wave shape generator and a lighting panel, which was backlighted
by a diode. The evenly illuminated lighting surface was a 10 ×

10 cm square. The stimulator enabled a sinusoidal stimulus wave
shape with high accuracy (Total Harmonics Distortion, THD <

2%) and a square stimulus wave shape with up to its 10 harmonics
to be generated.

Experimental Paradigm
The stimulation frequencies were chosen based on the fact that
the strongest amplitude response of SSVEPs has been observed
in stimulus frequency ranges of 5–10Hz and 10–25Hz by Regan
(1975) and in the range of 5–25Hz with a peak at around 15Hz
by Wang et al. (2006) and Pastor et al. (2003). After considering
these reports, we decided to use the lower half of the reported
range, as these lower stimulation frequencies might potentially
generate a higher number of harmonics. Additionally, we avoided
the alpha range (7–13Hz) of stimulation frequencies in order to
not interfere with strong spontaneous activity in this range. These
two conditions led to the two stimulation frequencies of 5 and
15Hz being selected.

Subjects were presented with two kinds of stimuli—sine wave
and square wave. The choice of stimuli was not influenced by
the neural mass model we use in this study, as the experimental
paradigm was established prior to modeling considerations. The
amplitudes of the light intensity of the sine and square wave
stimuli were equal, hence the energy delivered to the system
(the integral over light intensity) was the same for both types
of stimuli. A single trial consisted of a 5 s resting period and
5 s of stimulation. There were 50 trials for each wave shape
and frequency, for each subject. Trials for each stimuli type and
frequency were delivered in blocks.

Data Analysis
The 10 s EEG epochs corresponding to the experimental trials
were extracted according to the photodiode trigger signal. Each
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epoch included a 5 s resting signal (prior to stimulation onset)
and a 5 s response to the stimulus. For the purpose of the
subharmonic response analysis (Figure 5), we also distinguished
1 s signals after stimulation onset and divided the resting signal
into 1 s epochs. For each stimulation frequency and wave shape,
the EEG signals were first averaged across trials, multiplied
by the Hann window and finally their amplitude spectra were
computed with Fast Fourier Transform (FFT), using the fft
procedure in Matlab. Power spectra were calculated by first
squaring and next log10 transforming the amplitude spectra.
In general, such power estimates are not accurate as the power
spectrum FFT estimator at a given frequency has a variance equal
to the square of its expectation value at that frequency (Press
et al., 1992). Typically, the power spectra of signal segments
or of multiple realizations are averaged in order to reduce the
variance (Manolakis et al., 2000). Here we followed an alternative
approach and we first averaged phase-locked signals in order to
increase the signal-to-noise ratio and then computed the power
spectrum of the averaged signal. In this way, we reduced the
variance of the final power estimate while preserving original
frequency resolution. We used two different ways to show the
spectral content of the SSVEPs. Dominant frequencies are more
evident on the amplitude spectra, while higher harmonics are
better visible on the power spectra in dB scale. The experimental
results in Figures 2, 3 are presented using data from the O2
EEG channel. To study subharmonic frequencies (Figure 5), data
from electrodes P3, P4, and P8 were used, as these subharmonic
responses were hardly detectable in the occipital O1 and O2
channels.

Statistical Analysis
To assess the statistical significance of the harmonic and
subharmonic components, we compared the spectra of EEG
signals during stimulation periods and rest periods averaged for
each subject and we tested the significance of the hypothesis
that the median of differences between spectral power in these
two conditions was zero. The significance was calculated using
the one-sided Wilcoxon signed rank test. When analyzing the
harmonic component of the SSVEP response, we additionally
applied False Discovery Rate (FDR) correction for multiple
comparisons (Benjamini and Yekutieli, 2001). The maximum
FDR level (q-value) was set to 5%.

Ethics Statement
All experimental protocols were approved by the Research Ethics
Committee at the University of Social Sciences and Humanities
in Warsaw, Poland. All methodological procedures were carried
out in accordance with the approved guidelines. All subjects
declared an absence of neurological and mental illnesses, and
were screened for photosensitive epilepsy using the standard
clinical EEG test. Informed, written consent was obtained from
all subjects.

