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Chunking refers to a phenomenon whereby individuals group items together when

performing a memory task to improve the performance of sequential memory. In this

work, we build a bio-plausible hierarchical chunking of sequential memory (HCSM)

model to explain why such improvement happens. We address this issue by linking

hierarchical chunking with synaptic plasticity and neuromorphic engineering. We uncover

that a chunking mechanism reduces the requirements of synaptic plasticity since it

allows applying synapses with narrow dynamic range and low precision to perform a

memory task. We validate a hardware version of the model through simulation, based

on measured memristor behavior with narrow dynamic range in neuromorphic circuits,

which reveals how chunking works and what role it plays in encoding sequential memory.

Our work deepens the understanding of sequential memory and enables incorporating

it for the investigation of the brain-inspired computing on neuromorphic architecture.

Keywords: chunking, synaptic plasticity, sequential memory, neuromorphic engineering, memristor

1. INTRODUCTION

The word “Chunking,” a phenomenon whereby individuals group items together when performing
a memory task, was initiated by (Miller, 1956). (Lindley, 1966) showed that groups produced by
chunking have concept meanings to the participant. Therefore, this strategy makes it easier for an
individual to maintain and recall information in memory. For example, when recalling a number
sequence 01122014, if we group the numbers as 01, 12, and 2014, mnemonic meanings for each
group as a day, a month and a year are created. Furthermore, studies found evidence that the firing
event of a single cell is associated with a particular concept, such as personal names of Bill Clinton
or Jennifer Aniston (Kreiman et al., 2000, 2001).

Psychologists believe that chunking plays as an essential role in joining the elements of amemory
trace together through a particular hierarchical memory structure (Tan and Soon, 1996; Edin et al.,
2009). At a time when information theory started to be applied in psychology, Miller claimed
that short-term memory is not rigid but amenable to strategies (Miller, 1956) such as chunking
that can expand the memory capacity (Gobet et al., 2001). According to this information, it is
possible to increase short-term memory capacity by effectively recoding a large amount of low-
information-content items into a smaller number of high-information-content items (Cowan,
2001; Chen and Cowan, 2005). Therefore, when chunking is evident in recall tasks, one can expect a
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higher proportion of correct recalls. Patients with Alzheimer’s
disease typically experience working memory deficits; chunking
is also an effective method to improve patients’ verbal working
memory performance (Huntley et al., 2011).

However, to this day, the mechanism why chunking improves
human memory is unclear. This is mainly due to two difficulties.
Firstly, no mathematical model is applicable to describe the
memory processing in human brain. Secondly, no bio-plausible
validation system that allows to emulate how chunking can be
merged into a proper memory model. Although researchers have
a long way to go before synthetic systems canmatch the capability
of the natural brain, there are breakthroughs in neuroscience and
neuromorphic engineering studies (Mead, 1989):

(1) The discovery of the link between transient metastability and
sequential memory in the brain. Advances in non-invasive
brain imaging (Gholipour et al., 2007) allow assessing
the structural connectivity of the brain and corresponding
evolution of the spatio-temporal activity in details. This
makes the structure and dynamics of functional brain
networks useful for building theoretical memory models.
Among these results, one popular view is that, sequential
memory, which refers to the functionality of the brain to
encode and represent the temporal order of discrete elements
occurring in a sequence, plays a key role in organizing
the brain memory. The metastable state (Rabinovich et al.,
2008, 2014; Mante et al., 2013; Tognoli and Kelso, 2014)
is a significant feature of sequential memory. Experimental
and modeling studies suggest that most of the sequential
memories are the result of transient activities of large-scale
brain networks in the presence of noise (Rabinovich et al.,
2008; Maass, 2014).

(2) The discovery of the bridge between the synapse and the
memristor. A synapse is a functional unit of the brain,
which permits a neuron to pass an electrical or chemical
signal to another neuron. In the last few years, it is believed
that a synapse bears striking resemblance to a two-terminal
electrical device termed as “memristor” (memory+ resistor)
(Chua, 1971; Strukov et al., 2008; Kim et al., 2012). The
memristor resistive states can be modified by controlling
the voltage applied across its terminals or the current
flowing through it, which makes it promising to emulate the
biological synapse (Jo et al., 2010; Chang et al., 2011; Kuzum
et al., 2011; Yu et al., 2011; Alibart et al., 2012; Jackson
et al., 2013; Kuzum et al., 2013; He et al., 2014). Clearly,
advancements in memristor technology are establishing
entirely new fashions in brain-inspired chip design.

