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Brain image spatial normalization and tissue segmentation rely on prior tissue probability

maps. Appropriately selecting these tissue maps becomes particularly important when

investigating “unusual” populations, such as young children or elderly subjects. When

creating such priors, the disadvantage of applying more deformation must be weighed

against the benefit of achieving a crisper image. We have previously suggested that

statistically modeling demographic variables, instead of simply averaging images, is

advantageous. Both aspects (more vs. less deformation and modeling vs. averaging)

were explored here. We used imaging data from 1914 subjects, aged 13 months to

75 years, and employed multivariate adaptive regression splines to model the effects

of age, field strength, gender, and data quality. Within the spm/cat12 framework, we

compared an affine-only with a low- and a high-dimensional warping approach. As

expected, more deformation on the individual level results in lower group dissimilarity.

Consequently, effects of age in particular are less apparent in the resulting tissue

maps when using a more extensive deformation scheme. Using statistically-described

parameters, high-quality tissue probability maps could be generated for the whole age

range; they are consistently closer to a gold standard than conventionally-generated

priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data

quality were seen. We conclude that an extensive matching for generating tissue priors

may model much of the variability inherent in the dataset which is then not contained

in the resulting priors. Further, the statistical description of relevant parameters (using

regression splines) allows for the generation of high-quality tissue probability maps while

controlling for known confounds. The resulting CerebroMatic toolbox is available for

download at http://irc.cchmc.org/software/cerebromatic.php.

Keywords: MRI template, spline interpolation, multivariate adaptive regression splines, pediatric neuroimaging,

spatial normalization

INTRODUCTION

Registration of brain MR images into a common stereotactic space is an important step in MRI
group analyses. Following the groundbreaking work of Talairach and Tournoux (1988), the concept
of a reference brain has subsequently gained widespread support in the scientific community
(Mazziotta et al., 2001; Brett et al., 2002, Evans et al., 2012). The large majority of studies published
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today employ a volume based registration strategy (Klein
et al., 2009; Oliveira and Tavares, 2014), although surface-based
(Davatzikos, 1996; Thompson et al., 1997; Lancaster et al., 1999;
Frost and Goebel, 2012) or combined approaches (Fischl, 2012;
Luo et al., 2014) have also been suggested.

Spatial registration is now commonly performed in the
context of tissue segmentation to avoid issues of image
imperfections (Bookstein, 2001; Good et al., 2001; Smith, 2002;
Iglesias et al., 2011), allowing for a “per tissue class” approach
to image registration (Ashburner and Friston, 2005; Ashburner,
2007). The accuracy of these approaches is improved by explicitly
modeling non-brain tissue such as dura and scalp, as well as
background (Ashburner, 2012; Fischmeister et al., 2013; Kazemi
and Noorizadeh, 2014; Malone et al., 2015). Hence, multiclass
tissue priors have replaced whole-brain T1-weighted images as
the preferred target for spatial normalization, particularly in the
framework of the widely-used statistical parametric mapping
software (SPM, FIL, University College London).

Naturally, such a registration is only conceptually meaningful
if the tissue priors are appropriate for the subject under
study. Most publicly available templates in popular software
solutions such as SPM, FSL, or AFNI, are based on collections
of (mostly younger) healthy adults (e.g., the average age of
subjects contributing to the MNI152 atlas is 25.0 ± 4.9 years,
of those contributing to MNI305, 23.4 ± 4.1 years, of those
contributing to the DARTEL priors in spm12, 48.6 ± 16.4
years, etc.). As a general rule, the error associated with the
use of inappropriate target brains must be expected to be a
function of the structural differences between the population
contributing to the template and the population under study.
Due to the substantial changes the human brain undergoes as
part of normal human brain development (Brain Development
Cooperative Group, 2012; Ziegler et al., 2012a,b), concerns have
therefore been raised about the applicability of standard adult
priors when studying infants, children, and adolescents, as well as
elderly subjects. Consequently, several attempts have been made
to provide more accurate registration targets for (in terms of
algorithmic expectations) “unusual” populations (Wilke et al.,
2002, 2003, 2008; Mega et al., 2005; Altaye et al., 2008; Marcus
et al., 2010; Shen et al., 2012; Luo et al., 2014; Shi et al., 2014;
Richards et al., 2015). While providing more accurate targets for
the population in each study, the plethora of available, and not
directly comparable, templates has been considered “a plague”
to the field of neuroimaging, making meta-analytic approaches
much more difficult (Evans et al., 2012). On the other hand,
however, this disadvantage may be outweighed by the fact that
accuracy, sensitivity, and specificity within a given study must be
expected to be higher when using appropriate priors.

When using more extensive non-linear registration
approaches, increasingly crisp template images are required
to match the input images to Ashburner (2007) and Luo et al.
(2014). Such high-dimensional approaches aim at increasing
correspondence and at decreasing the residual group variance,
representing the upper end of a continuum that has an affine-
only approach on the lower end (see Figure 3B in Evans et al.,
2012, for an illustration). Following more extensive deformation,
however, the resulting image may not reflect the full variance

inherent in the population before deformation (as much of the
variance will be captured by the deformation field; Crum et al.,
2003). Further, a large amount of deformation may be necessary
for a given subject to achieve this end, naturally depending
on the target brain (Wilke et al., 2002; Leporé et al., 2007).
Also, the question whether functional organization in general,
and structure-function relationship in particular, are reliable
enough across individuals to make an exact correspondence
of anatomical details desirable in the first place has been
questioned (Brett et al., 2002; Crivello et al., 2002; Thirion et al.,
2006; Eickhoff et al., 2009). Therefore, template brains were
traditionally generated using a linear, affine transformation only,
which will scale the image globally to match the template, but
will not perform any non-linear feature matching in order to
preserve the individual characteristics (e.g., Collins et al., 1994;
Wilke et al., 2002, 2008). This, however, will only lead to an
appropriate overlap of larger, more conserved brain structures,
but not of smaller, or more variable ones. It will also tend to
produce larger images due to the effect of virtual convolution
(Evans et al., 1993). Consequently, a somewhat fuzzy image will
result which will itself not be a good target for extensive local
matching (not despite, but because, its construction was aimed
to preserve the local features of the input population). On the
other end of the spectrum discussed by Evans et al. (2012), an
extensively-matched population will yield a very crisp resulting
image (see Luo et al., 2014, or below, for an illustration). This
allows for better local matching (Mazziotta et al., 2001), but
at the cost of more deformation in each individual case. The
cost-benefit ratio, in terms of the decrease of structural variability
over subjects vs. the increase in deformation required for each
subject, is not clear. Therefore, there is a need for investigating
the relationship between deformation and change in variance,
in particular in the context of the changes occurring in the
developing brain. To this effect, three different normalization
strategies (affine, low-, and high-dimensional warping) are
investigated here. While tested here within the spm framework,
they can be considered representative for similar approaches in
other software solutions.

