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An exciting avenue of neuroscientific research involves quantifying the time-varying

properties of functional connectivity networks. As a result, many methods have

been proposed to estimate the dynamic properties of such networks. However,

one of the challenges associated with such methods involves the interpretation

and visualization of high-dimensional, dynamic networks. In this work, we employ

graph embedding algorithms to provide low-dimensional vector representations of

networks, thus facilitating traditional objectives such as visualization, interpretation

and classification. We focus on linear graph embedding methods based on principal

component analysis and regularized linear discriminant analysis. The proposed graph

embedding methods are validated through a series of simulations and applied to fMRI

data from the Human Connectome Project.
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1. INTRODUCTION

Functional connectivity describes the pairwise statistical dependencies which exist across spatially
remote brain regions (Friston, 2011). When studied across multiple regions, connectivity is often
represented as a network or a graph (Bullmore and Sporns, 2009). Until recently, many studies
had implicitly assumed that the statistical dependencies across spatially remote brain regions
remained constant, implying that the associated network did not vary. In such a setting, a single
network is sufficient to describe the functional relationships across regions. However, there is
growing evidence to suggest that fMRI data displays non-stationary properties (Hutchinson et al.,
2013), indicating that the associated functional connectivity networks may vary over time. This is
particularly the case in the context of task-based studies (Calhoun et al., 2014).

This has led to the development of several methods through which to quantify the dynamic
properties of functional connectivity networks (Allen et al., 2012; Leonardi et al., 2013; Monti
et al., 2014). Such methodologies have provided insights relating to the dynamic restructuring
and temporal evolution of the human connectome and may potentially provide insight relating
to various neurological and psychiatric conditions (Damaraju et al., 2014; Demirtaş et al., 2016;
Sourty et al., 2016).

However, obtaining robust and easily interpretable insights from the results of such algorithms
raises important statistical challenges. The difficulties are further exacerbated by the fact that often
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a distinct network is estimated at each observation and
potentially across many subjects. One potential solution involves
testing for statistical correlations between the estimated edge
strengths over time and underlying changes in cognitive
task, thereby reporting the set of edges which is functionally
modulated by a given task. While such methods are often
advocated (Yao et al., 2016; Monti et al., 2017), they effectively
study each edge independently thereby failing to account for
the structured nature of networks. Crucially, by studying edges
on an individual basis such methods fundamentally ignore the
notion that the brain is a functionally connected network (Sporns
et al., 2004; Bressler and Menon, 2010). A related approach
involves the use of clustering methods such as k-means (Allen
et al., 2012). Such methods are able to identify state networks
which can capture the current connectivity structure at specific
points in time. However, clustering based methods require the
definition of a distance metric which is difficult to define in
the context of graphs (Richiardi et al., 2010). Finally, time-
varying graph metrics may also be employed (Calhoun et al.,
2014), where metrics such as the degree or betweenness centrality
are tracked over time. However, it if often difficult a priori
to know which metrics to consider and there is no guarantee
that predefined metrics will necessarily capture all the relevant
changes in connectivity structure.

In this work, we look to address the challenges associated
with interpreting time-varying, high-dimensional networks via
the use of linear graph embedding methods. Generally speaking,
the objective of graph embedding techniques is to map estimated
graphs into a (potentially low-dimensional) vector space (Yan
et al., 2007). This facilitates tasks such as visualization and
classification by translating the problem from the graph domain
into a Euclidean space, where traditional classification and
visualization techniques can be readily applied.

While a wide range of graph embedding techniques may
be employed, in this work we limit ourselves to consider only
methods based on linear projections over the edge structure of an
estimated graph. This allows us to obtain a clear interpretation
of the embedding in the context of functional connectivity. As
a result, we consider two distinct graph embedding algorithms.
The first embedding considered is based on Principal Component
Analysis (PCA). This embedding, which is closely related to
the work of Leonardi et al. (2013), can be interpreted as
mapping graphs into a low-dimensional vector space that
captures the maximal variability in the estimated functional
connectivity networks over time. The objective of PCA is to
recover orthogonal projections of the data which best explain
the variability present (Jolliffe, 2002). In this manner, PCA
is able to reduce the dimensionality of data where there
exists a large number of interrelated variables. Due to the
unsupervised nature of this embedding, it is ideally suited
for the study of both resting-state as well as task-based fMRI
data. The second approach is based on regularized Linear
Discriminant Analysis (LDA). This method serves to recover a
low-dimensional embedding that maximizes the discriminatory
power across various tasks or states. The supervised nature
of such an embedding is particularly suitable for task-based
experiments, where changes in cognitive task are known and the

objective is to recover the associated changes in the connectivity
structure.

The remainder of this manuscript is organized as follows:
We introduce the aforementioned linear graph embedding
techniques based on principal component and linear
discriminant analysis in Section 2. An extensive simulation
study is presented in Section 3. Finally, in Section 4 the proposed
methods are applied to task-based fMRI datasets taken from the
the Human Connectome Project (Elam and Van Essen, 2014).

2. METHODS

Throughout this section it is assumed that estimates of time-
varying functional connectivity networks have been obtained

across a cohort of S subjects. We write 2
(s)
i ∈ R

p×p to
denote the estimated functional connectivity network for the sth

subject at the ith observation. Each 2
(s)
i therefore captures the

statistical dependencies across p regions of interest (ROIs) at the

ith observation. Throughout this work it is assumed that 2
(s)
i

is a sparse estimate of the inverse covariance matrix, thereby
encoding the conditional dependence (i.e., partial correlation)

structure across nodes. As such, the (j, k) element of 2
(s)
i

captures the partial correlation between the jth and kth regions.
Furthermore, any pair of regions are conditionally independent

if and only if the corresponding entry of 2
(s)
i is zero (Lauritzen,

1996). We note that the proposed methods are also applicable in
the context of alternative network estimation methods (see Smith
et al., 2011 for an extensive review).