Based on above breakthroughs, we set out to investigate why
chunking improves sequential memory performance. To achieve
this, we build a bio-plausible hierarchical chunking of sequential
memory (HCSM) model shown in Figure 1 using memristors
as synapses. More specifically, our works are summarized as
follows. Firstly, a HCSM model consisting multilayered neural
networks is proposed. Each layer is divided into different
chunks of neurons. Within each chunk, neurons are all-
to-all connected (Figure 3); while chunks in different layers
might be correlated through an activation signal denoted by

the dotted arrows in Figure 1. In particular, a chunk in the
upper layer and its connected ones in the adjacent lower layer
are termed as parent chunk (PC) and child chunks (CCs),
respectively. A winner neuron in a PC activates its connected
child chunk (CC) to form a hierarchical structure (Figure
S4). The winnerless competition (WLC) (Rabinovich et al.,
2001) principle is applied between neurons, i.e., the winner is
temporary or “metastable” because it switches from one neuron
to another. The HCSM model selects the necessary metastable
states and link them together to form a sequential memory
through the hierarchical organization. When a recall cue is
given, the model presents a memory trace containing temporary
winner neurons among different chunks. The trace reflects the
sequential memory recall. Secondly, to emulate the synapse with
ideal synaptic plasticity, we use iron oxide (He et al., 2014)
as the memristor resistive layer. A memristor with a typical
sandwich structure, 0.25 µm2 − size TiW/Pt/FeOx/Pt/TiW,
is fabricated, as shown in Figure S1. The well-known I-V
hysteresis loops of memristor (Chua, 2011) under applied
triangle-wave-shape DC voltage sweeps are observed. The
conductance of this memristor can be monotonically and
consecutively modulated among the intermediate states, which is
crucial for the synaptic plasticity emulation. Lastly, we provide
a neuromorphic chip implementation (Figure 3, Figures S2–
S4) in which the memristor crossbar is used for emulating
the synapse matrix of each chunk in the proposed HCSM
model, and a scheme for encoding the sequential memory
is presented. The key to encode memory in a bio-neural
network is to exploit its ability of changing the synaptic
weights (Zeng et al., 2001), which is also known as synaptic
plasticity. In fact, synaptic plasticity is widely believed to be
essential for creating the memory and learning ability of the
brain (Hebb, 1949; Bi and Poo, 1998; Song et al., 2000; Han
et al., 2011; Ramanathan et al., 2012; Carrillo-Reid et al.,
2015).

With the HCSM model, the chunking mechanism can be
linked to the synaptic plasticity. Usually, the dynamic range of
the synapse, i.e., a memristor when considering a neuromorphic
chip, is required to bemuch wider if the same length of sequential
memory is encoded without chunking. By contrast, we observed
that only a narrower dynamic range and imprecise state of
the synaptic weight is required to encode a sequential memory
with chunking mechanism. Thus, it is shown that chunking
improves sequential memory by reducing the requirements of
synapse plasticity in memory encoding. Our work reveals how
chunking works and what role it plays in encoding sequential
memory.

2. MATERIALS AND METHODS

As illustrated in Figure 2, this work explains why hierarchical
chunking mechanism helps improve the memory performance
and provides a promising solution to successfully realize memory
dynamics in neuromorphic circuits. Through the reduced
“synaptic plasticity” provided by the chunking mechanism,
i.e., narrow dynamic range and not so precise state, we
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FIGURE 1 | Hierarchical chunking of sequential memory (HCSM) model. (A) The metastable states within a chunk, within which neurons are all-to-all

connected. Each colored node denotes a temporal winner neuron in the chunk, which is a metastable state switching from one to another in the sequential memory

trace. The shadowed circle encompassing each metastable state represents the domain of attraction for the state. (B) An illustrative diagram of the proposed

hierarchical chunking sequential memory model. The chunk indexed by (n,m) denotes the mth chunk in layer n. A neuron representing a particular concept in a chunk

(termed as PC) in layer n may activate a chunk (termed as CC) in layer n+ 1 that is connected to the PC neuron through a dotted arrow. In a memory recall, as the

metastable neuron switches from one to another in a PC, the corresponding CCs is activated in a sequential order.

FIGURE 2 | An illustrative diagram of the main idea in this work. General neural networks without chunking require the synapse to have wide dynamic range,

especially to memorize a long sequence. While the proposed hierarchical chunking mechanism greatly improves memory performance under a lower requirement for

synaptic plasticity, i.e., only requires a narrow dynamic range and not a very precise state, which seems bio-plausible. A neuromorphic architecture is designed based

on memristor devices with narrow dynamic range to successfully perform the sequential memory simulation. In this way, the reduced “synaptic plasticity” provided by

chunking model bridges the brain memory dynamics and neuromorphic system.

establish a bridge between the brain memory dynamics and the
neuromorphic system.

