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Spiking Neural Networksconstitute the most promising approach to develop realisti
Arti cial Neural Networks (ANNSs). Unlike traditional rig rate-based paradigms,
information coding in spiking models is based on the preciséming of individual spikes. It
has been demonstrated that spiking ANNs can be successfullgnd ef ciently applied to
multiple realistic problems solvable with traditional sategies (e.g., data classi cation or
pattern recognition). In recent years, major breakthroughin neuroscience research have
discovered new relevant computational principles in diffent living neural systems. Could
ANNSs bene t from some of these recent ndings providing nove elements of inspiration?
This is an intriguing question for the research community ahthe development of
spiking ANNSs including novel bio-inspired information cadg and processing strategies
is gaining attention. From this perspective, in this work, adapt the core concepts of the
recently proposedSignature Neural Networkparadigm—i.e., neural signatures to identify
each unit in the network, local information contextualiz&n during the processing, and
multicoding strategies for information propagation regaling the origin and the content
of the data—to be employed in a spiking neural network. To the é&st of our knowledge,
none of these mechanisms have been used yet in the context of MNs of spiking
neurons. This paper provides a proof-of-concept for their pplicability in such networks.
Computer simulations show that a simple network model likehte discussed here exhibits
complex self-organizing properties. The combination of mitiple simultaneous encoding
schemes allows the network to generate coexisting spatiogmporal patterns of activity
encoding information in different spatio-temporal spacesAs a function of the network
and/or intra-unit parameters shaping the corresponding ecoding modality, different
forms of competition among the evoked patterns can emerge esn in the absence of
inhibitory connections. These parameters also modulate tamemory capabilities of the
network. The dynamical modes observed in the different infonational dimensions in a
given moment are independent and they only depend on the pamaeters shaping the
information processing in this dimension. In view of thesessults, we argue that plasticity
mechanisms inside individual cells and multicoding stragges can provide additional
computational properties to spiking neural networks, whib could enhance their capacity
and performance in a wide variety of real-world tasks.
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1. INTRODUCTION powerful as traditional ANN paradigmsMaass, 1996, 1997a;
Natschlager and Ruf, 1998; Ruf and Schmitt, }99%#
Biological neural circuits are powerful computational syste applied engineering, spiking ANNs have been successfully
that e ciently process a great amount of data in real time used in di erent practical applications, such as motor control,
with extensive plasticity capabilities. This makes the nesvo odor recognition, image classication, or spatial navigatio
system a source of inspiration when designing engineereldetween others (seéonulak and Kasinski, 2011for an
tools. In this sense, many Articial Neural Network (ANN) overview).
paradigms mimicking the computational principles performed Although they are closer to their biological counterparts,
by living neural systems have been developed to solve radéd-wo most ANN paradigms of spiking neurons do not include relevant
problems {lichie et al., 1994; Bishop, 199MNevertheless, the computational principles experimentally and theoretically
bio-inspiration in most cases is limited to a knowledge aboustudied in the nervous system. For instance, most neuro-iespi
neural information processing that was available more th@n 6paradigms consider network elements as indistinguishable
years ago. A challenge in ANN research is related to incotgoraunits; they only implement synaptic learning based on adjigstin
novel bio-inspired information coding and processing stgigs  the synaptic weightsBohte et al., 2002b; Kube et al., 2008;
to the network design since they can contribute to enhan@e thPonulak and Kasinski, 20);land individual units are considered
network capacity to perform a given tasRi{mbell et al., 2004 integrators that integrate synaptic input over time until a/gn
Information coding in the nervous system is mainly based orthreshold is reached. Experimental evidence demonstrates
the generation, propagation, and processing of action potentiathat neural computation does not only include synaptic
or spikes(Bialek et al., 1991; Kandel et al., 1991; Rieke et aintegration and synaptic plasticity, but alsabcellular plasticity
1999. Most of the neural computation is driven by these eventsi.e., intra-unit mechanisms that allow a neuron to tune its
The classical view of neural coding emphasizes the importandetrinsic dynamics and shape the computation of its output
of information carried by the rate at which neurons discharg response as a function of the incoming informatio@h@ng
action potentials. However, experimental evidence indititat and Linden, 2003; Turrigiano and Nelson, 2004; Davis, 2006;
living neural systems use many dierent information coding Turrigiano, 200). Likewise, it is commonly considered that
strategies Rabinovich et al., 2006b; Middleton et al., 2))11 the information arriving to a neuron is encoded through a
which greatly enhances their processing capacity as comparsihgle code, e.g., the rate or the precise timing of spikes, when
to the classical view. In this scenario, temporal coding @®er the need for several simultaneous codesulticoding in the
as a strategy commonly used by neural systems, emphasizingrvous system seems to be apparént(rre et al., 2006; Kayser
that, unlike (or in addition to) the ring rate paradigm, neal et al., 2009; Panzeri et al., 2)1Qiving cells receive many
information may be carried by precise individual spike tim$ng inputs from di erent sources and send their output to di erent
(e.g., seblainen and Sejnowski, 1995; Lestienne, 1996; Diesmameurons too. An e ective way to improve communications is
etal., 1999; Reinagel and Reid, 2002 combining multiple encoding modalities in the same signal.
Traditional ANN paradigms are mostly based on highlyNot all the readers have to be interested in the same modality
simpli ed information processing mechanisms derived froneth at the same time, specially when we talk about multifunctiona
neural coding classical view. However, the growing expertaie networks. This kind of information processing requires ofab
evidence of the importance of temporal code to explairinformation discrimination/contextualization mechamis that
neural computation gave rise to thepiking Neural Networks allow a neuron to process the multiple simultaneous codes
nowadays considered the third generation of ANNBe(stner, in its input signals one by one or simultaneously in order to
1995; Maass, 199)Hn the two previous generations, neuron perform di erent tasks. Subcellular plasticity emerges as hlhig
models employ threshold gates and activation functionshsucrelevant strategy to perform this context-dependent infotima
as sigmoid functions, to propagate analog values to theprocessing.
neighbors. In contrast, spiking neurons communicate and Signature Neural Networkgepresent a novel self-organizing
encode information using discrete spikeSe(stner et al., 1993; bio-inspired ANN paradigm that incorporates some of these
Deco and Schirmann, 1998; Maass and Bishop, 2001; Gerstoencepts l(atorre et al., 2011 Behind this ANN paradigm,
and Kistler, 2002; Bohte, 2004; Brette et al., 2007; Ponultiere are three main ideas. (1) Each neuron of the network
and Kasinski, 2001 This allows spiking neural networks to has a signature that allows its unequivocal identi catiog b
solve computational tasks using a ring-rate based strategthe rest of the cells. (2) The neuron outputs are signed with
as their analog counterpartsO(Connor et al., 2013; Diehl the neural signature. Therefore, there are multiple codes in a
et al., 2015; Esser et al., 2)1but discrete spiking activity message regarding the origin and the content of the infoiamat
provides additional dimensions for information coding (g.9 (3) The single neuron discriminates the incoming informatio
time, frequency or phase), which makes ANN of spiking neuronsnd performs a distinct processing as a function of the multiple
a promising approach for solving complex computationalcodes in the network. Nevertheless, in spite of being inspimed
tasks. Theoretical e orts try to illustrate that computing din a precise temporal structure, signature neural networks are n