Computational Model
The model used in this study corresponds to the lumped alpha
rhythm model initially proposed by Lopes da Silva et al. (1974).
It consists of two interacting heterogeneous populations of

neurons. Excitatory cells of the main population project to the
interneurons through excitatory AMPA synaptic connections
while the latter population feeds back to the main cells with fast
GABAA receptor mediated inhibitory postsynaptic potentials.
The strength of interactions between the two populations is
regulated by the constants C1 and C2, which describe the
coupling from excitatory to inhibitory and from inhibitory to
excitatory populations, respectively. A schematic diagram of the
model is shown in Figure 1A, while its frequency characteristic,
showing selectivity in the alpha range at around 10Hz, is shown
in Figure 1B. Each population is described by the time courses
of postsynaptic potentials and a nonlinear sigmoidal transfer
function, which describes the conversion between the mean
membrane potential of a neuronal population and the firing rate
of this population (number of pulses per second—pps). Synaptic
responses were modeled with double exponential functions of the
form:

hsyn (t) = Asyn

[

exp
(

−a1synt
)

− exp
(

−a2synt
)]

, a2syn

> a1syn, syn = {AMPA, GABAA}

Where, a1syn, a2syn are synaptic decay and rise time constants,
respectively, and Asyn is the amplitude of the synaptic response.
Static nonlinear conversions from the mean membrane potential
to firing rates in neuronal excitatory (e) and inhibitory (i)
populations are of the sigmoidal form:

fk (Vk) = G/(1+ exp
[

(Vk − θ)/σ
]

), k = {e, i}

Where G corresponds to amplitude, while θ and σ correspond
to the threshold and slope, respectively. At the threshold value of
the membrane potential, the firing rate of the population reaches
half its maximal firing rate, while σ corresponds to the degree of
population heterogeneity. The time evolution of the membrane
potential V(t) resulting from the action potential sequence Q(t)
arriving at a single synaptic connection described by the impulse
response function hsyn(t) has the general convolution form:

V (t) =

t
∫

−∞

hsyn (t − τ)Q (τ ) dτ

The mean membrane potential of the excitatory population is
modeled by convolving the incoming action potential density
from the excitatory input (P) and the inhibitory population
(fi) with the respective synaptic response functions. The mean
membrane potential of the inhibitory population is modeled
by convolving the incoming action potential density from the
excitatory population (fe) with the respective synaptic response
function.

All model parameters (13 in total) are the same as
in the original publication (Lopes da Silva et al., 1974).
Model parameters concerning synaptic responses and sigmoidal
transformations were based on single cell measurements and
were translated into neural mass model parameters as explained
in Lopes da Silva et al. (1974). Additionally, the value of the
external input of Gaussian white noise with mean 550 pps and
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FIGURE 1 | (A) Schematic diagram of the lumped alpha rhythm model. The

main population of neurons is represented by impulse responses he and hi

simulating excitatory and inhibitory postsynaptic potentials, respectively, and

the sigmoidal function fe(V ), which relates the average membrane potential to

the firing rate of the population. The inhibitory neurons are represented by the

impulse response he and the sigmoidal function fi (V ). The coupling constants

C1and C2 represent the average numbers of connections between respective

cell types. The main population receives excitatory external input P(t)

corresponding to sensory stimulation. (B) The transfer function of the model

computed analytically using linear approximation (broken line; see (Suffczynski,

2000) for details of linear model analysis) and as a ratio between the power

spectra of the simulated output and input signals (solid line). The y-axis is

dimensionless. The almost perfect overlap of solid and broken lines and the

absence of harmonics suggest that spontaneous alpha activity is generated in

the linear model’s regime.

standard deviation 10 pps was estimated based on the rate of
spontaneous discharge in the optic tract. As an extension of the
original model, we included the periodic external input, which
corresponds to periodic visual stimulation. It is modeled as a
sine or square wave with a mean of zero and amplitude of
120 pps. Periodic stimulation is linearly added to the input of
Gaussian white noise and is fed to the main excitatory population
through the AMPA synaptic impulse response function. Visual
stimulation amplitude is the only parameter that has been
added to the original model. Its value, 120 pps, was chosen by
us in order to obtain results best matching the experimental
data. Smaller/larger stimulation amplitudes led to smaller/larger
amplitudes of SSVEP spectral peaks with respect to amplitudes of
background activity.