2.1. Synapse and Memristor
The molecular nature of the synaptic plasticity has been
mathematically examined to have identical calcium-dependent
dynamics, where the synaptic weight is described by a linear
equation as follows (Shouval et al., 2002):

dWi
dt

= 1
τ ([Ca2+]i)

(

�([Ca2+]i)−Wi

)

, (1)

where Wi is the synaptic weight of the i-th input axon. τ is a
time constant with respect to the insertion and removal rates

of neurotransmitter receptors, which is a function dependent on
the concentration of calcium [Ca2+]. � is another function of

[Ca2+] that depends linearly on the number of receptors on the
membrane of the neuron. Equation (1) implies that the present

synaptic weight between neurons is dependent on the historical

weight indirectly, and it can be adjusted by changing �([Ca2+]).
To mimic the biological synapse, it is critical to build

an artificial synaptic device to emulate its plastic behavior.

Fortunately, the memristor (Strukov et al., 2008) was successfully

developed and found to bear striking resemblance to the

synapse in neural networks. The fundamental characteristic of

a memristor is that its present resistance is dependent on its
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historical resistances. The resistance of a memristor can be
adjusted by changing the applied voltage or current, which
controls the transport of charge carriers in the nanoscale device.
In this work, iron oxide is adopted as the memristor resistive
layer. As shown Figure S1 in the Supplementary Information,
a typical memristor of sandwich structure with 0.25 µm2 −
size TiW/Pt/FeOx/Pt/TiW is fabricated.

However, as shown in (Kuzum et al., 2013), the dynamic
range of memristor conductance to effectively emulate a
synapse is often relatively narrow. For instance, the iron oxide
memristor fabricated in this work is an ideal synaptic device
due to its monotonous and consecutive state distribution.
Note that the resistive ratio of the maximum conductance
to the minimum conductance reflects the dynamic range
of synaptics weight. As seen in Figure S1C, the ratio is
only about 3 ∼ 4. This is consistent with a narrow
distribution of biological synaptic weights that generally follows
a lognormal distribution (Song et al., 2005; Teramae and
Fukai, 2014). With the proposed HCSM model, it will
be shown later that the neuromorphic system also works
well since HCSM reduces the requirements on the synaptic
plasticity.

2.2. Hierarchical Chunking of Sequential
Memory (HCSM) Model
We propose a hierarchical chunking of sequential memory
(HCSM) model shown in Figure 1, which consists of multi-
layered networks. Each dashed circle indexed by a unique tuple
(n,m) represents the mth chunk in the nth layer. Within each
chunk, neurons are all-to-all connected (Figure 3). It can be seen
that in each layer n, each neuron is connected to a specific sub-
chunk in layer n + 1 to form a hierarchical structure (Figure
S4), through an activation signal denoted by the dotted arrows
in Figure 1. Thus we refer a chunk in layer n and its connected
chunks in layer n + 1 as a parent chunk (PC) and child chunks
(CCs), respectively. Clearly, a chunk in layer n is a CC, with
respect to its PC in layer n − 1, and also a PC with respect
to its CCs in layer n + 1. In other words, PCs and CCs only
represent relative relationships between connected chunks from
two successive layers.

The winnerless competition principle (WLC) (Rabinovich
et al., 2001) among neurons in each network is described by the
generalized Lotka-Volterra model in (Bick, 2009). The neuron
preserving the maximum activity is a winner neuron. Here
“winnerless” implies a winner is only metastable and it will switch
from one neuron to another in a sequential memory trace as
shown in Figure 1A. As each temporary winner neuron in a PC
chunk will activate its connected CC, competition exists among
different chunks in the same layer. When a recall cue is given, the
HCSM model presents a memory trace containing all temporary
winner neurons as shown in Figure 1B. In order to apply the
WLC principle to the model of hierarchical architecture in this
work, a time constant (τ > 0) is introduced to reflect the dynamic
evolving rate in the generalized Lotka-Volterra model. The WLC
in a chunk indexed by (n,m) is then described by the following
dynamic equation:

ẋ
(n,m)
i = τ (n,m) · x(n,m)

i (σ
(n,m)
i −

∑N
(n,m)
0

j= 1 w
(n,m)
ij · x(n,m)

j )+ v
(n,m)
i

(2)
where τ (n,m) is the time constant that reflects the rate of activation
and decay of N