modeling with these networks may be biologically plausiblepiking ANN. The main goal of this work is to assess whether
and computationally e cient (Maass, 1997a; Izhikevich, 2004;the information coding and processing strategies proposed by
VanRullen et al., 2005; Cessac et al., 20ltthas been shown the signature neural network paradigm are plausible for spiking
that spiking neural networks are at least as computationallyjetworks. With this aim, we morph the core concepts of the
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existing non-spiking paradigm to build an ANN of spiking and/or di erent relevant aspects of the inputs into dierent
neurons. coexisting spatio-temporal spaces that encode informatioa in
Bursting activity consists of series of high-frequency epik distributed network form.
that alternate with quiescent periods with only subthreshol  The analysis of the emerging collective dynamics and the
activity (Izhikevich, 200R This is particularly suitable to self-organizing properties of the network discussed in this
implement multicoding, since it involves the presence of apaper points out that novel bio-inspired processing strategies
least two di erent time scales that can serve to encode distin could enhance the spiking ANNs capacity and performance.
informational aspects. It has been also suggested that the buln particular, we provide a proof-of-concept that combining
length or the number of spikes in a burst can be used by livingnultiple encoding modalities in the network allows transfong
neurons to encode informatiori{epecs and Lisman, 2003, 2004 incoming data into di erent spatio-temporal spaces, from which
Information can also be encoded in the intraburst ring patte  di erent aspects of the data, including their source, could be
In the bursting activity of the leech heartbeat control citc  exploited one by one or globally. Di erent collective processi
the temporal structure of the rst spikes in the burst allowsstrategies can be implemented in each information dimension
predicting the length and number of spikes of the buSta(mpos only by tuning the synaptic or intra-unit parameters, which
et al., 200). Another relevant temporal structure within the facilitates parallelism and multifunctionality in the netvko
burst is the intraburst neural signature, in which the sigma  All these features would potentially increase the computation
neural network paradigm is inspirethtraburst neural signatures power of spiking ANNs and their ability to model complex
are very precise and cell-speci ¢ spike timings experimentallzigh-dimensional processes.
observed in the bursting activity of cells of di erent vertates
and invertebrates living neural circuitsS{ucs et al., 2003, 2 MODELS AND METHODS
2005; Garcia et al., 2005; Zeck and Masland, 2007; Brochini
et al., 201). In central pattern generators (CPGs), they depend.1. Network Model
on the synaptic organization of the network gtorre et al., Signature neural networks use neural ngerprints to identify
2002; Rodriguez et al., 2002; Szlcs et al.,)20bése precise each individual unit of the ensemble_gtorre et al., 2001
temporal structures coexist in the neural signals with rafev For the spiking network proposed here, we take inspiration
information encoded with other encoding modalities. Theirfrom the CPG circuits and use interspike interval signatuies t
possible functional meaning for the neurons that belong te th achieve this feature. Thus, the ngerprint of a neurom)(is
same or to other neural system is still an open question. Model cell-speci c intraburst spike timing distribution describbes
simulations of CPG circuitsL@torre et al., 2004, 2006, 2007 the sequence&s D fISly, ISk, ... ISl,g wherelSl, represents
point out that they can have important implications for the interspike intervals between consecutive spikes within tineesa
understanding of the origin of the CPG rhythms, the fast andburst. The timing of the last spikes in the bursting activitly o
ne tuning to modulation and the signaling mechanisms to eth the pyloric CPG cells varies from one burst to another; while
interconnected systems (other CPGs or muscles that the CP@Be rst spikes in the burst are highly reliabl&icon et al., 1999;
controls). These modeling results have shown that cellispec Varona et al., 2001g)land contain the neural signaturé&gics
intraburst spike timing can be part of a multicoding stratedy o et al., 2003, 2005Mimicking this behavior, we consider two
bursting neurons. The readers of these signals may be aldado parts in a burst. The rst part is used to sign the output
these characteristic ring patterns to perform di erent tasks messages and contains the signature of the emitter neusgn (
response to the multifunctional signals from each CPG cell. ~ The spike timings of the second part of the burst are given by
In the context of ANN, bursting activity has been labeled as preferred output patternR, D ftg D 0,ts,ts,...,tnQ that
a “non-standard” behaviorampakis, 2013 However, taking changes dynamically as a result of the single neuron plgstgze
into account the previous considerations, the individualitan Section 2.1.3).
of the proposed network have bursting behavior. We argue that Spiking-bursting activity allows the simultaneous propagati
the additional dimensions to encode information provided byof dierent units of information throughout the network
bursting activity can signi cantly increase the computai@ (multicoding). Therefore, di erent spatio-temporal spaces te
power of a spiking network. In particular, here we considersimultaneously used to globally encode and store inforamatin
two encoding schemes in the bursting signals: a rhythmithe network discussed in this paper, we consider two coexisting
encoding modality, in which information is carried by the units of information in each neural signal: the burstingdreency
bursting frequency; and a spike-timing encoding modality; i and the neural ngerprints included within the burst. In thest
which information is carried by speci c intraburst spike patts.  dimension, the network must generate and coordinate spatio-
Each individual neuron has a characteristic intraburst ¢u temporal patterns of propagating transient bursting activity
signature that uses to sign its output signals in the spikertgn (rhythmic encoding modality). To achieve this, we impose two
encoding dimension. Finally, the model incorporates intnait ~ constraints (Viedemann and Luthi, 2003; Tabak et al., 2010
history-dependent processing rules to compute the response {ii) predominance of excitatory synapses and (ii) a refractory
the spike-timing encoding dimension as a function of previougperiod in each neuron following hyperexcitation. Informatio
incoming signals. This local contextualization mechanisam processing in the second dimension is based on the emission
be considered a particular case of subcellular plasticity. Thend recognition of specic neural signaturedr{stan et al.,
idea behind this network design is transforming di erentrstili ~ 2004; Carrillo-Medina and Latorre, 20)5i.e., information
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in this dimension propagates encoded in a spike-timingpotential.” Figure 1A illustrates schematically the neuron
modality. An intra-unit contextualization mechanism dds spontaneous dynamics. Our model neuron integrates and
the signature emission and recognition processes. This dogsocesses the information received through its di erent input
not only allow us to illustrate a novel information procesgin channels (synaptic integration), adapts its ring pattern twet
strategy in the context of spiking neural networks, but alse t incoming information (intra-unit plasticity), and generas a
dynamical richness that subcellular plasticity can provaléhese coherent signed output signal. During subthreshold acgtivihe
networks. spontaneous evolution of the neuron activity is determingd b
the probabilityp—the transit probability of the internal state per
2.1.1. Neuron Spontaneous Dynamics time s_tep. When the membr_ane potential of a neumrreache§
Many spiking models generate output bursts depending or'ihe ring threshold (TH), this generates a sequence of spikes
the parameter settings and/or the input stimuli (e.g., the (not a single spike). The temporal distribution of spikes within
models by Hindmarsh and Rose, 1984<omendantov and the response burst _|s given by a ring sequence compos_ed of
Kononenko, 19960r Liu et al., 199&hat we have previously concatenating the signatur&J and the preferrgd output.splke
used to investigate the functional meaning of neural sigres). pgttern () of the neuron. Then, the StOChaSt',C dynamics of a
However, simulations show that the neural signatures irsthe single neuron depends on the temporal evolution of the neuron