Model output is a sum of postsynaptic potentials in the
main cell population. The units of model output correspond
to intracellular voltage and are in the millivolt (mV) range,
while the units of typical EEG signals are in the order of
microvolts (µV). This difference is due to the large difference
between transmembrane and extracellular resistivity (neglecting
membrane capacitive effects). Nevertheless, we assume that
the dynamics of model output (e.g., its dominant frequency
and harmonic components) correspond to experimentally

observed local field potentials and EEG signals. The model was
implemented using the Simulink toolbox in Matlab. Simulations
were run using the ode3 (Bogacki-Shampine) integrationmethod
with a fixed time step of 2ms, resulting in a sampling rate for
simulated signals of 500Hz.

Data Analysis of Simulated Signals
All simulated signals were analyzed after initial transients died
out. Spectra were computed in the same way as those of the
experimental data. Amplitude spectra were obtained with FFT
using the fft procedure in Matlab. Power spectra were computed
by squaring and log10 transforming the amplitude spectra. For
spectral analyses, single trials of N = 4096 data points were
used. The plots in Figure 4 were produced by running the model
for a range of stimulation frequencies from 0.1 to 50Hz with
0.1Hz resolution and then computing the power spectrum for
each run in the way described above. In the simulations in
Figure 4, the noise component was removed from the input
to improve the clarity of the plots, as with noise present, the
patterns of harmonically related components were unchanged
but more blurred. Colormaps were produced by mapping the
spectral power values into colors (using the pcolor procedure in
Matlab).

RESULTS

Experimental and Simulated SSVEP
Spectra
The experimental SSVEPs and their spectra recorded during sine
and square wave stimulation at 5Hz are shown in Figure 2A.
It can be seen that both waveforms induce response at the
fundamental and higher harmonic frequencies. The response
at the first harmonic (n = 2) is larger than the response at
the driving frequency (n = 1). This effect is more pronounced
for square wave stimulation as the response at 10Hz clearly
dominates the amplitude spectrum (Figure 2A, middle column,
bottom), but it is also present for sine wave stimulation
(Figure 2A, middle column, top). The experimental SSVEPs and
their spectra for 15Hz stimulation are shown in Figure 3A. The
responses at the driving frequency (n = 1) clearly dominate the
amplitude spectra for both sine and square wave stimulation
(Figure 3A, middle column, top and bottom). Higher harmonics
(n = 2 and 3) are also present but since they are of smaller
amplitude, they can only be seen on the logarithmic power
spectra (Figure 3A, right column, top and bottom). It can be
also noticed that the spectral amplitudes of the responses to
sine and square wave stimulation are comparable (Figure 3A,
middle column, top vs. bottom), contrary to 5Hz stimulation,
where the response to square wave stimulation is larger than
the response to sine wave input (Figure 2A, middle column, top
vs. bottom). All SSVEP peaks (fundamental components and
harmonics) in Figures 2, 3 were statistically significant after FDR
correction, with p-values lower than 0.0185 and 0.001 for 5 and
15Hz stimulation, respectively.

Simulated SSVEPs and spectra for 5 and 15Hz stimulation
are shown in Figures 2B, 3B, respectively. A close resemblance
between real SSVEP recordings and simulated SSVEPs, including
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FIGURE 2 | Comparison of EEG recordings (A) and modeling (B) results for 5Hz stimulation. In each row, signals together with their amplitude and power spectra

are shown. In part (A), in order to increase the signal to noise ratio, the average spectra and signals for all 10 subjects are shown. A comparison of the first and

second row shows that square wave stimulation evokes a stronger first harmonic (at 10Hz) than sine wave stimulation does. All SSVEP peaks (fundamental

components and harmonics) were statistically significant. In part (B), the overall shape of the signals and spectra can be seen to be in accordance with the real data.

FIGURE 3 | Comparison of EEG recordings (A) and modeling (B) results for 15Hz stimulation. In each row, signals together with their amplitude and power

spectra are shown. In part (A), in order to increase the signal to noise ratio, average spectra and signals for all 10 subjects are shown. It can be seen that sine and

square wave stimulation evoke similar responses, with the strongest response at the fundamental frequency of 15Hz. All SSVEP peaks (fundamental components and

harmonics) were statistically significant. In part (B), the overall shape of the signals and spectra can be seen to be in accordance with the real data, but there is an

absence of slow fluctuation of the envelope of the signal.
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similarity in signal shapes as well as in positions and magnitudes
of spectral peaks, can be seen. The main difference is the slow
modulation of the amplitude of experimental signals compared
to the signals generated by the model, which look more stable.
The modulation is caused by the low frequency components of
the EEG signal that were not entirely filtered out by the low pass
filter.