(n,m)
0 neurons in the chunk (n,m), σ

(n,m)
i is a

fixed bias term that determines the equilibrium neural activity

in the absence of external inputs and noise, x
(n,m)
i ≥ 0 is the

output neural activity of neuron i, w
(n,m)
ij ≥ 0 for j 6= i is

the inhibitory weight (Brunel and Wang, 2001) from neuron

j to neuron i, w
(n,m)
ii = 1 for i = 1, ...,N

(n,m)
0 , and v

(n,m)
i is

the external noise in the interval [−ε, ε] where ε is a small

positive constant. Note that the weight w
(n,m)
ij , and σ

(n,m)
i for

all i and j are required to be encoded when performing specific
task. Also, the connection between the nodes in different layers
is not reflected in the dynamic Equation (2). However, it is
assumed that a neuron in the PC can activate a CC chunk
that is connected to the PC neuron through a activation signal
denoted by dotted arrow. This implies that different chunks, for
example the chunks in layer 2 of Figure 1, do not interact with
each other directly in the same layer, but they indeed interact
with each other in a particular way in the higher layer (layer
1). The time constant τ (n,m) for a CC is normally smaller than
that in a PC, which implies that the chunks in the CC layers
possess relatively faster dynamic evolving rates. Since the HCSM
model may be a deep architecture, the time constant τ has
a wide range. It is known that there is indeed a wide range
of time constants for the neurons in the human brain, from
hundreds of milliseconds to tens of seconds (Bernacchia et al.,
2011).

Note that each neuron represents a particular item in memory
such as a digital number or a letter of the alphabet. The neural
activity in a dynamic system (Equation 2), which is time-varying,
reflects the level of activity of each neuron in a neural network.
At a given time instant, the neuron of the maximum neural
activity among a chunk becomes the temporal winner. The
corresponding item that the winner neuron represents will be
recalled.

2.3. Encoding Scheme for the HCSM
Neuromorphic Network
Suppose that there are N0 neurons in a chunk, and each neuron
represents a particular item in the memory. Before we encode
a sequence containing κ ≤ N0 metastable states in a chunk as
described in Equation (2), the bias parameter of each neuron and
the weight between two arbitrary neurons need be determined
first. In this work, the bias parameter of neuron i in a specific
chunking sequence is chosen as

σi =
{

Fk, if neuron i is the k-th term of the chunking sequence.
0 otherwise.

(3)

where Fk is the k-th term of the Fibonacci sequence (Dunlap,
1997) with F1 = 1 and F2 = g. Here g is the “Golden
ratio” (Dunlap, 1997; Livio, 2008). The synaptic weight between
neurons i and j in the same chunk is then selected as:
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FIGURE 3 | Hardware implementation for a single chunk. The chunk, a PC or a CC, is mainly constructed by an analog memristor crossbar circuit and digital

neurons. The memristor crossbar completes a VMM operation in one step, and the digital neurons run the neuronal dynamics described in Equation (6). The diagonal

elements of the crossbar are non-plastic, with the same value as Rf to satisfy wii = 1. The DACs and ADCs are required to convert the signal format between analog

circuits and digital circuits. The iterative timing sequence k → k + 1 is governed by the clock signal. The winner neuron activator in each chunk (PC) is used to

determine the winner neuron at each time step and transmit an excitatory signal to the corresponding connected CC block. When a CC receives an excitatory

activation signal from a winner neuron in the PC, the clock will be triggered and the iterative neuronal dynamics in this CC starts to form a pre-defined memory trace.

wij ∈







S1, if neurons i and j are adjacent in the chunking
sequence.

S2 otherwise.
(4)

with

S1 = {x|g − 1
2 < x < g}

S2 = {x|gk − 1 + 1 < x < +∞} (5)

where k is the length of the sequence in this chunk. A
detailed motivation to the above encoding scheme associated
with the existence of the metastable states in a stable sequential
memory trace are provided in Theorem 1 in the supplementary
information.

2.4. Hardware Implementation
As well known, the neuromorphic engineering especially the
memristive system enables the hardware implementation of
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neural networks with ultra-low power, small size, and high speed
(Kuzum et al., 2012; Yu et al., 2013; Deng et al., 2016), which
aims at the future of mobile intelligence. However, the memristor
with good plasticity to emulate synapse usually suffers from a
narrow dynamic range. Fortunately, the proposed HCSM model
efficiently reduces the requirement on synaptic plasticity. This
coincidencemotivates us to build amemristive architecture of the
chunking model and demonstrate the feasibility, which provides
neuromorphic engineers with a promising solution to realize
dynamical memory on hardware platform.

We fabricate a FeOx-based memristor device with typical
sandwich structure, whose detailed process and electrical
characteristics are shown in Figure S1. The conductance state can
be monotonously and consecutively modulated under a series of
positive or negative pulses, i.e., with good plasticity. The positive
pulse train gradually increases the conductance, corresponding
to the short/long term potentiation (STP/LTP) process; while
the negative pulse train results in short/long term depression
(STP/LTD). The resistive ratio of highest conductance to lowest
conductance is only 3 ∼ 4.