models mainly depends on the network connectivitya(orre acti_vi_ty and vv_hether_ it_ is unde_r (subthreshold activity) over
et al., 200pand, to our knowledge, none of the existing spiking(Sp'k'ng'bWStIng activity) the ring threshold. Formally
models displays an adaptive ngerprint as required by our study  During subthreshold activity\(;(t) < TH):
A possible alternative to this issue is using the mechanism
described inViarin et al.(2019 to tune neuron busting models
and produce neural signatures equivalent to those obsenved i
living cells. However, the generation of realistic signeslis out Vi(tC1)D
of the scope of this proof-of-concept.

To describe the individual behavior of each unit, we
dene a stochastic model operating in a discrete event
framework. The neuron activity is considered as a discrete/herelsy, is the synaptic input (Equation 3) ang the transit
variable and characterized in time by(t), its “membrane probability of the internal state per time step.

Vi(t) C IsynC 1 with probabilityp
Vi(t) C lsyn otherwise

1)

A ISI, ISI, IsI, 1s1, P, P, c -
AP o —~—— —~———
E /' p
subthreshold activity: bursting activity Time (a.u)
B
ci[c3fci]c2[c7]ci]c3 ‘ c7 .
100]/106]108]109]110{111 114 115 116 117 118 118 120 121 125 128 133 136
{8 3/ {8, 3}

{8; 3}

(8 3}

FIGURE 1 | (A) Schematic representation of the stochastic neuron model e main text for details)S D fISh, IShbgand P D fP4, Ppgdenote the neuron signature
and the preferred output pattern, respectively. Note thathe intraburst ring pattern is different in the rst and the seond burst. This is because, as(B) illustrates, the
neuron recognizes a signature at the time step pointed by tharrow and intra-unit plasticity changes the neuron responsin the spike-timing encoding modality.

(B) Example of signature recognition. For each incoming spikehe local informational context keeps track of the correspoding input channel and spike timing (e.g.,
C1-100 means that at time step 100 a spikes arrived to the newmn through channel C1). This transient memory provides an tira-unit contextualization mechanism to
the single neuron. For example, if the arrow ifA) corresponds to time step 136 and an input spike arrives throgh channel C1, the neuron can contextualize this spike|
and determine that the signaturef8, 3ghave been received four times in the recent history. If this l#e is greater than the learning threshold), the neuron recognizes
this signature and, consequently, modulates its output rig pattern as illustrated in the second burst ofA). (C) Network topology. Each neuron is directly connected
to its eight nearest neighbors with periodic boundary condions. Then, neighbors of the white unit are the blue neurons
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During the generation of the burs¥(t) >D TH): spike, the neuron stores in its local context the joint infation
about the input channel and the spike timingigure 1B). In this
AP ift Dt Cty way, di erentintra-unit plasticity rules can be de ned to talnto
THC1 iftDt;Ct, C1,8n6DN consideration the input spike timings. In particular, the fadling
VitC1)b _0 ftDtCtynC 1 (2)  rule can be used to recognize speci ¢ neural signatures:
E Vi(t) C 1 otherwise with probabilityp . . . .
" Vi(t) otherwise when a spike arrives .to a target unit, this checks. Wh.ether
the spike pattern received though the corresponding input
whereN is the number of spikes in the ring sequencg C P)), channel appears in its local informational context so many
tn denotes the timing of the nth spike in this sequence, (i.e., times as a given learning threshold, If so, the receptor
t; corresponds to the initial timing of the burst) and beird® recognizes this ngerprint, which implies that the preferred

the peak membrane potential to generate a spike. Note, that output pattern is overwritten with the recognized ngerprint.
during the burst generation synaptic input(y) is not taken into
account (cf. Equation 1 and 2). After generating a burst,roes
have a refractory period @&Ptime steps during whicN;(t) D 0.
Then, subthreshold dynamics starts again.

Figures 1A, Billustrate how intra-unit plasticity tunes the output
ring pattern in response to the ngerprint recognition. Durig

the generation of the rstburstin the time series, the nenidnes

not recognize any signature. Therefore, there is not a preder
output pattern and the burst only contains the signature of the
neuron (S D fISk,ISkg. At time step 136 (pointed by the

aqlrrow), an spike arrives through channel C1. The neuron can use
its local informational contextKigure 1B) to contextualize this

neuron in the network is connected to its eight nearest nbak spike. In our case, thi; means to identify the incomipg pattern
(Figure 10 with periodic boundary conditions. As in every tE.rough th's, ckrl]annbel (in th|s.ca3‘<?, 3 gnd t? detgrmme thito
spiking neural network, neurons communicate with each othefM's ngerprint has been received four times from time ste

through the generation and propagation of spikes. Then, thél’hen, assuming that the learning thresholdjD 4, the neuron’s
interchange rule is de ned by: preferred output spike pattern changes due to the recognition of

the signatures’ D £8, 33 As a consequence, the intraburst ring
pattern of the second burst in the time series varies to encode
additional information (in the example, the sequerie® fP; D
8,P> D 3g. The neuron emits the new preferred output pattern
whereg. de nes the weight of the external stimulupulsg is ~ Until a new ngerprint is recognized or until the recognized
1 when an action potential is delivered through the externalNgerprint appears less thah; times in the local informational
channel and 0 otherwise; and, similarty, is the weight of the context (keep in mind that this is transient memory). Notkat
connection between neurons; and n; and pulsg is 1 when intra-unit plasticity can be used to compute di erent aspect @ th
Vit 1) D AP and O otherwise. Note that Equation 3 doesOutput signal as a function of the local contextualizatioat anly
not apply neither during the generation of a burst (Equation 2)the spiking ring pattern. For instance, a particular cell could
nor during the refractory period, i.e., in these situatiopsaptic ~ increase/decrease its level of activity or generate an osfpke

2.1.2. Synaptic Input

Synaptic input arrives to a neuron through two kind of input
channels: connections with other neurons and an extern
channel to introduce external stimulation into the netwokkach

X
IsynD g pulseC gi pulsg 3)
i

input is not considered. in response to speci ¢ incoming patterns independently of the
Itis important to highlight that in this paper we do not discuss Synaptic weight. _
synaptic learning (see Section 4). This implies tas constant ~ During the input processing, channels are checked randomly
for a" the Synapses and, Consequenﬂy, the ne|ghborhoowye N eaCh Iteration. In thIS Way, When the target neuron I'EGGQB
neuron does not change. multiple signatures in the same iteration, the last processed
prevails over the others. Plasticity rule does not apply during
2.1.3. Intra-Unit Plasticity the generation of a burst—i.e., once the neuron starts rithg

Incorporating subcellular plasticity to a neuron model imglie output spike pattern cannot change.
that a mechanism inside the cell allows tuning the neuron
dynamics to incoming signals and/or to particular processing2.2. Analysis Methods
states. We consider here a history-dependent contextdimiza 2.2.1. Rhythmic Encoding Modality
mechanism driving the spike-timing encoding modality. ThisTo illustrate the spatio-temporal patterns generated in the
intra-unit contextualization modulates the preferred outpu bursting informational dimension, we generate activity vies
pattern as a function of previous incoming spike patterns. representing the membrane potential evolving dynamics. &s¢h

As in the non-spiking signature neural network paradigm, tomovies, the evolution in time of the activity of a given un¥(t))
implement local contextualization, each individual neursses a is represented with a color scale. Regions with the same color
transient memory, calletbcal informational contexfThe local have synchronous behavior. Red corresponds to neurons with
informational context keeps track of the information reailv a membrane potential over the ring threshol&/{(t) > TH),
during a time window ofM; time units, providing a history- i.e., they are generating a burst. Intermediate colors betvblue
dependent contextualization mechanism to the single neuroand red, represent subthreshold activity. The cooler therctiie
processing. In the case of our spiking network, for each incgmi lower the level of activity.
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Spatio-temporal patterns of spiking or spiking-bursting neurons with the same color recognize the same signaturéeé/Nh
activity in one dimensional signals are usually detected ancolor identi es the units that do not recognize any ngerptin
analyzed by means of spectral methods. However, in higher To quantitatively analyze this encoding strategy, we compute
dimensions, the coe cients produced by the multidimensidna the evolution of the number of neurons that recognize andtemi
Fourier transform are hard to interpret. On the other hand, each individual signature per time unit. This measure proside
wavelet-based techniques have proven to be useful toolgfaals estimation over time of the level of activity in the netwoedated
analysis $tollnitz et al., 1996; Mallat, 199Unlike the Fourier to each signature.
transform coe cients, the wavelet transform coe cients ar
determined both by aresolution componentand atime (orspace} RESULTS
component and, therefore, they represent the resolution eont
at a given portion of the original signal. Thus, to quantitely \We have conducted experiments in which multiple datasets
characterize the bursting rhythmic activity in our netwonke are presented to regular networks with dierent parameters.
perform a wavelet-based analysis. Independently of the network size and the number of neighbors