Neural Mechanisms Generating SSVEP
Harmonics
The close resemblance between real and simulated SSVEPs
and spectra suggests that the computational model can be
used to investigate the origin of whole number relations
observed between stimulus and response frequency. As the only
nonlinear elements in the model are the two static nonlinear
transformations fe(V), fi(V), we looked at their roles in the
generation of harmonic components of SSVEPs. To this end,
we applied a systematic model analysis and stimulated the
model with sine and square wave periodic input for a range
of stimulation frequencies as described in the Methods section.
Firstly, we performed the analysis in an “open loop” condition,
where the input signal passed through only one nonlinearity.
This was achieved by setting the coupling constant C2 to zero
(see Figure 1A) and analyzing the mean membrane potential

of the inhibitory population, i.e., the signal after transformation
fe(V) but just before transformation fi(V). Secondly, we analyzed
the intact circuit of two interacting populations and the mean
membrane potential of the excitatory population, i.e., the signal
after both transformations fe(V), fi(V). All other blocks in the
model are linear and may influence the amplitude and phase
of the input frequencies, but cannot generate new spectral
components. The results are summarized in Figure 4.

Figures 4A,B show the responses to sine and square wave
inputs, respectively, after single nonlinear transformation fe(V).
These figures show new spectral components that were not
present in the input signals. This is most evident for sine
wave stimulation (Figure 4A) as the response contains second
and third harmonics of the stimulus frequency. Similarly, the
response to square wave input (Figure 4B) contains even and
odd harmonics, although only odd components are present in
the input. Although, new spectral components can be observed
after single nonlinear transformation, these components occur
at exact integer multiples of the stimulus frequency and do
not contain subharmonic responses. Responses to sine and
square wave inputs in the full model, containing two nonlinear
transformations, are presented in Figures 4C,D. It can be
noticed that additional subharmonic frequency components
appear in the response to both sine and square wave inputs.
These subharmonic responses are observed for stimulation

FIGURE 4 | Analysis of the neural mechanisms generating SSVEP harmonics in the model. In each plot, the response frequency (y-axis) as a function of the

stimulus frequency (x-axis) is shown. Color represents the spectral power of the response calculated as squared and log10 transformed amplitude spectrum. The

color bar showing the logarithmic power scale in dB is shown at the bottom right. Parts (A,B) show responses to sine and square wave stimulation in the model with

coupling constant C2 = 0 and with the mean membrane potential of the inhibitory population taken as the model output. Under this condition, the signal passes

through only one nonlinearity. It can be noticed that there are new spectral components that were not present in the input signals. They occur at integer multiples of

the stimulus frequency and do not contain subharmonic frequencies. Parts (C,D) show responses to sine and square wave stimulation in the intact circuit, where the

signal passes through both nonlinear transformations. More complex response patterns can be observed, including additional higher harmonic components and

subharmonic responses for stimulation frequencies of 17–21.5Hz (C) and 15–22Hz (D). Overall, this figure shows that experimentally observed SSVEP spectra can

be well explained by two interacting populations with nonlinear characteristics.
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frequencies in the range of 17–21.5Hz (Figure 4C) and
15–22Hz (Figure 4D). The first subharmonic response (n =

1/2) corresponds to the alpha frequency range at around 8–
11Hz, while the higher subharmonic responses (n = 3/2 and
5/2) visible in Figures 4C,D correspond to its multiples. A
comparison of Figures 4C,D shows that after the two nonlinear
transformations, the response patterns become comparable for
both sine and square wave inputs. The main difference is in the
small-power, higher harmonic components (n > 4) and weak
alpha frequency response present for the square wave above the
15–22Hz range but absent for the sine wave.

The higher subharmonic components (n = 3/2 and 5/2)
present in Figures 4C,D have not been reported in experimental
data so far, and thus may be considered as novel model
predictions. They were in turn examined using SSVEPs recorded
during 15Hz square wave stimulation.

Analysis of Subharmonic Responses
A response at the first subharmonic frequency of 7.5Hz (n= 1/2)
was observed in eight out of 10 subjects during the first second
after stimulation onset. All subsequent analyses described in this
section were performed on this selected group of subjects. The
highest magnitude of first subharmonic response was present at
the P4 or P8 electrode, depending on the subject. Therefore, for
the purpose of further analysis we averaged spectral amplitudes
from these two electrodes. The average amplitude spectrum
across eight subjects and the two selected electrodes is shown in

Figure 5A. Harmonic responses (n = 1, 2, 3) as well as the first
subharmonic (n = 1/2) are visible. All harmonic responses were
statistically significant, as reported earlier for all 10 subjects.