The memristor is cascaded with an amplifier to perform
as a functional synapse. The one-input-to-one-output structure
and multiple-input-to-one-output structure are illustrated in
Figures S2A,B, respectively. The equivalent synaptic weight is
co-determined by the memristor conductance G and feedback
resistance Rf on amplifier, w = Vout/Vin = −RfG, which
is a dimensionless value indicating the voltage transmission
efficiency from input to output. In this manner, the negative
weight realizes the inhibitory connection in HCSM model. For
the case of multiple inputs injected to one amplifier, all the
memristors form a parallel circuit and the transfer function
is provided in Figure S2. The amplifier is able to accumulate
the multiple synaptic inputs, like the integration function of
dendrites. This feature efficiently supports the multiplication and
accumulation (MAC) operations between the inputs and weights
in Equation (2).

The neuron dynamics described by the differential
equation (Equation 2) can be numerically solved based on
its corresponding difference equation

x
(n,m)
i (t + dt) = x

(n,m)
i (t)+ dt · {τ (n,m)x

(n,m)
i (t) · [σ (n,m)

i

−
∑N0

j= 1 w
(n,m)
ij · x(n,m)

j (t)]+ v
(n,m)
i }.

(6)

If we replace the evolution “t → t + dt” by “k → k + 1,”
we can achieve a numerical iteration process. The one-to-one
corresponding digital neuron block is shown in Figure S3A. A

Fibonacci sequence block is also necessary to determine σ
(n,m)
i ,

as well as the upper and lower bounds of the synaptic weights, as
shown in Figure S3B.

Based on the element synapse and neuron block, a chunk
network can be implemented, as demonstrated in Figure 3. Each
chunk, a PC or a CC, is mainly constructed by an analog
memristor crossbar circuit and digital neurons. More specifically,
the weighted synapses which is themost critical part in this neural
network, are implemented by a memristor crossbar circuit. Each
column in the memristor crossbar and the cascaded amplifier on
that column perform a MAC operations as shown in Figure S2B.

All columns are assumed to be independent without crosstalk,
so that the whole memristor crossbar and the amplifier array
can well realize the matrix-vector multiplication (VMM) which
is the major operation in neural networks. This indicates that the
architecture supports one-time projection from multiple inputs
to multiple outputs, with the advantages of small size, high speed
and low power. It is worth noting that the diagonal elements
of the crossbar are non-plastic resistors (not memristor) with
the same value as the feedback resistance Rf on the amplifier.
Thus, the requirement of wii = 1 in HCSM model is met.
Each neuron block iteratively runs the dynamics of Equation (6).
The neuronal outputs at each time step are stored in temporal
registers and fed back into the network as synaptic inputs at the
next time step. In fact, the timing sequence of the whole network
(k → k + 1...) is governed by the clock signal. Actually, the
chunk is an analog-digital hybrid circuits, DACs (digital to analog
converters) and ADCs (analog to digital converters) are required
to convert the signal format (Li et al., 2013). Furthermore, each
chunk circuit can be hierarchically organized together to form
a complete HCSM model, as shown in Figure S4. The winner
neuron activator in each chunk (PC) is used to determine the
winner neuron at each time step and transmit an excitatory signal
to the corresponding connected CC circuit. When a CC receives
an excitatory activation signal from a winner neuron in the PC,
the clock will be triggered and the iterative neuronal dynamics in
this CC starts to form a pre-defined memory trace.

When performing a real task, the memristive networks
often work in two stages: the write (synaptic modulation)
stage and the read (neuronal processing) stage. During the
write stage, the memristive crossbar is fully controlled by
the pulse modulator block, as presented in Figure S5. The
weight calculator block calculates the theoretical weight of
each synapse according to a pre-defined chunking sequence
based on Equations (3)–(5), and the pulse modulator generates
the pulse train (potentiation or depression pulses) to modify
the conductance of each memristor to the desired value.
Two detailed modulation methods are illustrated in Figures
S6, S7. Different from the conventional direct configuration
in computer software, neuromorphic implementation has to
gradually program the conductance of hardware synapse array
from a random initial state to the target state that is produced
by the weight calculator. Pulse tuning scheme is more popular,
compared to DC switching, since its well controllable modulating
increment can achieve relatively high precision. The open-loop
modulation directly uses the behavior model of memristor device
to determine the direction and number of pulses to move any
initial conductance state to the desired one. Considering real
device variability, one-time open-loop modulation sometimes
cannot reach the ideal state. To this end, the closed-loop
modulation repeatedly performs the open-loop modulation until
the desired conductance is achieved. More generally, the closed-
loop modulation can use the trial-and-error method to gradually
tune the conductance without the guidance of theoretical
behavior model. Furthermore, the modulation process is flexible
by choosing proper pulse amplitude (Kuzum et al., 2011), width
(Snider, 2008), and frequency (He et al., 2014) of the pulse
train. However, the versatile pulse tuning schemes will drastically
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increase the burden of the pulse generator, hence it is often hard
to be executed in hardware systems. To mitigate the burden, a
number of identical pulses are adopted in this work to modulate
the memristor states, as mentioned earlier in Figure S1C.