In particular, we use the same discrete wavelet transforrper neuron, itis possible to nd a broad range of synaptic weights
(DWT) analysis employed ihatorre et al(20133 to characterize  and neuron parameters allowing the network to simultaneously
the global network dynamics of a model of the inferior olive.encode information in the rhythmic and the spike-timing
The method consists in considering the spiking-bursting &pat modality. However, the emerging phenomena that we describe
temporal patterns produced by the network as sequences fere can be more easily illustrated in autonomous networks
images evolving in time. As a rst step in the characteriaati with a low level of bursting activity, since in these cashs, t
a two-dimensional basis is generated by direct Cartesiadymb  spatio-temporal activity in the di erent dimensions arises doe
of the one-dimensional Haar basistplinitz et al., 1996 Then,  external stimulation. In autonomous networks, i.e., netkgnot
the two dimensional non-standard DWT is calculated for eachreceiving external input, the level of bursting activity dege on
frame of network activity. The idea behind this charactatian  the transit probability of the internal statg), the ring threshold
method is that the number of wavelet coe cients in a given (TH), and the duration of the refactory periodRP. These
frame,C(t), provides an estimation of the complexity of the imageparameters modulate the ratio of bursts produced by an isolated
corresponding to the spatio-temporal pattern at tiheA low  neuron. The greater the value of the stochastic probabjity
number of coe cients means that the image is smooth or isthe higher the mean bursting frequency. Similarly, the bings
composed of smooth components. In contrast, a high numbefrequency also grows with low valuesTH andRP.
of coe cients corresponds to complex images. In this way, the Thus, in the following sections, we focus on neurons where
DWT analysis transforms the multidimensional spiking-btimg p D 0.05TH D 50,RP D 50, andAP D 200 (units are
activity in the networkVi(t), into a one dimensional signal(t).  dimensionless). Note, th&P—the peak membrane potential to
This signal provides an useful characterization of the bagst generate a spike—has no in uence on information processing,
dynamics in which both the frequency and the spatial complexitghe only requirement is being greater th@hl. We discuss results
can be discussed. From the frequency perspective, a simpée visgf square-shaped networks of 50 of such units, with periodic
inspection of the evolution o€(t) allows to detect the presence boundary conditions and where each unit is connected thioug
of di erent rhythmic patterns in the network. Furthermore, ése  an excitatory synapsej( D 1) to its eight nearest neighbors as
rhythms can now be studied by means of the one dimensionahownFigure 1C External stimuli consist of tonic spiking signals
Fourier transform. From the spatial complexity of the patternsat a given frequency introduced into a randomly chosen cell
very high values o€(t) correspond to almost random behavior during a give time period. The neural signature of every neuro
of every neuron, with no patterns present; intermediate higthas six spikes, with all the ISls in the range 2—12 (dimensssjle
values indicate the presence of complex spatial structures These signatures are randomly generated and assigned at the
the patterns; while completely synchronized networks producgeginning of the simulation. The rest of parameters are seti
a small number of coe cients. Note, tha(t) ranges between 0 in the corresponding experiment descriptiol;(0) is chosen
and the number of neurons in the network. randomly between 0 and 40u. for all neurons in the network.

2.2.2. Spike-Timing Encoding Modality 3.1. Rhythmic Encoding Modality

The spike-timing encoding is related to the spreading ofThe degree of synchrony among the membrane potential of
specic intraburst spike patterns through the network the neurons constituting the network characterizes the glob
and the synchronization mechanisms that allow a group obpiking-bursting activity in the network. For xed valuespénd
neurons to recognize and emit the same signature at a giverH, the degree of synchrony varies as a function of the synaptic
moment (Tristan et al., 2004, Carrillo-Medina and Latorre, transmission strength among neurons (igg.in Equation 3). For
2019. To graphically illustrate the dynamic spatial organizatio small values, each neuron res nearly independently. Assjoa

of the spike patterns within the network, we generate activityveights grow, the degree of synchrony increases because the
movies representing the ngerprint-based evolving dynamicgeneration of a burst in a given unit sequentially propagates t
(e.g., se€igure 5. Each pointin the 50 50 square represents its neighbors and so or{gure 2). The higher synchrony occurs
with a color code the neural signature recognized by a giveim networks with combinations of ring thresholds and exatory
neuron within the network at a given moment. In this manner, synapses that allow a target neuron to reach the ring thrégho
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FIGURE 2 | (A) Activity time series of four randomly chosen close neuronsi
an autonomous network withM; D 400 and L; D 4. Units are dimensionless.
Due to the synaptic excitation, the generation of a burst in given unit
propagates to the surrounding units.(B) Spatio-temporal patterns of
spontaneous activity observed in the network of the top pank The patterns
consist of propagating wave fronts of spiking-bursting advity. Sequences
develop in time from left to right and from top to bottom with atime interval
between frames of 33a.u.

when it receives a bursgy( #spikesin_burst  TH). However,

as we mention above, here we are interested in autonomous wi

a low level of bursting activity.

Depending on the synaptic parameters, burst propagatio
provides autonomous networks the ability to generate well
de ned spatio-temporal patterns in the form of propagating
wave fronts of transient spiking-bursting activity. Noteathocal
contextualization modulates intraburst ring patterns, titthas
not any in uence on burst timings. To illustrate these spatio-
temporal patterns, we generate activity movies representiag t

membrane potential evolving dynamics (see Section 2.2.1 for,

details). As representative example of the spontaneous tedlec

bursting rhythms generated by the network, bottom panel in
Figure 2displays snapshots of the activity movie of the network

shown in the top panel.

The spontaneous generation of transient spatio-tempora

patterns of spiking or spiking-bursting activity is a feature
with relevant functional implications observed in di erenving
neural media. However, we are interested in the network raspo

1000 a.u. .
time

10 20
fau™)

30
x10~

FIGURE 3 | (A) Snapshots of an activity movie illustrating the spiking-trsting
spatio-temporal patterns generated by the network ofFigure 2 (M; D 400 a.u.
t and Lj D 4) when a tonic input with a period of 100 time units between
consecutive spikes is introduced into a single neuron (armin the rst frame

n points to the neuron that receives incoming stimulus). Seggnces develop in

| time from left to right and from top to bottom. The time interal between
frames is 33a.u. The stimulated unit increases its bursting frequency dueot
the external stimulation, and this generates new spatio-taporal patterns of
transient spiking-bursting activity from this unit(B) Characterization with the
DWT coef cients of the activity of the network in the top panel rst without
stimuli (snapshots inFigure 2B belong to this period), then when the selected
neuron receives the incoming data (grayed area identi es thperiod while the
input is active), and nally without any input again(C) Normalized power
pectra of the wavelet analysis for the three periods. Leftvithout stimuli.
Middle: during the stimulation. Right: when the stimulatiois over and after the
reverberation period. Power spectra are calculated usingrhe series of
500,000 time units. The DWT analysis demonstrates that thelgbal network
dynamics changes when data are introduced into the networklt also shows
that the network is a dynamical working memory of spiking-btsting rhythms,
since the network dynamics generated in response to data onst reverberates
after the input is retired.