The question of optimal template creation is important to
consider for data from children in particular. As an alternative
to the usual approach of averaging subject data, we previously
suggested an alternative approach based on the assumption that
a more appropriate representation of the salient features of
a population could be achieved if the defining demographic
features are described statistically (Wilke et al., 2008).We showed
that age and gender were the most important contributors by
far, and that their inclusion in a general linear model (GLM)
allowed for the statistical description of (and thus, accounting
for) their effects in a large cohort of healthy children (Wilke
et al., 2008). These statistical parameters could then be used to
synthetically generate a tissue probability map for a certain age,
and gender, to be used as reference data in ensuing studies. The
elegance of such an approach is that the resulting images are an
accurate representation of only the regressors of interest (e.g.,
age and gender) and contain no sources of unexplained noise,
making them a “cleaner” solution. However, there are limitations
of the GLM, such as a vulnerability with respect to outliers
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and toward the edges of the dataset, and stability issues when
strong correlations among the predictors are present (Petersson
et al., 1999; Henson, 2006; Rorden et al., 2007; Cousineau and
Chartier, 2010). Therefore, a more robust, non-parametric, yet
flexible, multivariate approach may be preferable. To this effect,
the multivariate adaptive regression spline approach has been
suggested as an interesting alternative (Friedman, 1991). The
approach can briefly be summarized as follows: to obtain the
dependent responses y, the system that generates the data is
described by

y = f (X1, . . . , Xn) = f (X) + e (1)

where X1:n represent the input variables and e is the fitting error.
Then themultivariate adaptive regression spline can be expressed
as a linear combination of basis functions in the form of

f (X) = θ0 +

M
∑

m = 1

θm Bm(X) (2)

where θ0 is the intercept, M is the number of basis functions, θm
are the basis function’s coefficients (estimated by minimizing the
residual sum of squares), and Bm is the basis function.We can use
piecewise linear or cubic splines as a basis function of the form

(x− t)+ =

{

x− t, if x > t
0, otherwise

}

and

(t − x)+ =

{

t − x, if x < t
0, otherwise

}

(3)

with a knot defined at value t. The modeling process uses a
forward and a backward pass. The forward pass is used to try our
new function products and determine which product decreases
the error. The backward pass is used to avoid overfitting. During
the forward pass, it uses basis function at both sides of the knot
(e.g., f (x1, x2) = (x1 − x)+ ∗ (x− x2)+). During the backward
pass, it removes one term at a time. Due to these properties,
splines can be used to describe smoothly varying trajectories by a
series of continuous, piecewise, cubic polynomial functions. This
framework has already been applied to neuroimaging data, to
model early as well as late human brain development (Ziegler
et al., 2012a; Chen et al., 2014). An exemplary application (and
a comparison with conventionally-generated means) is shown
in Figure 1. Their behavior is characterized by the number of
basis functions (centered around knots), which makes them very
flexible (Unser, 1999). To avoid overfitting, this flexibility can be
penalized by placing constraints on the curvature of the resulting
spline. Splines are also well-suited to model the effects of a
given predictor of interest because the predicted values are linear
combinations of the original response values.

This study was aimed at investigating three questions: one,
when using an affine-only vs. two (more or less extensive)
combined deformation approaches, in how far does the resulting
decrease in variance across the population come at the cost of a
higher local deformation. Two, based on demographic predictors
known to explain a large portion of the variance in neuroimaging
data, is it possible to model these patterns using a multivariate

adaptive regression splines approach. By thus describing the
pattern of normal brain development, this should allow for the
creation of statistically-defined tissue priors to be used in tissue
segmentation and spatial normalization. Finally, the resulting
tissue priors should be compared to the standard (straight mean)
approach.

SUBJECTS AND METHODS

Datasets and Subjects
We compiled a large population of healthy subjects across a wide
age range. For infants and children, we used data acquired as
part of the Study of Normal Brain Development conducted by
the US National Institute of Health (NIH; dataset 1) as well as
from the Cincinnati MR Imaging of Neurodevelopment study (C-
MIND; dataset 2). For adults, we used data acquired as part of the
1000 functional connectome study (fCONN; dataset 3) as well as
from the Information eXtraction from Images study (IXI; dataset
4). Overall, an initial sample of 2081 T1-weightedMR images was
included. Due to small sample size (n= 20, see below) in a given
2-year age brackets, subjects with an age >900 months (75 years)
were removed. Also, subjects below 1 year of age were excluded
as the first year of life represents a period of rapid volumetric and
signal changes (Zacharia et al., 2006; Choe et al., 2013), including
the presence of unmyelinated white matter (Ashburner, 2012;
Anbeek et al., 2013). For this population, dedicated segmentation
and normalization routines are needed (Anbeek et al., 2013; Shi
et al., 2014; Wang et al., 2014; Išgum et al., 2015). Following
quality control (see below), a final sample of 1914 images was
used for subsequent analyses, in the age range of 13 months
to 75 years. An overview of demographic details of all subjects
and datasets is provided in Table 1; more detailed information
(including an overview over the data processing and analysis
approach) is provided in the Supplementary Material S1.

Data Processing: General
All data processing and analysis steps were performed in
Matlab (Mathworks, Natick, MA), using functionality provided
by the spm12 software package (University College London,
UK) as well as customized scripts and functions. Multivariate
adaptive regression spline analyses were performed using the
ARESLab toolbox (Jekabsons, 2011). A pre-release version
(v646) of the cat12 toolbox (Gaser, 2014) was used for data
preprocessing. A 7th degree B-spline interpolation algorithm
was used wherever possible during data processing in order
to minimize interpolation artifacts (Unser, 1999). All other
parameters were left at their default values unless specified
otherwise.

Preparation of Images
In order to provide optimal starting estimates for the ensuing
processing steps for images from several sources and differing
field strengths, a number of pre-processing steps were initially
applied to all images. First, images were roughly aligned with a
target template in normalized space by coregistration (Ashburner
and Friston, 1997); secondly, the origin of the image volume was
set to the center of mass of the largest cluster (the head; Gaser,
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FIGURE 1 | Comparison of averaging vs. statistical modeling. Top panel: global gray matter volumes versus age from all subjects, used as an exemplary

dataset. Bottom panels 1–3: effect of using a moving average (MA) filter including 25, 50, or 100 subjects, to generate means for each timepoint. Note increasingly

smoother curves with more subjects, but also increasingly pronounced “blunting” of the peak in late childhood. Left-most panel: resulting curve following multivariate

adaptive regression splines (MVARS; 8 final basis functions), modeling age, gender, field strength, and data quality. The variance explained (R2) by either approach

also demonstrates better modeling of the overall variance by the statistical approach.