When updating the conductance of a specificmemristor in the
crossbar, it would be firstly selected to avoid influencing the states
of other unselected memristors. Some typical selective devices
are useful such as diode or transistor (Wong et al., 2012), and
even selector-free memristor crossbar is possible (Prezioso et al.,
2015). The half-selected technique is also used to further prevent
unintentional operation on the unselected memristors (Yang
et al., 2013). This is because the conductance change only occurs
when the amplitude of modulation pulses is above the threshold
voltage and no significant conductance change is observed under
applied voltages below the threshold (Jo et al., 2010). The full
programming voltage VP and VD on the selected memristor is
above the threshold, while the half voltage VP/2 and VD/2 is
configured below the threshold. Then while one synapse is under
programming, the others are clamped at their current states with
a lower half-selected voltage. During the read stage, the pulse
modulator is switched off and the data flows from the memristor
crossbar to the neuron block, and then feeds back at next time
step. The input voltages are scaled to be sufficiently small that the
trainedmemristor states would not change during the whole read
stage.

This paper aims for offering a heuristic solution to guide
neuromorphic engineers to embed a dynamical memory model
into future neuromorphic platforms. In all the following
simulations, we present less peripheral circuit details but pay
more attention to the influence of dynamic range and precision
of memristor device, which are the two key points narrowing the
gap between memristive system and HCSM model. Based on the
real memristor data in Figure S1, as well as some existing physical
models and behavioral models of the memristor (Strukov et al.,
2008; Yang et al., 2008; Guan et al., 2012a; Suri et al., 2012;
Deng et al., 2015), we build an iron oxide memristor model
whose synaptic behavior shows excellent agreement with the real
device experiments (Figure S1D). Furthermore, we use SPICE (a
standard circuit simulator) to verify the proposed network model
of HCSM shown in Figure 3 and Figure S4.

3. RESULTS

3.1. Chunking and Synaptic Plasticity
We denote sup(S

(n, m)
1 ) as the supremum of set S1 defined

in Equation (5) in the chunk (n,m), and inf(S
(n′, m′)
2 ) as the

infimum of set S2 in the chunk (n′, m′). The ratio of inf(S
(n′, m′)
2 )

to sup(S
(n, m)
1 ) generally implies the requirement of synaptic

plasticity to recall the sequences. As there are multiple chunks in
different layers, a relative synaptic plasticity requirement index ϕ

is defined as

ϕ = max{inf(S(n
′ , m′)

2 )}
min{sup(S(n, m)

1 )}
= gmax{k(n, m)}−1+1

g = gmax{k(n, m)}−2 + g−1

(7)

wheremax{k(n, m)} is the length of the longest chunking sequence
for a particular memory task. It is known that ϕ in real
neurobiological systems should be less than an upper bound,
which constitutes the capacity boundary of sequential memory.
As mentioned previously, the dynamic range of memristor with
good synaptic plasticity is often relatively narrow. This may
relate to capacity limitations in the human brain. Note that in
the HCSM, a sequence is divided into a series of subsequences
with different lengths, and the chunk with the longest sequence
mainly determines the requirement on the dynamic range of the
memristor. In this regard, the HCSM model is capable of having
the neuromorphic system maintaining its performance with a
reduced requirement of synaptic plasticity.

As shown in the literature, the synaptic weight distribution
(Barbour et al., 2007) in the human brain follows a lognormal
distribution (Song et al., 2005; Teramae and Fukai, 2014), as
illustrated in Figure 4A. This indicates that the synaptic weights
mainly locate in a narrow domain. Note that generally it is
impossible to estimate the relative synaptic plasticity requirement
index ϕ in human brain and bio-neural systems by applying
(Equation 7). Here we define another index ϕ̃ to address this
issue. Let w̄ be the median weight and define ϕ̃ = w

w̄ as
the measurement of relative synaptic plasticity index in bio-
neural systems. Thus, in Figure 4A, it is observed that for
80 and 90% of synaptic weights, the synaptic plasticity index

FIGURE 4 | Lognormal distribution of synaptic weights underlies the

chunking mechanism. (A) The lognormal distribution of synaptic weights in

real neural systems, which implies that the dynamic range of the synapses in

the brain is in a narrow interval. (B) The relative synaptic plasticity requirement

index with respect to the length of the sequence in a particular chunk for

HCSM.
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is below ϕ̃1 = 4.2
1.9 = 2.21 and ϕ̃2 = 6.5

1.9 = 3.42,
respectively.