1

to stimuli. Therefore, from the encoding perspective, the tnosactivity originated in the stimulated neuron propagates te th

interesting feature of the network, appearing even in network
with a small synaptic transmission among neurons, is itsitgbil
to develop dynamical patterns of spiking-bursting activity i
response to data onset. These patterns allow the network
encode information using the frequency of di erent bursting
rhythms induced by stimuli. To illustrate how the network of

Figure 2encodes a single input using this spatio-temporal spaceép data onset are re ected in a change in the evolution of the

surrounding units because of excitation. Thus, this neuron
becomes the origin of a new rhythm that coexists with those

generated spontaneously by the network (if any).

to The DWT analysis (Section 2.2.1) corroborates the rhythm

encoding in the network transient spiking-bursting dynamiic
Changes in the collective spiking-bursting dynamics in resgo

Figure 3A shows snapshots of its collective spiking-burstingDWT coe cients whose shape characterizes the spiking-buogsti

dynamics when a unit in the left-top corner receives an endér
tonic spiking signal. When the stimulus is introduced intoeth
neuron, its ring frequency increases. Then, the spikingdiing

activity of the network. As an exampleigure 3Billustrates how
the collective dynamics of the network Figure 3A changes
when data are introduced into the stimulated unit. Initiglino
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data is present and the network spontaneously generates spati
temporal patterns as the ones shown in the bottom panel
Figure 2 In this situation, the DWT coe cients oscillate with
a nearly homogeneous frequency capturing the spontaneo
spiking-bursting rhythm. The spontaneous rhythm frequency
depends on the stochastic probabilgyand can be estimated by
means of the Fourier transform of the wavelet analysis of th
network activity. For instance, in the network Bigures 2 3, the [
spontaneous rhythm frequency is around 8@ 2 (see frequency
peak in Figure 3C left). On the other hand, the oscillation B 2500 ‘ T T
of the DWT coe cients between a high and an intermediate \/\WWW“W”W
value indicates, respectively, the nearly independent meurd g 2000
behavior during subthreshold activity and a high transient 1500
synchronization in the network during the spreading of the
spiking-bursting wave fronts. Then, the external stimulss i
introduced into the network during a given time interval éyred
area). At this point, the network collective dynamics stepwis
changes. A rst remarkable change in the evolution of DWT 0
coe cients is observed in the oscillation amplitude. Now, the
DWT coe c!ents tend to oscillate aroun_d two high values. Bhi | . 5Ure 4 | Figure equivalent to Figure 3 but when the network
Change points out the Complex spatlal structure of the new (M; D 400 a.u. and L; D 4) receives 10 inputs. (A) Sequences develop in
emerging dynamics. Not obtaining low or intermediate valire time from left to right and from top to bottom. The time interal between
the DWT analysis during the stimulation period indicates tha frames is 33a.u. In response to data onset, the network starts generating 10
in this network, the propagation of the wave fronts originated diflfe‘rem coe)fisting rhythms encoding ipcoming informadin. (B) The different
. . . . . spiking-bursting rhythms encoded within the network are catured by the
in the stimulated unit does not |mp|y a CompIEte transient DWT analysis. While external inputs are present, the osailion frequency of
synchronization in the whole ensemble. Another relevararage the DWT coef cients is not homogeneous (see inset), which resals the
in the DWT coe cients during the stimulation is a frequency | coexistence of the different rhythms. Inset shows the norméted power
increase (Cf. left and middle power spectra ﬁigure 30)’ spectrum oftheV\{ave!etanalysis of a time series of SOO,QOGrjr]e units while
pointing out that the rhythm evoked by the stimulus prevailseov the 10 external stimuli are presen.t. The number of coef_uers:lncrease (cf.
Figure 3B ) denotes the increase in the spatial complexity of the pattes.
the spontaneous rhythm (6.210 3 vs. 10 10 3 au. 1). The
frequency of the spiking-bursting rhythms evoked by extérna
stimulation depends on the frequency of the input, since the
stimulated neuron follows the stimulus. These changescetgi As we show above, while an input is active, the corresponding
that the network has encoded the incoming information inrhythm survives in the network. Therefore, when more than
a characteristic spiking-bursting rhythm. Finally, no inpi# one stimulus is present, the competition among the input-
present again and the network recovers the spiking-burstingvoked spiking-bursting rhythms is a winnerless competition.
autonomous activity (cfFigure 3G right). The DWT analysis Note that there is no inhibition in the network nor subcellula
indicates that the stimuli-evoked rhythms can reverberfaie plasticity rules limiting the spiking-bursting activity. Wherless
long periods after data onset. This implies that the networlkcompetition allows the encoding of multiple coexisting spiking-
behaves as a working memory in the spiking-bursting spatiobursting rhythms. This competition dynamics is captured bg th
temporal space. For each network con guration, the mearDWT analysis (bottom panel ifrigure 4. When multiple data
reverberation period of the rhythms encoding di erent inputs are introduced into the network, the number of DWT coe ciesit
is nearly the same, i.e., the memory capability of the netviork remains high with a non-homogeneous oscillation frequency
this information dimension is independent of the data andynl This reveals the complex spatial structure of the patterns and,

[¢)

1000 =

DWT coefficients

%3

(=3

(=]
T

1250 a.u. time

depends on the synaptic parameters. on the other hand, the coexistence of multiple spiking-bursting
The emerging collective dynamics analysis in networks thathythms within the network.
receive multiple tonic stimuli with di erent frequencies iizhte We have previously shown that the spiking-bursting rhythms

that spatio-temporal patterns of spiking-bursting activityoa!  evoked by a single stimulus reverberate for a while when the
the network to encode information using several coexisang  stimulation is over. The reverberation period drasticaflgreases
coordinated rhythms. Top panel iRigure 4displays an example when the network receives multiple stimuli. The greater the
of the complex spatial organization of the patterns generajeal b number of external inputs, the greater the number of sourdes o
network receiving 10 di erentinputs. The snapshots clearlywgho spiking-bursting activity. This translates into a higherlspg-

the increased complexity of the patterns, since, now, theoktw bursting activity in the network and explains the increasing
organizes clusters of neurons oscillating at di erent frequies reverberation period. Depending on the synaptic strength and
(cf. top panel inFigure 3). Each of the unit receiving external the value ofp, in this situation, the network even becomes a
data becomes the source of a rhythm that propagates througbng-term memory of spiking-bursting rhythms. We would like
the network competing with the rhythms encoding other inputs.to emphasize that the rhythms that survive for longer periats i
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short-term memories or the ones that persistently reverleenat
long-term memories are not always the higher frequency siitm
evoked rhythms nor the rhythms encoding the last data presg:nt
to the network.

3.2. Spike-Timing Encoding Modality
One of the major characteristics of the proposed network is
the intra-unit contextualization of input signals, respdisi B
of the spike-timing encoding modality. In this section, we
study the complex collective dynamics induced by this intra
unit information processing strategy. These emerging ctile
dynamics can give us important clues about the underlying
computational properties of the network.