TABLE 1 | Overview of datasets and all 1914 subjects used in this study; n, number; M, male, F, female, T, Tesla, MVR, mean voxel resolution; age and

MVR are provided as means ± standard deviation [min-max].

n Age

[months]

M/F 3T/1.5T MVR [mm 3]

Dataset 1 (NIH) 389 130 ± 47

[20–223]

184/205 0/389 1.16 ± 0.2

[0.99–1.68]

Dataset 2 (CMIND) 211 100 ± 55

[13–226]

93/118 211/0 1 ± 0

[1–1]

Dataset 3 (fCONN) 770 333 ± 158

[96–888]

345/416 754/16 1.09 ± 0.09

[0.96–1.24]

Dataset 4 (IXI) 544 571 ± 188

[240–900]

242/302 366/178 1.03 ± 0.002

[1.03–1.05]

Total 1914 333 ± 226

[13–900]

873/1041 1331/583 1.07 ± 0.12

[0.95–1.68]

2014); both steps serve to improve starting estimates. Third, as
field strength is a factor when partitioning images (West et al.,
2013) mainly due to the more pronounced image inhomogeneity
(Marques et al., 2010), all images were preprocessed by an
initial round of unified segmentation (Ashburner and Friston,
2005), to create a bias-corrected image in native space, which
was then used for further processing. As we included images
both from 1.5 and 3T scanners, this was done to reduce
the differences in image inhomogeneity prior to the actual
segmentation procedure, as discussed in Wilke et al. (2002,
2014).

Tissue Segmentation
Acknowledging the substantial structural differences between
the brains of an infant and that of an elderly adult, it is
immediately apparent that segmentation must not be biased by
tissue priors during segmentation. To this effect, a segmentation
approach without prior probabilities was used as implemented
in the cat12 toolbox. In the most recent implementation (Gaser,
2014), it is an extension of the “new segment” approach
(Ashburner, 2012; Malone et al., 2015), using the tissue priors
only for spatial normalization (see below). The determination
of the tissue classes is solely based on local features and on
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image intensity, based on previous work (Gaser et al., 2007);
this implicitly lower reliance on prior assumptions makes
this approach more appropriate when dealing with “unusual”
subjects (i.e., those deviating from the assumptions). An adaptive
maximum a posteriori approach (Rajapakse et al., 1997) is
initially used to model image inhomogeneities, followed by
a mixture model with three tissue classes to estimate partial
volume effects (Tohka et al., 2004). Global intensity correction is
achieved by a spatially-adaptive non-local means filter, which is
followed by a block-wise optimized non-local means denoising
(Coupe et al., 2008). Both are edge-preserving filters aimed
to remove noise. Thereafter, a Markov random field model is
applied to the entire image, which incorporates information
about the tissue class of the neighboring voxels (Rajapakse
et al., 1997). Finally, locally-adaptive segmentation is preceded
by a removal of inhomogeneities within each tissue class by
means of a local intensity transformation. Tissue classes are
cleaned by a graph-cut skull-stripping approach as used before
(Mahapatra, 2012), aimed at removing non-brain tissue such
as blood vessels and meninges, followed by morphological
growing/smoothing/shrinking operations to remove remaining
misclassified tissue.

All voxels are classified into 6 tissue classes: gray matter
(GM), white matter (WM), cerebrospinal fluid (CSF), bone, soft
tissue, and background. Further, a skull-stripped, normalized
version of the original T1 image was also generated. It should
be noted here that the cat12-specific optimizations listed above
are only applied to the first three tissue classes following an
initial round of “spm-style” segmentation (Ashburner, 2012) to
initiate the tissue classes. This is important to keep in mind as
usually, segmentation routines expect the tissue probabilities in
all 6 classes to sum to 100% (Malone et al., 2015); the potential
discrepancies between the first three and the remaining tissue
classes must therefore be accounted for when constructing tissue
probability maps from these results. This was achieved here by
adding/subtracting any remaining inconsistencies to/from the
last tissue class (representing background) when generating the
priors. The rationale is that the latter three tissue classes are used
to explicitly model unwanted tissue/background, and can thus
effectively also be used to account for discrepancies inherent in
the segmentation approach as described above.

Spatial Normalization
We employed three processing strategies for spatial
normalization. The first consisted of an affine-only approach,
whereby images are transformed into stereotactic space by
using a 12-parameter, linear transformation (Ashburner et al.,
1997). There are no local or regional tissue intensity changes
as all transformations are applied uniformly to the whole
image volume. Consequently, the resulting overlap of local
features is expected to be lowest, and group dissimilarity highest.
Secondly, we used the approach implemented in the unified
segmentation algorithm (Ashburner and Friston, 2005). This
approach includes non-linear deformation as part of the spatial
normalization scheme, but it is only aimed at achieving a
regional matching of features. Consequently, the resulting
group dissimilarity is expected to be lower, but at the cost

of more deformation applied on the individual level. Lastly,
we included a diffeomorphic registration approach aimed at
extensively matching local features (DARTEL; Ashburner, 2007).
Consequently, the resulting group dissimilarity is expected to be
lowest, at the cost of high deformation on the individual level.
For all approaches, a single DARTEL tissue prior set was used to
generate tissue density maps, based on 555 healthy adult subjects
with a mean age of∼48 years (Gaser, 2014).

Quality Control
For quality control, all images were initially loaded into a
movie loop to identify overt processing failure. Thereafter, they
were inspected individually twice by a single experienced rater
(MW) blinded to the epidemiological information. Gray/white
differentiation in the difficult-to-segment regions of the basal
ganglia and thalamus (Nugent et al., 2013) and the cerebellum
(Price et al., 2014) served as indicators of successful processing.
Segmentation accuracy was therefore judged in an axial plane
at the level of the basal ganglia in a first round, and in a
coronal plane at the level of the cerebellum in a second round.
Images with insufficient tissue differentiation in either round,
or evidence of too lenient or too aggressive non-brain tissue
removal, were excluded.

In addition to visual quality control, further measures of data
quality are routinely calculated by the cat12 toolbox. These are
the mean voxel resolution of the input image as well as indicators
of contrast- and inhomogeneity-to-noise ratios (as determined
from the white matter class; Gaser, 2014). These indicators were
combined into a single measure of data quality by summing
their z-transformed values. They were then included in ensuing
analyses as an indicator of data quality.