While in Figure 4B, it is seen that ϕ increases exponentially
with respect to the length of the sequence in HSCM. As a
chunking mechanism allows us to encode a long sequence
into many shorter subsequences, HCSM could work on the
domain which requires a relative narrower dynamic range of
the memristor in the neuromorphic network. By combining the
results shown in both Figures 4A,B, when we apply ϕ̃ to reflect
the requirement of synaptic plasticity in the brain/bio-neural
systems, we provide a putative reason why the optimal items in
sequential memory is 3–4 items, which is a long standing problem
pointed out in (Simon, 1974) and (Gobet, 2004).

3.2. Impact on the Precision of the
Synaptic Weights in HCSM
We simulate the hardware implementation of HCSM (Figure 3)
and the results of neuronal activities are shown in Figure 5,
where an example consisting of four winner neurons in each
chunk is illustrated. Specifically, several sub-circuits with the
same structure but different parameters, each represents a PC
or a CC, have been established to form the complete HCSM
model. A 50 Hz square wave is provided as the gated clock
signal for all sub-circuits, while each gate is controlled by its
activation signal. The clock gate is on when the activation
signal is logically high. Then the sub-circuit is activated. The
computation module of the activated sub-circuit, consisting of
a memristor array, a group of neurons and other peripheral
circuits, is then triggered by the 50Hz clock signal. Output
neuronal activities of the activated subcircuit gradually evolve
following Equation (6) where each time step is kept smaller
than a half clock period. The winner neuron activator then
determines the winner neuron with maximum neuronal activity
and set the corresponding activation signal logically high to
activate its connected CC. It is seen that the ideal memory trace
is successfully achieved, where different neurons become the
temporal winner in turn. Thus, the trace in the CCs is instantly
activated by a corresponding activation signal generated from
the PC.

As discussed in (Kuzum et al., 2012), (Yu et al., 2013), (Guan
et al., 2012b), and (Yu et al., 2012), the main challenge of
memristor-based neuromorphic system is the notable variation
of memristive devices during programming, including cycle-
to-cycle variation and device-to-device variation. In this case,
the performance of the encoded memristor-based neuromorphic
network of HCSM in the presence of device variation need to
be validated. We introduce different levels of fuzzy dispersion
to the final weight values of synaptic weights in HCSM using
our fabricated memristor as synapse when recalling a memory
trace task. Figure 6 shows the robustness of HCSM model by
analyzing the fault-tolerance performance with respect to the
weight variation of memristors. In particular terms, the network
can perfectly trace the target sequence under a pessimistic 20%
dispersion of the synaptic weights. As expected, the responses
of pre-defined winner neurons gradually deviate from the
ideal pattern with a rapid increasement of weight dispersion.

For example, only three winner neurons successfully trace its
memory under 30% dispersion of the synaptic weights, and
the number of successful neurons reduces to two when the
dispersion level increases to 50%. The trace pattern no longer
converges to its stable state when the dispersion is larger than
70%. In general, our proposed HCSM model does not require
precise synaptic weights in the encoding scheme, and a great
degree of device variation can be tolerated. This suggests that
chunking mechanism enables applying low precision synapses
when performing a memory task.

3.3. Impact on the Dynamic Range of the
Synaptic Weight in HCSM
In simulating the encoding process of a sequential memory on
SPICE, two conclusions are obtained: (i) the dynamic range of the
synaptic weight is required to bemuch wider if the same length of
sequential memory is encoded without chunking; (ii) the success
rate of the encoding in each chunk is a monotonously increasing
function of the dynamic range synaptic weights.

Suppose that we encode a sequential memory with k items
such that the square root of k is an integer. To achieve a lower
relative synaptic plasticity requirement index defined in Equation
(7), the best way is to encode the sequence in

√
k chunks, with

each chunk consisting
√
k items. Then, the relative synaptic

plasticity requirement index ϕ is obtained by

ϕ = max{inf(S(n
′ , m′)

2 )}
min{sup(S(n, m)

1 )}
= g

√
k−2 + g−1 (8)

By comparing Equations (7) and (8), it is seen that we require
the same dynamic range of the synaptic weight to encode k

items with chunkingmechanism and
√
k items without chunking

mechanism.
We simulate the encoding process of a length of 16-items

sequential memory which has 4 chunks, with each chunk
consisting of 4 items on SPICE based on the encoding scheme
we introduced in Equations (3)–(5). In Equation (5), we notice
that the supremum of set S2 can be positive infinity. However,
in real applications it is well known that the synaptic weight can
never be infinity. To show the impact of the dynamic range of the
synaptic weight in HCSM more clearly, we set |S2| = |S1| where
|.| denotes themeasure/length of an interval, i.e., S2 = {x|gk − 1+
1 < x < gk − 1 + 3

2 }. Obviously, we have |S2| = |S1| = 1
2 .