To assess the significance of the first subharmonic response,
1 s stimulation epochs and 1 s resting periods were averaged, and
the spectral amplitudes were compared in these two conditions
(see Section Data Analysis). An increase in EEG amplitude
at the first subharmonic frequency (n = 1/2) was found, and
determined to be significant at p < 0.019. To test the significance
of higher subharmonic frequencies, i.e., 22.5 and 37.5Hz, we used
a referential montage of electrodes in order to remove common
sources of EEG activity present in both resting and stimulated
epochs. We decided to use the classic bipolar montage P4-P8
and its analog P8-P3. The second subharmonic at 22.5Hz was
observed but did not reach statistical significance, while the third
subharmonic gave critical p values at the statistical significance
threshold for the classic bipolar montage (p < 0.055) and below
the threshold for the other montage (p < 0.020). The average
amplitude spectrum across eight subjects for the referential P8-
P3 montage is shown in Figure 5B, where the peak at 37.5Hz
is significantly higher during stimulation (red line) than during
resting periods (blue line).

DISCUSSION

The aim of this work is to examine harmonic and subharmonic
components of real SSVEPs and SSVEPs from a simple

FIGURE 5 | Amplitude spectra of SSVEPs in the selected group of eight subjects exhibiting subharmonic responses to square wave stimulation at

15Hz. Part (A) shows the average spectra of signals from electrodes P4 and P8 during stimulation (red) and rest periods (blue) together with the standard error of the

mean. Multiples of the fundamental frequency (n = 1, 2, 3) can be seen. The first subharmonic response (n = 1/2) visible at 7.5Hz is statistically significant as well as

the fundamental component and harmonics. Part (B) shows the average spectra of signals from the referential montage of electrodes P8–P3 during stimulation (red)

and rest periods (blue) together with the standard error of the mean. Multiples of the fundamental frequency (n = 1, 2, 3) can be seen together with the third

subharmonic response visible at 37.5Hz. The fundamental component, harmonics and subharmonics (n = 5/2) are statistically significant.
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computational model, in order to provide additional insight
into their generation. First we showed that both sine wave
stimulus (which contains no harmonics) and square wave
stimulus (which contains only odd multiples of fundamental
frequency) induced both even and odd harmonics in the
power spectra of the recorded EEG signals (Figures 2, 3).
This is in agreement with results from Teng et al. (2011),
and suggests that the appearance of harmonics in an SSVEP
spectrum cannot be simply explained by their presence in
the input. Instead, they may arise due to the nonlinear
transformation of the input by the visual system. Such a
possibility was suggested in early SSVEP studies (Kelly, 1966;
van der Tweel and Spekreijse, 1969; Lopes da Silva et al., 1970a;
Regan and Regan, 1988), and the origin of various forms of
nonlinearities i.e., saturation, nonlinear oscillations responsible
for the generation of subharmonics, and essential nonlinearities,
was attributed to various stages of processing in the retina-
cortex system. E.g., Clynes et al. (1964) noted that cortical
evoked potentials triggered by increasing and decreasing rates
of light intensity had the same polarity, thus doubling the
stimulation frequency. They related this to various “on” and
“off” receptors in the retina. It was subsequently observed by
Lopes da Silva et al. (1970a) that the essential nonlinearities
corresponding to the rectification of “on” and “off” responses to
light stimulation were mainly dominant in the lateral geniculate
nucleus, which exhibited marked frequency doubling. In line
with these studies, McKeefry et al. (1996) observed that response
to chromatic stimulation was dominated by the fundamental
component, while achromatic stimulation additionally triggered
a second harmonic component, which was attributed to
magnocellular neurons with transient characteristics. Saturation-
related nonlinearities were also observed at large modulation
depths (the ratio of the modulation amplitude and the carrier
amplitude) of 40–80%, but were shown not to be the primary
factor affecting the appearance of harmonics at these depths
(Lopes da Silva et al., 1970a). Another type of nonlinearity
responsible for the generation of subharmonics was identified
at the cortical level, where subharmonics were exclusively found
(Lopes da Silva et al., 1970a).