Definition of Defaults
Due to the constraints placed on splines, they can be made
to be very robust toward outliers, or data sparsity. However,
it is still important to ensure that an appropriate number of
subjects is available for a given age range. As this number is
not ultimately known (and must be expected to vary with age;
Wilke and Holland, 2003; Oishi et al., 2013), it was decided to use
previously determined minimal sample sizes (Wilke et al., 2014)
as a guideline so that a minimum number of 20 subjects per 2-
year age bracket was used. Any 2-year bracket not satisfying these
criteria was deemed inappropriately covered, and was removed
from analyses. Further, in order to stabilize the fitting particularly
toward the margins of the dataset, it was defined that a minimum
of 20 subjects was required between knots, and a minimum of
10 subjects was required between a knot and the beginning/end
of the dataset. The penalty value, constraining the curvature
of the splines, was derived from the globals of each dataset
under examination with a k-fold cross-validation, with k set to
5. Finally, splines can be fitted using an iterative piecewise linear
or cubic modeling approach (Friedman, 1991). We opted to use a
cubic modeling for our analyses to better preserve the smoothly
varying pattern of changes with age. All of these settings were
adapted to yield best results for the dataset at hand, but may
(have to) be adapted for other datasets of a different size and/or
composition.
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Within the spline fitting process, an initial (forward) selection
phase is used, typically resulting in an overfitted model. This
is therefore followed by a second (backward) deletion phase
that is used to prune the model by iteratively removing pairs
of basis functions in order to identify the best combination of
model simplicity and model fit. For the final fit, a total of 8
basis functions was assumed to be sufficient; for the pruning
phase, a maximum of 40 initial basis functions (recommended:
5 times the number of final functions; Jekabsons, 2011) was
therefore set. In order to restrict processing to only those
regions relevant for the tissue class under consideration, only
voxels with an average tissue probability exceeding 10% were
included.

Demographic Predictors
Previously, we demonstrated that age and gender explain the
largest amount of variance during human brain development in
childhood and adolescence (Wilke et al., 2008), and these factors
are also expected to be important for the rest of the lifespan
(Mega et al., 2005;Marcus et al., 2010; Jernigan et al., 2011; Ziegler
et al., 2012a,b; Ruigrok et al., 2014). Further, field strength may be
a factor even when segmenting images (West et al., 2013; Wilke
et al., 2014). These three predictors (age [in months], gender, and
field strength) were therefore provided as inputs to the spline
fitting algorithm (in addition to the data quality indicator, see
above).

Indicators of Deformation and Dissimilarity
As mentioned above, the amount of deformation on the
individual level must be expected to be inversely related to the
variance on the group level. The following parameters were
therefore assessed: first, the affine scaling occurring during the
spatial normalization scheme was determined. As the initial
step of spatial normalization, this is identical over all spatial
normalization approaches investigated here and was determined
by calculating the determinant of the affine transformation
matrix. We could previously show that this overall scaling
does not correlate with age in the range between 6 and 18
years (Wilke et al., 2002), but including younger children as
well as significantly older adults could change that assessment
for the wider age range included here. As an indicator of
the amount of deformation occurring during non-linear spatial
normalization, we then calculated the sum of (absolute) Jacobian
determinants over all voxels. Briefly, the Jacobian Determinant
reflects the relative volume changes a voxel undergoes during
spatial normalization (Good et al., 2001). The impact of the
affine transformation was already calculated above and was thus
removed here; these values therefore only reflect the overall
amount of volume change occurring as a function of non-linear
deformation. For this calculation, only voxels within the brain (as
determined by the accompanying, skull-stripped T1 image) were
considered.

As a measure of group dissimilarity of the original images, a
mean image was calculated for each tissue class and subtracted
from each individual image. The resulting sum of absolute
voxelwise differences serves as an indicator of divergence-
from-the-mean, for each spatial normalization approach (affine,

unified segmentation, and DARTEL). This measure was chosen
here as more advanced image similarity measures (such as the
structural similarity index; Wang et al., 2004) would be unduly
biased by the large amount of irrelevant background voxels.
Following statistical analyses for each approach, synthetic tissue
maps (one for each month of age) were generated and the
procedure was repeated, yielding an indicator of dissimilarity in
the statistically-described samples as well.

Tissue Homogeneity and Explained
Variance
Voxels within a given brain region, in particular within a given
tissue class, cannot be expected to be independent observations.
Hence, it is not meaningful to assume spatial independence when
fitting the spline models. We explored several options to enforce
such homogeneity. Option 1 represents the most conservative
approach where an initial model fit was performed on the global
signal intensity values for each class, and the individual voxel
results were restricted to follow the thus-derived global pattern.
Option 2 is a somewhat less strict approach, in that the initial
model fit to the globals was not pruned; this overfitted model was
then applied to each voxel (where it is pruned), allowing more
flexibility for these individual results. Option 3 represents an even
less conservative approach, in that only some aspects of the global
model are used as inputs for the individual models (namely the
number of basis functions and the minimum distance between
knots). Finally, option 4 represents the most liberal approach, in
that no initial global analysis was performed and each voxel was
fitted independently.

These four options must be expected to yield different levels
of homogeneity in the resulting tissue classes. To investigate this,
we implemented an approach similar to a Markov random field
(Rajapakse et al., 1997), in that every voxel with a probability
exceeding 10% in the resulting tissue probability maps was
identified, and its value was then subtracted from all surrounding
(26) voxels; the mean absolute deviation (in % intensity) was then
analyzed across all voxels. In a fully homogeneous setting, this
difference would be 0; a larger deviation over the whole volume
therefore reflects a less homogeneous image. It should be noted
that this measure will also be influenced by a different surface-to-
volume ratio of a given tissue class, it is consequently not directly
comparable across the different approaches. All results were
therefore related to the inhomogeneity found in the respective
tissue class in the first option.

The variance explained by the spline fit was also determined,
again for each voxel and each tissue class, by calculating r2.
This parameter directly reflects the proportion of variance that
was explained by the model, and can serve as a measure of the
goodness of fit. For comparison purposes, this value was also
determined by fitting a GLM to each voxel, assessing the amount
of variance explained by the same set of predictors (age, gender,
field strength, and quality); here, age was also submitted in a
quadratic and a cubed extension to account for non-linear effects
(Wilke et al., 2008). Again, all results were related to the variance
explained by the respective first option (which consequently is
set to 1).
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Generation of Tissue Priors
As introduced above and shown before (Wilke et al., 2008), one
of the advantages of the statistical description of regressors of
interest is the ability to generate synthetic maps based on new
predictors. Naturally, these will have to be within the range of the
original predictors (age, gender, and field strength). The image
quality indicator, if used in the initial analysis, is automatically set
to the best-available value during prior generation. In analogy to
our previous approach (Wilke et al., 2008), the algorithm initially
generates one matching set of tissue classes per input item and
will average results in the end (“matched pairs”).