As expected, the ability of an individual unit to recognize
specic ngerprints varies as a function of the intra-unit FIGURE 5 | Snapshots of two representative activity movies il lustrating
parameters shaping local contextualization, i.e., the ma®im | the ngerprint-based encoding mechanism. (A) ~ M; D 500 a.u. and
size of the local informational contexi|) and the ngerprint Li D 5. (B) M; D 400 a.u. and L; D 4. Sequences develop in time from left to
|eaming threshold l(l) Depending on the value of these | rightand from top to bc_)ttom.Thetime ir_]terval betweeh frame is 1000a.u._
parameters, specic intraburst ring patterns can propagate Note that the propagation ofthe r}gerprmt—b‘ased spatio-temporal patterns is

: . slower than the corresponding spiking-bursting rhythms (& bottom panel and
thrOUgh autonomous networks. However, the more Interegtin Figure 3). The color code identi es neurons recognizing the same sigature,
phenomena from the information processing viewpoint are being white color used for neurons that do not recognize anyignature. The
related to the mechanisms that allow the network to generate rst frame in each sequence indicates that, in the absence of smuli, neural
and Organize spatio-temporal patterns in response to data Ons(eﬁignatures _do not propagate in th_ese networks. When the extenal stimulus is
Therefore. we focus our attention on networks in which the introduced |ntoane'uron Iocatgd in the left-top corner (seend frfime in bth

X ! e . . panels), new collective dynamics emerge and the network o@dnizes transient
signature recognition does not occur without external stiim spatio-temporal patterns of activity related to the propagtion of the signature
When these networks receive incoming data, they aid theystud of the stimulated unit (blue regions). Note that this is therty signature that
of the information encoding in the ngerprint-based spatio- travels throughout the network. These localized patterns foactivity encode the
temporal space by analyzing how the signatures of the stimdlat| Who of incoming data.
units propagate throughout the network.

Again, we rst address the analysis of networks receiving
a single stimulus. When a neuron receives an external tonisequences dfigure 5. Then, depending on the parametevk
input, this unit increases its bursting frequency (see $a@il). andL;, they can propagate locally or globally as transient wave
This increase can make the neighbor units recognize th&onts; or as localized clusters with a xed spatial orgatizra
neural signature of the stimulated neuron and propagatehat occasionally become the source of new transient patterns
the corresponding intraburst ring pattern. In this situatip ~ The generation of localized transient patterns of activitythie
new intriguing collective dynamics arise in the network. ngerprint spatio-temporal space suggests a collective coding
To illustrate the dynamic spatial organization of the neuralstrategy based on the emission and recognition of speci caeu
signatures traveling through the network, we generatevagti ngerprints. This mechanism allows the network to encode
movies representing the ngerprint-based evolving dynamicsnformation regarding the origin of incoming data (input sme)
(see Section 2.2.2 for details). These activity movies pairthat  in a distributed network form.
the network generates in this dimension well-de ned traegi The information encoded in the spike-timing modality and
patterns of activity in response to data onset. The emerginthe encoded in the rhythmic modality coexist in the network.
spatio-temporal patterns are related to the spatial orgaromati A relevant property observed in the simulations is that a neura
and clusterization of the signatures traveling through thengerprint does not necessarily travel over the propagatingeva
network. To give insight into the generation and propagationfronts encoding the corresponding spiking-bursting rhythm.
of these complex spatio-temporal structuréSgure 5 shows The spreading velocity of the ngerprint-based spatio-tempora
snapshots of the activity movies of two representative ndtwior patterns is always slower than the corresponding spiking-
in which the same unit receives an input. Note, that thebursting spatio-temporal patterns velocity (cf. time intdrva
only signature traveling through the network corresponds tobetween frames irFigures 3 5; 33 vs. 100(au). Likewise,
the stimulated unit. If we consider that at a given momentthe spatial organization of the patterns in the di erent spatio-
two neurons that recognize the same signature belong ttemporal spaces is not correlated. If we consider that at a given
the same cluster; we can study the specic properties ahoment two neurons over the ring threshold belong to the
the dynamic organization of the patterns by calculating thesame cluster, we can calculate the clustering coe cient and
clustering coe cient and the average shortest path betweetthe average shortest path for the spiking-bursting patterng an
neurons belonging to the same cluster. This analysis inéécat compare the self-organizing properties of the patterns encoded
that the ngerprint-based spatio-temporal patterns are ififfa in both information dimension. This analysis points out thae
originated in the stimulated unit (see initial frames in the spiking-bursting patterns always consist of propagating trarisie
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wave fronts from the stimulated unit traveling through théele The collective dynamics in the ngerprint-based dimensisn i
network. Meanwhile, the ngerprint-based patterns can also benainly driven by the intra-unit parameters!; and L;. On the
originated in the stimulated unit, but they can propagate lgca one hand, reducing the size of the local informational cante
or globally as transient wave fronts or remain bounded in spec of every neuron ;) decreases the number of neurons that
regions of the network. recognize a given ring pattern. On the other hand, decregsin
A simple way to characterize the ngerprint-based dynamicghe learning threshold L§) facilitates the recognition of the
is computing the number of neurons that recognize and emifpropagating ngerprints and, therefore, the level of activity
a given ring pattern. This allows us to identify the signagésr the network grows. The trade-o among the e ect of these
encoded in the networkFigure 6A depicts the characteristic parameters determines if the network encodes information
evolution of the level of activity related to the ngerprintfo in the spike-timing modality and the mode of behavior in
the data source in three representative networks receiviieg t this dimension. To illustrate thisFigure 6B depicts a phase
same single input during three di erent stimulation periods. diagram locating the di erent behaviors in the space of intnait
This gure corroborates the results derived from the snafsho parameters.
shown inFigure 5 When the stimulation begins, the signature  With the experiments described so far, we investigate the
of the stimulated unit starts propagating through the network ability of the proposed network to encode and process a single
The number of neurons recognizing this ngerprint grows unti stimulus using an information processing strategy driven by
reaching a stationary level that depends on the valueMpf local contextualization. If we repeat the same experiments bu
and L;. Then, the network dynamics consists of a uctuationnow introducing multiple inputs simultaneously, we observe
around the steady level (e.g., see blue tracefigure 6A). that the presence of multiple stimuli makes the network
This dynamic is kept while the stimulation is sustained. Whengenerate coexisting transient spatio-temporal patterns tfiac
the stimulation ends, the stimulus-evoked activity doed noencoding the origin of the di erent inputs Kigure 7). These
immediately disappear from the network (cf. red and greendsac experiments reveal additional relevant computational propsrt
in Figure 6A). This is an interesting result that demonstrates thatthat subcellular plasticity can provide to spiking neural netkgo
intra-unit contextualization can be a mechanism to implerhen When multiple intraburst ring patterns spread through the
intrinsic memory in the network, giving rise to both short- network, a competition dynamics arises between them. A simple
term and long-term memories. In short-term memories (batto visual inspection of the snapshots showrFigure 7reveals that
and middle panel inFigure 6A), the stimuli-evoked dynamics the self-organizing properties of the patterns drasticallsrae
reverberate for a while. This reverberation e ect consgtuta depending on the intra-unit parameters shaping the intra-unit
mechanism providing the network the ability of acting as aplasticity rules. These de ne di erent modes of competition
dynamical working memory that transiently stores incomingamong the spreading ngerprints. This competition a ects
data. In contrast, in long-term memory networks (top panelthe global level of activity of each signature in the network
in Figure 6A), the information survives in the network in a and determines the spatial organization of the patterns. The