When both |S1| and |S1| are fixed, the relative synaptic plasticity
requirement index ϕ also reflects the requirement of the dynamic
range of synaptic weights. In SPICE simulation, ϕ is chosen from
2–4. In Figures S8–S11 in Supplementary Information, the effects
for cases ϕ = 2.0, 2.4, 3, and 3.6 are shown in four figures,
respectively. It is seen that a small ϕ usually leads to failure of
the encoding of the sequential memory while a larger ϕ improves
such a situation. We repeated the experiments 200 times to
estimate the encoding success rate for each fixed ϕ in Figure 7,
where it is shown that the encoding success rate in each chunk
is a monotonously increasing function of the dynamic range of
synaptic weights.
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FIGURE 5 | Hierarchical memory traces in one PC and its CCs. The vertical axis is the output neuronal activity and the horizontal axis is the sampling time. At a

given moment, the neuron which preserves the maximum activity is the temporal winner neuron.

4. DISCUSSION

In this work, we suggest a link between chunking mechanism
and synaptic plasticity to answer a long standing question why
chunking improves sequential memory. A hierarchical chunking
of sequential memory (HCSM) model and a robust scheme
regarding how to encode sequential memory are presented. It is
observed from the encoding scheme that chunking mechanism
reduces the requirements of synaptic plasticity when recalling
a memory trace, including the tolerance of the dynamic range
and precision of the synaptic weights. Furthermore, we provide
a neuromorphic implementation to verify the proposed memory
dynamics under the hardware constraints of narrow dynamic
range and device variability. The successful demonstration
indicates the feasibility to embed more complex memory models
into future neuromorphic systems.

One merit of the proposed HCSM model is the robustness of
the encoding method, i.e., the weight can be a random value in a
given interval, which makes the model convenient to be realized
bymemristive devices. However, the disadvantages include (i) the
model requires full connection of the neurons in the network; and
(ii) the asymmetry in information storage fundamentally impairs
the length of the memory trace. Therefore, the investigation of
a new model that allows sparse connection of neurons to link
metastable states together in a sequential memory would be of
great interest. Also, besides chunking mechanism, how can the
memory capacity of biological systems be improved deserves
investigation. Furthermore, we would like to point out that in
HCSM, a particular item in the memory trace is represented by

only one neuron. However, experimental studies have revealed
that population coding (Pasupathy and Connor, 2002) , a method
to represent stimuli (a memory item) by using the joint activities
of a number of neurons, is widely used in the brain (Averbeck
et al., 2006). This implies that single neural coding method
may be inadequate in practical applications. We conjecture that
population coding could be applied to our model which deserves
further investigations.

This work provides an addition to recent work on learning
of chunking sequences (Fonollosa et al., 2015) including specific
roles in cognitive process (Varona and Rabinovich, 2016).
Specifically, this work provides a useful hardware validation
means for many advanced theory researches. We also open up a
new application space on neuromorphic platforms to implement
not only HCSM, but also various bio-inspired memory models
related to the encoding of the visual, acoustic and semantic
information and so on. Predictably, the disciplines of cognitive
psychology, neuroscience and information technology, and
neuromorphic engineering becomes more and more important.
The top-down bio-plausible theories fundamentally guide the
development of future neuromorphic computing systems; while
the bottom-up neuromorphic materials, chips, boards and
systems usefully verify these pioneering theories. Although there
is still a long road ahead, this work kindles a ray of hope.

The major difficulty preventing its application is the
fabrication and management of large-scale memristor crossbar,
especially considering the device variability and the crosstalk
among adjacent cells. On the other side, the required peripheral
circuits are also quite complex, including analog-digital
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FIGURE 6 | Analysis of the fault-tolerance performance of the proposed HCSM system with respect to the variation of memristors. It can be seen that

although with a weight dispersion of up to 20%, the HCSM system can perfectly pass by all the four temporal winners. And the system can pass by three of the four

temporal winners even with a dispersion of 30%. Hence, a good tolerance of the proposed HCSM system to the device variation can be shown.

FIGURE 7 | The relationship of encoding success rate and the dynamic

range of synaptic weights.

converters, read/write circuits, switching matrix as well as extra
computing circuits for learning. Fortunately, some reported
memristor-based artificial neural networks have shown that
these developments may become feasible in the near future, at
least in relatively small scale (Alibart and Zamanidoost, 2013;
Garbin et al., 2014; Prezioso et al., 2015). With the development
of integration techniques for large scale memristor crossbar or
even 3D networks (Yu et al., 2013; Li et al., 2016), as well as

memristor for logical or arithmetical computations (Borghetti
et al., 2010; Gale, 2015) to reduce complex peripheral circuits
by replacing the digital neurons, we envisage a real chip able to
perform interesting memory tasks.
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