In order to further enforce tissue homogeneity during the
generation of the tissue priors, we performed a simple 3Dmedian
filtering of the resulting maps (Garcia, 2015). This was done
to avoid the loss of spatial specificity inherent in Gaussian
smoothing.

To provide an illustration of the resulting final images,
synthetic GM, and WM tissue priors were generated for 2,
12, 32, 52, and 72 year old subjects, for each data processing
approach. Further, to illustrate the covariate effects, tissue maps
were generated for the mean age (333 months) for male and
female gender, for high and low field strength, and for best and
worst data quality settings. These maps were then subtracted
from each other, and tissue probability differences exceeding 5%
were visualized as colored overlays.

Comparison of Cerebromatic Priors with
Standard Approach
A normally-distributed and sufficiently-sized population will be
best reflected in its own mean; the overall mean of a large
population can therefore be considered the gold standard. Of
note, due to the dynamic changes occurring in childhood, this
assumption would not be met in a pediatric population: we
therefore defined a large and homogeneous population of adults
from 18 to 48 years of age. In this subgroup, a total of 943 subjects
was available, mean age 26.59 ± 7.98 years, 443 males, with 98
datasets from 1.5T scanners. The assumption of normality was
assessed in each voxel for GM and for WM. Three scenarios were
defined, with group sizes of 25, 50, or 100 subjects (cf. Figure 1)
which were randomly picked from the population. Their GM and
WM maps were averaged, to reflect the standard way of custom
template creation. Based on the demographic predictors of these
subjects, matching CerebroMatic priors were also generated. This
procedure was repeated 100 times. All of these maps were then
compared to the gold standard (the overall group mean), again
using the sum of absolute voxelwise differences as described
above.

In a second set of simulations, the effect of decreasing the
size of the control population was assessed. Again, 25 subjects
were randomly picked from the above-defined subpopulation
(n = 943), their predictors were used to generate matching
CerebroMatic priors, and they were again compared to the overall
group mean as detailed above. This procedure was repeated
10 times. Then, the size of the subpopulation was iteratively
decreased in steps of 25 subjects, and the above procedure was
repeated, until a minimum number of 43 subjects was reached.

Statistics
Normality in the data was assessed using the Kolmogorov–
Smirnov-Liliefors-Test. If the assumption of normality was met,
a Student’s t-test was used to assess significant differences
between group means for the examination of continuous
variables. For data that was not normally-distributed, statistical
comparisons were likewise done using the non-parametrical
Mann–Whitney-U-Test. Significance was assumed at p ≤

0.05, Bonferroni-corrected for multiple comparisons where
appropriate.

RESULTS

Deformation and Dissimilarity
As can be seen from Figure 2, both the overall linear (top panel)
as well as the overall non-linear (bottom panel) scaling exhibit
substantial variation over the age span included. For the linear
scaling (which is identical for all normalization approaches), the
average scaling in adulthood is about 1.4, increasing substantially
to values exceeding 2 in the younger infants. Non-linear
deformation only occurs in the unified segmentation and the
DARTEL approach and is substantially higher in the latter, with
again a clear increase in younger subjects.

For each approach, the dissimilarity shows the expected
pattern for the primary tissue classes (see Figure 3, top panels).
The highest dissimilarity following spatial normalization is
present in the affine-only group, for each tissue class; the
unified segmentation approach shows a lower dissimilarity, and
dissimilarity in the DARTEL approach is substantially lower
still. When assessing this parameter in the corresponding,
synthetically-generated tissue maps (Figure 3, lower panels),
it is immediately apparent that the dissimilarity itself as well
as the variance is much lower (note identical scaling when
compared with the upper panels). Consequently, the effect of
age is still obvious in the affine and unified segmentation
approach, but again much less pronounced in the DARTEL
approach.

Homogeneity and Explained Variance
Table 2 illustrates the effect of the four analysis options on the
homogeneity in the resulting primary tissue classes. The most
conservative option 1 (using a fully pre-specified model for all
voxels) yields tissue maps with the lowest inhomogeneity, while
the least conservative option 4 (no constraints) leads to the
most inhomogeneous maps. This pattern is consistent across
all processing approaches for GM and WM, with only few
exceptions for CSF.

Table 3 illustrates the effect of the four analysis options on
the explained variance in the resulting primary tissue classes.
While the absolute differences across approaches may seem
minor, both across approaches and across tissue classes, the
most conservative approach explains significantly less variance
in all comparisons. Of note, the conventional GLM approach
outperforms the spline-based modeling only when using the
most conservative approach. Despite using more regressors, the
GLM explains significantly less variance than the spline-based
approach (option 2) in targeted post-hoc comparisons.
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FIGURE 2 | Top panel: Illustration of the overall linear scaling applied to the input images; note substantial increase in childhood and adolescence as well as wide

variability even in adulthood. Note that this value is identical across all three approaches. Bottom panel: Illustration of the overall non-linear deformation applied to the

input images for the DARTEL (o) as well as the unified segmentation (+) approach, in arbitrary units; note about five-fold higher deformation occurring in the DARTEL

approach and stronger modeling of age-related effects. Note that no non-linear deformation occurs in the affine approach.

Resulting Tissue Priors
Synthetic tissue priors for 2, 12, 32, 52, and 72 year old subjects,
for GM and WM, and for each processing approach, are shown
in Figure 4.

The effect of modeling the covariates is illustrated in Figure 5.
While the impact of field strength is systematic and robust,
the effect of gender is lower. The effect of data quality is also
strong, but less systematic. Note that the effect is greatest at
the tissue boundaries, emphasizing the importance of modeling
these confounds in order to achieve crisp segmentation at tissue
interfaces.

Comparison with Standard Approach
Testing the 18-48-year-old subgroup (with n = 943) for
normality showed that 99.94% of GM voxels and 99.93% of
WM voxels in this population followed a normal distribution.
Results for comparing group averages of 25, 50, or 100
subjects (and their matching CerebroMatic priors) with the
overall population mean are shown in Figure 6 for GM
and in Figure 7 for white matter. Note substantial effect of
increasing group size on the visual quality of the conventional
priors (and consequently, decreasing difference to the overall
group mean), as well as consistently better agreement of the
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FIGURE 3 | Top panels: Illustration of the dissimilarity inherent in all datasets in gray matter (left panels), white matter (middle panels), and cerebrospinal fluid

(right panels). Note substantially higher dissimilarity, and more obvious effects of age, in the affine (o) and unified segmentation (+) datasets; both effects are

substantially lower in the DARTEL class (o). Bottom panels: Illustration of the dissimilarity inherent in all synthetic datasets (note identical scaling). Again, age effects

are much less pronounced in the DARTEL approach as compared to the unified segmentation and affine approach.