permanent manner (maybe until a new input is received). competition dynamics among the dierent intraburst ring
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FIGURE 6 | (A) Evolution of the mean number of neurons that recognize and einthe ngerprint of a unit receiving the same data in three diérent networks during
three different periods. Each trace is calculated as the avage of 10 experiments with different random seeds and locan of the stimulated unit. These plots
characterize the stimuli-evoked ngerprint-based dynamis. Top panel:M; D 500 and L; D 5. Middle panel:M; D 400 and L; D 4. Bottom panel: M; D 350 and
L; D 4. Units are dimensionless. In red traces, the stimulation pe&d corresponds to the red region. In green traces, to the gren region. And in blue traces, data are
continuously present. In this spatio-temporal space, the nevork may act as a long-term memory (top panel) or as a shorterm memory (middle and bottom panels)
depending on the value ofM; and L;, i.e., the parameters associated to intra-unit contextud@ation. (B) Phase diagram illustrating the relationship betweeM; and L; in
networks wherep D 0.05, TH D 50, RP D 50, and AP D 200 (units are dimensionless).
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FIGURE 7 | Snapshots of four representative activity movies il lustrating the ngerprint-based spatio-temporal patterns generated by networks that
receive 10 data simultaneously. The inset in the rst frame of(D) shows the approximate location of each input. Sequences deslop in time from left to right and
from top to bottom. The time interval between frames is 200@.u. Subcellular plasticity induces different competition dyamics among the coexisting patterns in this
spatio-temporal space: from winnerless(A—C) to winner-take-all (D). These competition regimes are characterized ifrigure 8. (A) p D 0.05, M; D 400, and L; D 4.
The competition among ngerprints makes the patterns only pppagate locally, remaining bounded near the correspondingtimulated unit.(B) p D 0.05, M; D 350,
and L; D 4. Evolving coexisting patterns propagate through the whel ensemble. Each pattern is originated in the unit that recegs the corresponding input.(C)

p D 0.05, M; D 500, and L; D 5. The patterns also travel through the whole network, but tare exist alternating periods during which only the pattesencoding a
given input propagate. After that, a new competing cycle bemns until a ngerprint prevails over the others and starts pipagating. (D) p D 0.08, M; D 350, and L; D 3.
As result of the competition, only the patterns associatedd a limited group of data (the winners) propagate. Note thathie different competition regimes arise
depending on the valuesM; and L; which shape the intra-unit contextualization mechanism.

patterns determines the coherence and coordination of thea “winner,” and therefore, none of them persistently prevails
coexisting patterns. over the others. Depending on the intra-unit parameters, the
We would like to highlight that the competition regimes network can display di erent winnerless regimeiSigure 8A
observed in the activity movies arise in the absence of itdip  illustrates a winnerless competition in which the level of\att
connections, which hints at intra-unit contextualizatias an related to every ngerprint is similar and remains uctuatjn
e ective mechanism to restrict the activity in networks watlt ~ nearly a stationary level. This de nes a collective dynamics
inhibition. Note that each neuron can only transmit one where several coherent spatio-temporal patterns coexist mvithi
recognized ring pattern per burst. This limitation produces the network encoding simultaneously a great amount of data
somehow a local competition among the patterns received bfe.g., inFigure 8A all the inputs introduced into the network).
the neuron where only the “winner” is transmitted. This lbca Figures 8B,Cshow winnerless regimes with alternating periods
competition is the basis of the global competition in the wholewhere some ngerprint has a higher level of activity.
network. An interesting phenomenon observed with some network
The di erentdynamical modes observed in the activity moviessettings is that some regions within the network specialize in
are better characterized by the evolution of the number ofhe emission of ring patterns encoding the origin of di erent
neurons that recognize and emit each signatukégqre 8).  stimuli although they do not receive any external input. This
Regardless the number of active inputs, the type of competitiophenomenon occurs without any kind of supervised synaptic
depends on the value of the parametdis and Lj and may nor intra-cellular learning, i.e., it is a self-organizingoperty
vary from a winnerless (WLC) to a winner-take-all (WTA) of the network. These emitter areas are usually related to
competition. In WLC networks, none of the signatures becomewinnerless competitions where the prevailing ngerprints nge
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FIGURE 8 | Level of activity related to the 10 neural signatur  es belonging to the input sources in the networks of Figure 7. The inputs and the color code
used to identify them are the same used in this gure. All of the are injected simultaneously from time step pointed out byhte arrow to the end of the time series.
Each panel corresponds to the equivalent ifFigure 7 and illustrates a different competition regime (see main k& for details).

accordingly to the patterns originated in these aredigire 9. incoming stimulus win the competition. However, in long-ter

Conversely, when a winner-take-all competition occurs,yonl memory networks, coexisting coherent spatio-temporal pager

the signature or signatures that win the competition propagaterelated to multiple ngerprints can be observed even when the

through the network (e.g., séegure 8D). In the WTA network  corresponding input is not active.

shown inFigure 7D, all the neurons tend to recognize and emit

simultaneously the prevailing ngerprint. However, depenglin 4. DISCUSSION

on M; andL;, this can also spread as evolving transient patterns

equivalent to the shown iffigure 7Cwhen the dark green input  The present work introduces a spiking neural network that nsake

prevails over the others. Note that, in some sense, the wies®r use of multicoding strategies for information propagationdan

competitions displayed ifrigures 7B,Cconsist of sequences of subcellular plasticity to locally contextualize or discriaie data

transient winner-take-all competitions. received by a unit. Furthermore, each neuron in the netwaak h
The reverberating spatio-temporal patterns encoding the neural signature that allows its unequivocal identi catiby

origin of incoming data continue competing even when theythe rest of the cells. This network is an encoder and generato

are not sustained by an active input. Short-term memoryof spatio-temporal patterns that take advantage of the multiple

networks have a limited ability to retain previously storedsimultaneous encoding modalities present in the network to

data when new information is introduced into the network. transform dynamic inputs into di erent spatio-temporal spaces,

In these cases, the reverberation period drops as compare@id organize and coordinate coexisting patterns of transient

to networks receiving a single input, and the stored datactivity in response to data onset.

are almost instantaneously forgotten, i.e., the correspund The discussed experiments are aimed at analyzing the

patterns disappear because the patterns encoding the lasherging collective dynamics in two information dimensson
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spiking neural networks, which could enhance their capacity an
performance. In particular, local contextualization mecisams

&= allow individual neurons to process the multiple simultaneous
codes in their input signals selectively or globally in order
to completely decide or weight the decision about their
output in the dierent encoding schemes. This information
processing provides a framework to model complex high-
dimensional processes that can be applied to di erent real-world
computational problems. The ideas relating multicoding with
local information discrimination have a direct application in
problems that bene t from multifunctionality and paralleiis
These are desirable features for many technical applications
of ANNs, representing a potential advantage when processing
FIGURE 9 | WLC network whose collective dynamics is character ized |arge amounts of data or mu|t|p|e dec|s|on_mak|ng Criteria
by an emitter area that generates transient patterns encodin g the must be developed, for instance, in multiobjective optin"i'[ztat

prevailing ngerprint in the network. Arrow in the rst frame denotes the .. .
approximate location of this area. Sequences develop in timfrom left to right problems Gaini and Saraswat, 2013; Wang et al., pdrd

and from top to bottom. When neurons in the pointed area stargenerating in control systems [e.g., multifunctional prosthesis coiiexs
patterns encoding a given input, the collective behavior cinges accordingly that must quickly detect and classify multiple characteristic
to these patterns and the corresponding ngerprint prevailsover the others. simultaneous myoelectric signal§a(ridis and Gootee. 1982:
Note that the existence of these emitter areas is a self-orgazing property of - . ; s : '
the network. Hudgins et al., 1993; Karlik et al., 2003; Li et al., 3D¥&nhother