The early SSVEP studies used mathematical, descriptive
models to analyze characteristics of the visual system under
periodic light stimulation. These models of both nonlinear (e.g.,
Kelly, 1966) and linear (e.g., Lopes da Silva et al., 1970b) type
showed that static transfer functions can accurately describe
both amplitude and phase characteristics of SSVEPs, but they
did not determine the physiological mechanisms underlying
the observed responses. Recently, Roberts and Robinson
(2012) developed a physiologically based neural field model
of the thalamocortical system that reproduced many features
of nonlinear cortical responses to periodic light stimulation.
An elegant and extensive analysis of the model’s properties
revealed a number of intriguing phenomena to be considered
in future experiments, including chaotic behavior. The results
concerning the spectral properties of SSVEPs are similar to
our results (e.g., the existence of harmonics and subharmonics
was demonstrated). Nevertheless, the work by Roberts and
Robinson (2012) focuses mainly on studying the mathematical

properties of the model, while our study aims to provide a
model-based interpretation of the observed SSVEPs regarding,
e.g., differences between sine- and square-evoked signals and
the relative height of peaks in their spectra. Our results indicate
that even a simpler, well-established, cortical neural mass model
is capable of explaining a number of properties of driven EEG
signals.

Comparing the SSVEP responses to 5 and 15Hz stimulation
reveals two main features. The first feature is that the amplitude
spectrum for 5Hz stimulation contains strong responses—the
fundamental response at 5Hz as well as strong harmonic
responses at 10 and 15Hz (Figure 2A), while the amplitude
spectrum for 15Hz stimulation contains mainly the fundamental
response at 15Hz (Figure 3A). In both cases, harmonic responses
above 15Hz are present as can be seen on the corresponding
power spectra in the logarithmic scale, but these higher frequency
components are significantly attenuated. The attenuation and
hence the observed difference between the number of strong
harmonics at 5 and 15Hz stimulation can be explained using
the computational model by considering the properties of the
transfer function of the modeled network. As can be seen
in Figure 1B, the network has a dominant peak at around
10Hz, and the magnitude of the response decreases sharply
for frequencies further away from the peak frequency. This
may explain why the higher harmonics of 15Hz stimulation,
e.g., 30 and 45Hz, are not visible on the amplitude spectra
(Figures 3A,B, middle panel).

The second notable feature of the SSVEP responses to 5
and 15Hz stimulation is that the difference between responses
to sine and square wave stimulation is only present for 5Hz
stimulation (Figure 2A) and is absent for 15Hz stimulation
(Figure 3A). This difference is manifested by the first harmonic
(10Hz) being much larger than the fundamental response
(5Hz) for square wave stimulation compared to sine wave
stimulation, where fundamental and first harmonic responses
are comparable (Figure 2A). In the computational model, the
increase of the first harmonic (10Hz) for 5Hz stimulation
is also present and can be attributed to the phenomenon of
entrainment. In general, entrainment refers to synchronization
of two or more independent oscillators with differing natural
frequencies, due to their coupling. In our study, entrainment
by the first harmonic of the stimulus occurs because its
frequency (10Hz) is close to the natural resonant frequency
of the model (Figure 1B). Entrainment of alpha activity by
the first harmonic (∼5Hz light flashes; Miranda de Sá and
Infantosi, 2005), and by the first harmonic (∼5Hz light flashes)
and second harmonic (∼3.5Hz light flashes; Gebber et al.,
1999) has been reported before, but in these studies the
subjects were stimulated by periodic flashes, which contained
odd multiples of stimulation frequency in their spectra. In
our study, entrainment of alpha rhythm was also present for
pure sine wave stimulus at 5Hz, supporting a hypothesis of
a nonlinear origin of this phenomenon. Alternatively to an
entrainment hypothesis, the first harmonic response (10Hz)
for 5Hz stimulation could arise due to rectification of “on”
and “off” responses as e.g., suggested by Clynes et al. (1964)
and termed “essential nonlinearities” (Kamp et al., 1960; van
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der Tweel, 1961; Lopes da Silva et al., 1970a). Our results
do not reject the existence of such essential nonlinearities
but do not confirm them either. In the computational
model, the frequency doubling phenomenon is not present
as the “on” and “off” responses have different waveforms
and opposite polarities. This shows that the presence of
essential nonlinearities is not necessary to explain the observed
results.