CerebroMatic prior with the gold standard, for both gray and
white matter.

Results for decreasing the size of the control population are
shown in Figure 8. There is a decreasing mean error in the
correspondence of the synthetic tissue priors as the population
size increases, indicating a higher correspondence of the overall
population mean with the synthetic priors when the overall
population is larger. This trend continues until the maximum
(n = 943) for GM, but shows a tendency to level off for WM at
around 800 subjects.

DISCUSSION

This work was aimed to first, explore the trade-off between the
decrease in variance achieved on the group level on the one hand

and the amount of tissue deformation required on the other hand.
Secondly, we also investigated the applicability of multivariate
adaptive regression splines to generate new, statistically defined
tissue class prior probability maps over the full lifespan from 1
to 75 years of age. Finally, we wanted to compare our new with
the conventional approach to template creation. This algorithm
has been compiled into a toolbox (termed “CerebroMatic”) for
use within the spm software environment and is made freely
available.

Affine and Non-affine Deformation As a
Function of Age and Approach
The aim of the linear/affine part of the spatial transformation is to
achieve a global similarity between images, such that their overall
size and orientation is comparable (Ashburner et al., 1997). We
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previously showed that overall scaling does not correlate with
age in children older than 6 years of age (Wilke et al., 2002).
The current dataset affirms this previous finding; however, the
overall scaling in younger children clearly does change with age,
from a mean of about 1.4 in adults (very similar to previous
analyses; Ashburner et al., 1997) to values exceeding 2 in the
younger children and infants (Figure 2, upper panel). This is
of course well in line with the substantial growth occurring in
the developing human brain in the first years of life which then
reaches almost adult size by age 6 (Huttenlocher, 1979; Brain
Development Cooperative Group, 2012). This is of practical
relevance in so far as these smaller brains deviate from the
expected range and will therefore require stronger regularization
to match adult templates (Ashburner et al., 1997). However,
determination of the affine transformation is performed in an
iterative fashion in the cat12 toolbox (Gaser, 2014), and this effect
can also be accounted for by using a different affine regularization
scheme (e.g., “none”). Given the dramatic volume changes in
early infancy, the effect is likely even more pronounced in the
first year of life, again suggesting that specialized processing
approaches should be used for babies (Anbeek et al., 2013; Shi
et al., 2014; Wang et al., 2014; Išgum et al., 2015).

The overall amount of non-linear deformation is substantially
different between the approaches, with about 5-times more
deformation occurring in the DARTEL-approach than in the
unified segmentation approach on average (by definition, this
value is 0 in the affine-only approach). Notably, the changes with
age are much more pronounced in the DARTEL-approach, with
a substantially higher deformation being exerted on the brains
of children and adolescents (Figure 2, lower panel). Very old
individuals (>75 years) were removed from the dataset to avoid
data scarcity, but a trend to more deformation at the upper
age range is also apparent. This reflects the expected effect that
more “unusual” brains will be more extensively deformed in the
DARTEL approach to match the template (which in this case
was based on adults with a mean age of ∼48 years). With less
deformation being exerted in the unified segmentation approach,
the interaction with age is not as apparent here.

Group Dissimilarity As a Function of
Approach
The higher deformation exerted during the more extensive
spatial normalization approaches (Figure 2) leads to a substantial
decrease in resulting group dissimilarity (Figure 3; upper panels).
The affine approach shows the strongest dissimilarity, followed
by the unified segmentation and the DARTEL approach; this
pattern is consistent across the three primary tissue classes (GM,
WM, and CSF). Of note, the clear effect of age, particularly
in the first two decades, is still very apparent in the first two
groups, but more blunted in the DARTEL approach. This, as
expected (Crum et al., 2003), demonstrates that the residual
variability observable in this latter approach is substantially
decreased due to the more extensive matching occurring
during spatial normalization; group variability in this approach
is therefore to a large extent contained in the deformation
fields, not in the resulting images. Consequently, the resulting
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FIGURE 4 | Illustration of synthetic tissue maps for gray matter and white matter, generated for 2, 12, 32, 52, and 72 year-old subjects, using option 2.

Note more apparent effects of age in the affine (top panels) and the unified segmentation (middle panels) when compared with the DARTEL approach (bottom

panels).

FIGURE 5 | Illustration of the effect of covariates, overlaid over synthetic tissue maps for gray matter, white matter, and cerebrospinal fluid for a

subject of mean age in this population (333 months). Shown are the effects of statistically modeling field strength (left panel, 1.5 vs. 3T), gender (middle panel,

male vs. female), and data quality (right panel, best vs. worst setting). Only tissue probability differences exceeding 5% are shown (in red, below −5%, or blue, above

5%).

images will look much more similar than they originally were
(cf. Figure 4, below). In structural MRI studies, this bias
of potentially different deformation between groups is often

accounted for by incorporating a measure of local volume change
into each voxel; this process (usually achieved by modulation
with the Jacobian determinant of the deformation matrix;
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FIGURE 6 | Comparison of conventional (left upper panels) with new (right upper panels) approach to GM template creation. Tissue maps were created 100

times from 25, 50, and 100 subjects using the mean (M25/50/100) or the CerebroMatic (COM25/50/100) approach and compared with the gold standard (population

mean, n = 943; left large image). Shown in the boxplot insert are the sums of absolute voxelwise disagreements. Note increasingly lower disagreement with more

subjects in the conventional approach and consistently lower disagreement for all CerebroMatic approaches.

Good et al., 2001) allows comparing tissue volumes, instead
of tissue density, and thus partially alleviates this confound.
Notably, this confound also exists for functional MRI studies
comparing systematically different groups (Dorn et al., 2014),
the minimization of deformation is therefore also of relevance
in the fMRI setting. However, tissue priors used for spatial
registration and tissue segmentation must reflect tissue density,
and thus, probabilities to find this tissue class in a given voxel;
hence the incorporation of volume changes into the tissue is not
possible.

When assessing the effect of age as detected by the adaptive
splines approach (Figure 3, lower panels), the overall pattern
of age-dependency is still very apparent in the affine-only and
in the unified segmentation approach, but is again substantially
lower in the DARTEL approach. This demonstrates that the
variance ascribable to age shown to be present in the less-
deformed datasets (see Figure 3, upper panels) is appropriately
captured and described by the statistical analysis using regression
splines. Consequently, the generated template of a 2-year-old will
be more different from that of a 25-year-old when using the
affine-only or the unified-segmentation approach, while they will
appear more similar when using the more extensive DARTEL-
approach (see below and Figure 4). Considering these arguments
as well as the results presented in Figures 2, 3, we believe that
using the unified segmentation approach for data processing is
the best compromise between reducing variance and enforcing
anatomical overlap, in this setting.