straightforward application of these concepts is in problems
where a global task is solved by means of solving independent
partial tasks. An example is the wide scope of multidimensional
On one hand, a spiking-bursting spatio-temporal space, whergorting problems, speci cally when the order in a particular
information processing is driven by synaptic transmissiondimension can be independent of the order in other dimensions,
On the other hand, a ngerprint-based spatio-temporal spacer when there is no global sorting criteria in any dimension.
driven by an intra-unit contextualization mechanism. The Non-spiking signatures neural networks have been sucdbssfu
speci ¢ properties of the dynamic organization of the patternsapplied to this type of problemslLétorre et al., 2001 Areas
are dierent in each information dimension, so that, the of application for multidimensional sorting are scheduling,
life cycle of the information encoded in both encoding planning and optimization, between other§dtoni, 1998; Aref
schemes is independent. When multiple patterns in the samend Kamel, 2000 On the other hand, the di erent dynamical
dimension coexist in the network, a competition emergesnodes observed in the network are relevant in the context
between them. We show that various forms of competition carof multiple technical applications. Winnerless competition is
arise without inhibitory connections in the network. Depend  usually associated to sequential information processiwiger
on the parameters shaping simple intra-unit plasticity rulesgt al., 2003; Rabinovich et al., 2006a; Arena et al., 2009;
the competition regime may vary from a winnerless (i.e., the<iebel et al., 2009; Latorre et al., 20),3which has a wide
network stores multiple data simultaneously) to a winngrga  application in many arti cial intelligent systems in taskscéu
all competition (i.e., one datum or a group of them prevailsas inference, planning, reasoning, natural language prioggss
over the others). The stimuli-evoked spatio-temporal patsernand others §un and Giles, 2001; Worgotter and Porr, 2005
and the corresponding competing dynamics can survive for lon&imilarly, pattern recognition in di erent spiking ANNs is bed
periods after data onset. This reverberation e ect allows then winner-take-all dynamicsHohte et al., 2002a; Gitig and
network to memorize incoming data. This can display short-Sompolinsky, 2006; Schmuker et al., 2014
term or long-term memory capabilities in the di erent spatio-  In this paper, we have imposed some constraints and
temporal spaces. When the network behaves as a short-terassumptions in order to facilitate the presentation of our
memory, the spatio-temporal patterns encoding incoming dataesults. Results obtained with larger regular networks (ap t
in the corresponding scheme transiently reverberate atter t 1000  1000); higher levels of bursting activity; and di erent
stimulation ending. Conversely, in long-term memoriese th number and/or distribution of spikes in the neural signatsiae
stimulus leads the network to a new stable state and the patter equivalent to the results presented in Section 3. In experimen
persistently survive. The memory ability of the network irckea with signatures with an arbitrary number of spikes, new
dimension varies as a function of the synaptic and/or intra-interesting ngerprint-based dynamics emerges in the netwo
unit parameters. Therefore, dierent simultaneous procegsinand results are not exactly the same. In these simulatioos, n
strategies can be implemented within the network. only the ngerprints belonging to a neuron propagate, but
These results illustrate the dynamical richness and largalso specic ring sequences built with combinations of tkes
exibility of the proposed network to encode and processsignatures propagate throughout the network. In some sense,
information in di erent spatio-temporal spaces. We argue thatthese networks do not only encode information regarding the
plasticity mechanisms inside individual cells and multicmgd input source, but they also generate new information. It soal
strategies can provide additional computational properties tomportant to note that, for simplicity, we only consider two
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encoding schemes in the network. However, bursting agtivitTo consider a multicoding mechanism that incorporates the
allows easily including additional units of information.¢e, the neural ngerprint-based dimension to these networks could
burst duration or the number of spikes in the burst). In this permit an analysis of coexisting brain rhythms from multiple
line, and regarding a selective processing of input messagssnultaneous perspectives. In particular, the ngerprint-bds
experimental evidence indicates that some neural systenspatio-temporal patterns could facilitate the analysis of the
exhibit functional or behavioral neural signaturepresenting propagation trajectories and the identication of possible
di erent states or associated to the task performed at a giveimformation sources and sinks in di erent cognitive processe
moment Klausberger et al., 2003; Somogyi and Klausberger, Because of their functional similarity to biological nensp
2005; Kaping et al., 20).1The concept of neural ngerprint spiking neural networks have been extensively used by the
that underlies the strategy of the discussed network can beomputational neuroscience community as a powerful tool for
extended to consider the emission and recognition of mudtipl studying neural information processing (e.g., Sekikevich,
ngerprints with a di erent meaning within the same signal. 2003; Deco et al., 2008; Izhikevich and Edelman, R(R&sults
In this situation, subcellular plasticity in the form of irg¥  obtained with our simple model could also be relevant from
unit information contextualization mechanisms would allo this perspective Information storage in the nervous system
individual neurons to perform a distinct processing of incat@i  has been typically studied considering the adaptation of the
signals, for example, as a function of specic emitters and/osynaptic connection strengths (e.g., séeser et al.,, 1993
functional states. Our simulations suggest that mechanisms inside individigls
Although not addressed in this paper, subcellular plasticitynodulating their intrinsic dynamics could also be an e ective
and multicoding mechanisms for information processing c&n b mechanism to implement intrinsic memory, both in short-
combined with the features that underlie information prose®)  and long-term memory networks. On the other hand, many
in the existing spiking neural network paradigms. In this line biological neural systems (including many areas of the human
for example, plenty of work has been done on synaptic plasticitigrain) continuously receive a great amount of inputs from
in spiking neural networks, since modi cations of the synapti many di erent sources and, nevertheless, they exhibit a low
connections are traditionally considered the physiologizsis level of activity and only respond to speci ¢ input$ifoham
of learning in the nervous system. These works are mostlyt al., 2006; Sato et al., 2007; O'Connor et al., 2010; Barth
related to unsupervised synaptic learning methods, such &8Spi and Poulet, 2012 We hypothesize that neural dynamics
Timing Dependent Plasticity (STDP)0ng et al., 2000; Bohte based on the propagation of specic neural ngerprints and a
et al.,, 2002b; Kube et al., 2008; Meftah et al., pOdith an  contextualization mechanisms like the one studied herelctou
increasing interest into supervised synaptic learniggl(te etal., explain why these system are so sparsely active. Target reeuron
2002a; Belatreche et al., 2007; Yu et al., R(te combination  would only re when they recognize a characteristic ring patn
of learning rules including not only the modi cation of the in their incoming stimuli; while signal not recognized woule b
synaptic weights, but also the parameters that a ect the localimply ignored. Obviously, to test this hypothesis more réalis
discrimination of input signals can greatly contribute toremce  spiking models for the activity of the neurons must be developed
the spiking ANNSs' computational power. In this vein, our result
can be of particular interest in the context of the generagmd  AUTHOR CONTRIBUTIONS
recognition of spatio-temporal information. Dierent spiking
neural networks have been proposed to process, classify, aRdl conceived and designed the study. JC and RL conducted the
store spatio-temporal patterns_g§je and Buonomano, 2013; experiments. JC and RL analyzed the data. JC and RL wrote, read,
Yu et al., 2013 We speculate that incorporating multicoding and approved the manuscript.
strategies and di erent types of subcellular plasticity to othe
successful spiking ANN paradigms can potentially allow thesEUNDING
networks to process, classify and store more complex data.
For example, a highly relevant application of the referredThis work was supported by UAM-Banco Santander (CEAL-
spiking networks is the analysis of EEG spatio-temporal dataAL/2015-16) and MINECO/FEDER DPI2015-65833-P.
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