Another phenomenon related to the nonlinear properties
of the modeled network is associated with subharmonic
frequencies. These subharmonic responses are observed in the
computational model for sine wave stimulation in the range
of 17–21.5Hz (Figure 4C) and for square wave stimulation
in the range of 15–22Hz (Figure 4D). The first subharmonic
response at 1/2 f 0, with f 0 being the fundamental frequency,
is observed at the resonant network frequencies (i.e., the
7.5–11Hz range). Higher harmonics of the subharmonic
response (3/2 and 5/2 f 0) are also present in simulated
signals. The appearance of these subharmonic responses in
the model is related to interactions between the two neuronal
populations with nonlinear characteristics. This can be inferred
by comparing Figures 4A,B with Figures 4C,D. A single
nonlinear transformation of the input may produce only
harmonic responses that are exact multiples of the stimulus
frequency (Figures 4A,B). Two nonlinear transformations
arranged with negative feedback are sufficient to generate a
resonant circuit and subharmonic responses (Figures 4C,D).
The first subharmonic at the alpha frequency range is
related to the entrainment of the resonant frequency by the
stimulus with double alpha frequency. The subharmonic
response does not have a purely sinusoidal shape, and this
is manifested by its discrete spectrum with peaks at n/2 f 0,
n= 1, 3, 5....

First subharmonic responses have been observed
experimentally. Lopes da Silva et al. (1970a) showed that a
subharmonic at 1/2 f 0 was present mainly for the stimulation
range of 32–38Hz at the end of the typical 6 s response. In
a study by Herrmann (2001), subharmonic responses in the
alpha frequency range (9–13Hz) were reported for stimulation
frequencies in the range of 17–25Hz. Similarly, it was argued
that stimulation in the 24–27Hz range might cause alpha range
synchronization through subharmonics of the stimulus (Angelini
et al., 2004).

Although multiples of the first subharmonic response were
predicted by Roberts and Robinson (2012) and by the model in
the present study, they have never been reported in experimental
data, to the best of our knowledge. After thorough examination
of the recorded SSVEPs, we found evidence to validate these
predictions. In Figures 5A,B, the amplitude spectra for 15Hz
square wave stimulation contain peaks at fundamental (15Hz)
and harmonic (30 and 45Hz) frequencies. Depending on
electrode position andmontage, subharmonics at 7.5 (Figure 5A)
and at 37.5Hz (Figure 5B) are also visible. Another predicted
subharmonic at 22.5Hz was visible as well at some electrodes,
but it never reached a statistical significance, probably because
the peak was masked by broad-band beta activity (15–30Hz).
It should be emphasized that subharmonic frequencies were

detected only in eight out of 10 subjects, mainly at the beginning
of the stimulation, and tended to occur in parietal (P) rather the
occipital (O) electrodes.

While our computational model can reproduce many
experimentally observable facts and can relate them to general
nonlinear characteristics of neuronal populations, it is still only
a simplified approximation of real brain networks and cannot
account for the full spectrum of spontaneous SSVEP responses.
E.g., a spontaneous SSVEP spectrum may contain distinct
local peaks that correspond to various brain rhythms. The
spontaneous activity generated by the model without stimulation
has single dominant frequency in the alpha range (Figure 1B).
Furthermore, harmonically related responses have been observed
for stimulation frequencies up to 50Hz (Figure 7 in Herrmann,
2001), but our model does not generate harmonic responses
for stimulation frequencies above 25Hz (Figures 4C,D) as
these higher frequencies are strongly attenuated due to model
band-pass frequency characteristics. This may be considered
as a limitation of the model, and is a consequence of its
simplicity.

In summary, a simple neural mass model was used to
explain a number of features observed in SSVEP responses
to visual stimulation. Early studies of cortical and subcortical
responses to periodically modulated light attributed the origin of
SSVEP spectral components to various forms of nonlinearities
i.e., saturation, nonlinear oscillations responsible for the
generation of subharmonics and essential nonlinearities. Our
study showed that two cortical neuronal populations described by
nonlinear sigmoidal characteristics might account for observed
SSVEP spectra, despite none of the earlier suggested types
of nonlinearities being explicitly present in the model (except
saturation, but it was never reached during model operation).
The model predicted some new SSVEP characteristics that were
subsequently confirmed by the experimental data, and this
increases our confidence in the value of the model. Thus, our
combined experimental and modeling study may be considered
a step forward toward full understanding of the physiological
processes involved in generating harmonically related SSVEP
responses.
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