One of the motivations for this study was our conviction
that the final template should be a reflection of the meaningful
biological variance inherent in the original population, and that
a “non-standard” population (such as infants, or older adults)
should not be processed using a standard template (Wilke et al.,
2002, 2003, 2008; Mega et al., 2005; Altaye et al., 2008; Marcus
et al., 2010; Shen et al., 2012; Luo et al., 2014; Shi et al., 2014;
Richards et al., 2015). At the same time, newer algorithms
require crisper templates to be used in order to use a more
extensive matching to achieve better overlap of structures (and
thus, presumably increase the likelihood to detect similarities and
differences between groups; Mazziotta et al., 2001; Luo et al.,
2014). The sample investigated here, with a very wide age range,
admittedly is an extreme example of inhomogeneity, but exactly
this inhomogeneity allows for some clear conclusions to be drawn
from the results presented. One, the natural sample-inherent
inhomogeneity is not preserved when using extensive matching
schemes such as DARTEL. Indeed, this is not surprising at all as
it is the very aim of such approaches to reduce this variance in
the resulting images (Ashburner, 2007), with much of it instead
being captured in the resulting deformation fields (Crum et al.,
2004). The question then is whether it is appropriate to use such
a scheme to generate a template. In a setting of conventional
template creation, for example by using straight averages (Wilke
et al., 2002, 2003), this may be more desirable as otherwise
the resulting images will be very fuzzy, and anatomical features
may be ill-described (particularly in smaller groups; Wilke et al.,
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FIGURE 7 | Comparison of conventional (left upper panels) with new (right upper panels) approach to WM template creation. Tissue maps were created 100

times from 25, 50, and 100 subjects using the mean (M25/50/100) or the CerebroMatic (COM25/50/100) approach and compared with the gold standard (population

mean, n = 943; left large image). Shown in the boxplot insert are the sums of absolute voxelwise disagreements. Note increasingly lower disagreement with more

subjects in the conventional approach and consistently lower disagreement for all CerebroMatic approaches.

FIGURE 8 | Disagreement between CerebroMatic priors (based on 25 random subjects, 10 simulations; GM, left, WM, right) and the respective

population mean, as a function of increasing population size. Note consistently lower disagreement of the CerebroMatic priors with the mean of a larger control

population.

2008). On the other hand, the presence of the group-inherent
variability has been considered an important factor when creating
a template, and has led to the suggestion to use registrations to
multiple atlases to detect the full range of abnormalities (Min
et al., 2014). In a setting such as the one suggested here, where
parameters of interest are statistically described, it also seems
counterproductive as the very basis for this fit (e.g., age-related
variance) is already removed from the group (see Figure 3).
We therefore conclude that a more extensive local matching
approach is not helpful in this specific setting investigated here.

However, the answer to this question cannot be generalized as a
researcher investigating healthy adults may well decide to use the
much more crisp DARTEL-based synthetic priors (cf. Figure 4)
as the lack of captured age-related variance toward the end of the
dataset is irrelevant in this context.

When assessing the performance of the multivariate adaptive
regression splines approach to model the data, we were interested
in the amount of inhomogeneity present in the resulting
(synthetic) datasets, as well as in the variance explained by
it. With regard to inhomogeneity, several points need to
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be considered. From a biological plausibility point of view,
it is well-established that there is a wide variability in the
pattern of healthy brain development and ageing, with regional
patterns not necessarily following the global one (Jernigan et al.,
2011; Brain Development Cooperative Group, 2012; Ziegler
et al., 2012a,b); a rigid regularization of all models/voxels
in a given tissue class may therefore be too strict. On the
other hand, neighboring models/voxels must be expected to
follow a similar pattern; an independent modeling of these
trends may therefore be too lenient. We therefore opted to
investigate 4 different scenarios to provide the algorithm with
prior information when modeling a single voxel, from providing
a completely specified model (option 1, most conservative) to not
providing any prior information (option 4, least conservative).
We investigated tissue homogeneity on a voxel-by-voxel basis,
and while some deviations must be expected, a stronger deviation
within a given approach is indicative of a less-homogeneous
tissue map. As expected (Table 2), the more conservative
approaches result in more homogeneous tissue maps, with the
lack of a starting estimate (option 4) resulting in the most
inhomogeneous maps. To address this, we used a post-hoc 3D
median filtering. The default (small) amount of filtering applied
further improved quality, but could conceivably be explored
further to also include robust (Garcia, 2010) or Markov Random
field filtering approaches (Rajapakse et al., 1997); however,
neither substantially improved image quality in preliminary
testing rounds, and was thus not explored further.

Homogeneity of the resultingmaps, however, is only one point
arguing in favor of one or the other approach. The variance
explained by the fitted model was therefore also assessed on a
voxel-wise basis, using functionality available in the ARESlab
toolbox (for the spline-based approaches; Jekabsons, 2011) or
Matlab (for the GLM approach). When assessing this over
all approaches in the three primary tissue classes, there is
a clear trend of more variance being explained by the less
conservative approaches. As these are less-constrained, this is
as expected, but the overall absolute effect is low. Of note, the
previously-suggested GLM approach (Wilke et al., 2008) only
outperforms the spline-based option 1, despite having more
regressors (age 2 and age 3) in the model. In every other scenario,
the newer approach outperforms the previously-suggested one.
Considering the arguments pertaining to biological plausibility
as well as the results presented in Tables 2, 3, option 2
seems the currently best compromise between flexibility and
stringency.

Resulting Tissue Priors and Possible
Extensions
One aim of this study was to explore the applicability of a
multivariate adaptive regression splines approach for template
creation. The resulting six-class tissue maps can be used as
targets for spatial normalization as well as the basis for tissue
segmentation in current segmentation approaches (Ashburner,
2012; Gaser, 2014, Malone et al., 2015), providing more
appropriate targets for “unusual” populations in particular. All
resulting maps as shown in Figure 4 are of high quality, and,

depending on the processing approach and in line with the results
shown in Figures 2, 3, show more or less effects of age.

When exploring the effects of the different covariates, it is
interesting that field strength still has a relevant, and systematic,
impact on the resulting tissue maps (Figure 5), despite our
attempts to alleviate the influence by additional pre-processing
steps. This confirms field strength to be a relevant factor for
tissue segmentation, on the individual (Marques et al., 2010;West
et al., 2013) as well as on the group level (Wilke et al., 2014).
The fact that the effect of gender is not as prominent may seem
surprising but is actually well in line with the observation that its
impact is on the global, rather than on the regional level (Brain
Development Cooperative Group, 2012; Wilke et al., 2014).
These are already accounted for by the affine transformation; the
remaining effect in the processed (density) images is therefore
not as prominent anymore. Finally, the more scattered, but quite
obvious effects of image quality is interesting and underlines
the detrimental effect of image quality on tissue segmentation
(Camara-Rey et al., 2006; Preboske et al., 2006, Shuter et al.,
2008). Taken together, the quite distinct contributions of these
different variables are another point arguing in favor of explicitly
identifying and removing such effects when generating tissue
priors, instead of blindly including them (in the conventional
approach to template creation).

When simulating conventionally generated tissue maps for
three scenarios (with 25, 50, or 100 subjects), the corresponding
CerebroMatic tissue maps are closer to the gold standard (the
overall population mean) for gray (Figure 6) and white matter
maps (Figure 7). This demonstrates that the correspondence
with the gold standard was substantially greater for the synthetic
priors, for smaller groups in particular. It is also interesting to
notice that the variance within each group (of 100 simulations),
as well as between the scenarios (of 25/50/100 subjects), is
much lower for the CerebroMatic priors, suggesting that more
consistently reproducible maps were obtained when using a
statistical modeling approach.

In further simulations (Figure 8), the correspondence
between the synthetically-generated maps and the overall
population mean continues to increase with group size, until the
maximum (n= 943) is reached for gray matter. For white matter,
a plateau seems to be reached at about 800 subjects, suggesting
that no further increase in quality is achieved when adding more
subjects for this tissue class. It must be remembered that the
CerebroMatic tissue maps were always matched to 25 random
subjects from the respective population, resulting in maps with a
very low variance (cf. Figures 6, 7). Hence, the ever-increasing
correspondence is solely due to the increasing size of the control
population. The fact that the mean of more subjects (leading
to tissue maps of increasingly higher quality) shows a lower
deviation from the synthetically generated maps strongly argues
for these latter maps to be of a very high standard.

As demonstrated here and previously (Wilke et al., 2002),
the amount of deformation is substantially influenced by the
“distance” of the individual subject to the tissue prior used
for normalization. The benefits of using a less-deformed image
(preserving more of the original variability) must be weighed
against the disadvantage of obtaining less sharply-defined output
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images (such as shown in Figure 4, middle row). Instead of
taking these as the final priors, however, they could be subjected
to a within-group-registration approach such as DARTEL
(Ashburner, 2007) or the more recently-developed SHOOT
algorithm (Ashburner and Friston, 2011; SPM12, 2015). The
advantage of using such an approach on the generated priors
is that the age-related variance has already been accounted for
in the initial modeling step. For example, matching priors for
15 subjects could be submitted to such a groupwise iterative
registration approach, potentially generating tissue priors that are
more representative in both shape and intensity (Ashburner and
Friston, 2009). This has not worked for our previous data (Wilke
et al., 2008) as the resulting images were too smooth, giving the
registration approaches no intensity gradients to work on. In
preliminary testing, this approach was shown to generate more
crisp priors from the unified segmentation approach, and could
thus be used as an adjunct.

Possible Limitations
It should be remembered that the Jacobian determinant is not a
fully representative indicator of “deformation,” broadly defined:
a simple displacement of a given voxel will not change its
volume. Also, the Jacobian itself is influenced by how the non-
linear deformation is regularized (see Ashburner and Ridgway,
2013, for a discussion). However, it is an intuitive and well-
established measure of volume change, and widely-used in
imaging neuroscience and beyond; we therefore also decided to
use it here.

When removing datasets from a population as part of a quality
control step, the criteria for “insufficient quality” must clearly
be established beforehand, to prevent that the final sample does
not fully reflect the original population (an issue known as
“tyding up” bias; Sackett, 1979). On the other hand, the impact
of image non-idealities on the result of VBM-type studies may be
substantial (Camara-Rey et al., 2006; Preboske et al., 2006; Shuter
et al., 2008; see also Figure 5). With our stringently implemented,
a priori defined procedure rejecting only ∼8% of subjects, we
believe our approach to be defendable.

Achieving an accurate overlap of cortical structures has been
recognized to be difficult for pure volume-based approaches,
and the use of additional surface-based matching approaches
was suggested (Luo et al., 2014), for the use in developing
populations in particular (Ghosh et al., 2010). However, there is
no universal advantage of the one vs. the other approach (Klein
et al., 2010), and intensity/volume-based approaches continue
to be in widespread use. Also, approaches such as the above-
mentioned extension might be able to achieve a similar goal,
we therefore do not see this as a major limitation. Further,
registration based on cortical connectivity patterns (Zhu et al.,
2013) or white matter microstructure (Varentsova et al., 2014)
has been suggested. While no comparison between approaches
was attempted here, it seems relevant to notice that the approach
suggested here may also aid in the generation of target brains
based on other modalities, or even species, as no assumption is
made about the underlying data and meaningful trends inherent
in the data can appropriately be described.

The definition of defaults as described above was based
on biological considerations and constraints, but was not

exhaustively tested on the dataset at hand. Further analyses
regarding the trends inherent in the data, andmore formal model
selection criteria such as the Akaike or the Bayesian information
criteria (Stoica and Selen, 2004) could be used in future
simulations to find the best-possible combination of parameters
for modeling. Also, other factors such as race (Tang et al.,
2010) could be included as demographic variables, allowing to
explain even more unwanted variance during model estimation.
Also, other approaches to enforce homogeneity could be tested,
such as a hierarchical modeling (first on an intermediate, then
on the voxel level) approach. However, this is computationally
demanding: the generation of the initial statistical parameters
takes several days on a high-performance computational cluster,
and resulting files (especially for the background class, with many
non-zero voxels) are rather large. However, while being memory
intensive, the ultimate generation of the tissue priors is a matter
ofminutes on a current workstation, and as the parameters can be
made available, this will be the only step relevant to future users
of this approach.

Finally, it must be stated that the effect of using spline-based
vs. conventionally-generated templates has not been investigated
here. In the absence of a ground truth, such effects would be
difficult to assess, and it was decided that this would be beyond
the scope of this current technical study. It was also not evaluated
in how far such statistical representations of “normal” would be
helpful in the automated detection of local brain abnormalities
(Wilke et al., 2014).

CONCLUSIONS

We here present a novel approach to template creation that
allows for the generation of tissue class priors from infancy to
old age, and make the resulting CerebroMatic toolbox employing
this approach available to the neuroscience community. Their
generation is conceptually sound, versatile, and yields tissue
priors of reproducibly high quality that are closer to the
gold standard than conventionally-generated tissue maps. The
potentially resulting increase in cross-study variance (due to
a larger number or templates) may therefore be offset by
an increase in detection power within each study, due to a
more appropriate data processing approach particularly for
“unusual” populations such as infants, young children, and
elderly subjects.
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