The dynamic properties of functional connectivity networks
can be quantified in many ways. One popular method for
estimating such networks involves the use of sliding windows
(Hutchinson et al., 2013). Here observations lying within a time
window of fixed length are used to calculate the functional
connectivity at a given time. The window is subsequently shifted,
allowing for the estimating of dynamic networks. Alternative
methods, based on approaches such as change-point detection
(Cribben et al., 2012; Gibberd and Nelson, 2014) and forgetting
factors have also been proposed (Monti et al., 2017).

In this work our objective is to understand dynamic functional
connectivity networks using linear graph embedding methods.
Such methods allow for the representation of graphs or networks
in real-valued vector spaces, resulting in two advantages.
First, by embedding graphs in a Euclidean vector spaces we
are able to employ traditional visualization and classification
techniques. Second, by focusing on linear projections we
are able to directly interpret the embeddings in the context
of functional connectivity networks. The linear embedding
methods considered in this work are based on principal
component analysis and regularized linear discriminant analysis.
Such methods correspond to unsupervised and supervised
learning algorithms, respectively, indicating the they may be
used in conjunction to further understand dynamic connectivity
networks.

The remainder of this section is organized as follows: we
introduce and discuss graph Laplacians in Section 2.1. In Sections
2.2 and 2.3 we introduce two distinct graph embedding methods.
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2.1. Graph Laplacians
The graph embedding techniques described in this work are
based on the Laplacian of each estimated functional connectivity
network. While there are a wide variety of different graph
Laplacians which may be employed, throughout this work we
consider the normalized graph Laplacian (Chung, 1997). This is
formally defined as:

L
(s)
i = (D

(s)
i )−

1
2 (D

(s)
i − 2

(s)
i )(D

(s)
i )−

1
2 (1)

= I − (D
(s)
i )−

1
2 2

(s)
i (D

(s)
i )−

1
2 , (2)

where we defineD
(s)
i = diag(2(s)) and I to be the identity matrix.

The benefit of employing the normalized graph Laplacian is that

each matrix L
(s)
i summarizes the partial correlations across all

regions. This can be seen by noting that the (j, k) element of L
(s)
i

is formally defined as:

(

L
(s)
i

)

j,k
=



















0 if j = k

−

(

2
(s)
i

)

j,k
(

(

2
(s)
i

)

j,j

(

2
(s)
i

)

k,k

)
1
2

if j 6= k (3)

Furthermore, it is clear from Equation (3) that such a
transformation serves to normalize the estimated edge weights
by the variance of each node. We note that due to the symmetric
nature of the Laplacian matrix, it is fully characterized by its
upper-triangular entries. We define the set of Laplacian matrices

for a given subject to be L(s) = {L
(s)
i : i = 1 . . . , n}. In

the remaining sections, we employ L(s) directly as input to the
proposed graph embedding algorithms. Moreover, we define

vec(L(s)) ∈ R
n×(p2) to be a matrix where the i row corresponds

to the vectorized upper-triangular entries of the normalized
Laplacian at the ith observation. The matrix, L, consisting of
all vectorized Laplacians across all subjects can subsequently be
defined as:

L =
[

vec(L(1))T , . . . vec(L(S))T
]T

∈ R
S·n×(p2). (4)

This process is described in Figure 1. It follows that each column
of L corresponds directly to one of the

(p
2

)

possible edges. As
both embeddings studied here consist of linear projections of L
onto lower-dimensional subspaces, they can each be understood
as a a linear combination over the set of edges in a functional
connectivity network.

2.2. Unsupervised PCA-Driven Embedding
In this section we discuss an unsupervised embedding method
through which to obtain a low-dimensional embedding that
maximizes the amount of explained variance. Following from the
method described in Leonardi et al. (2013), we look to achieve
this by applying Principal Component Analysis (PCA) to L. This
will yield the linear combination of edges that best summarize the
variability over estimated functional connectivity networks over
time.

Formally, PCA is an unsupervised dimensionality reduction
technique which produces a new set of uncorrelated variables.
This is achieved by considering the k leading eigenvectors of
the covariance matrix LTL, defined as the principal components

Pk ∈ R
k×(p2). The principal components, Pk, can be studied

in two ways. First, by considering the entries of each principal
component we are able to quantify the contribution of each edge
to the principal component in question. As such, combinations
of edges which co-vary highly within a dataset can therefore
be expected to provide a large contribution to the leading
principal components. As each principal component is defined
as a weighted sum over the set of edges, they may be interpreted
as a recovering a functional connectivity network. Second, the
embedding produced by Pk is obtained as:

Pk · vec(L
(s)) ∈ R

k×n. (5)

This yields a k-dimensional graph embedding for each subject
at each of the n observations. This serves as a low-dimensional
representation networks which can be employed in tasks such as
classification or visualization.

2.3. Supervised LDA-Driven Embedding
While the PCA-driven embedding detailed in Section 2.2 was
motivated by understanding the components of functional
connectivity which demonstrated the greatest variability over
time, we may also be interested in understanding which
functional networks are most discriminative across multiple
tasks. In this section we describe a supervised graph embedding
methods through which to achieve this goal.

We propose the use of LDA to learn the functional
connectivity networks which are most discriminative between
tasks. LDA is a simple and robust classification algorithm which
can also be interpreted as a linear projection (Hand, 2006). As a
result, LDA reports the linear combination of edges which are
most discriminative between tasks. These can subsequently be
interpreted as a discriminative embedding which reports changes
in functional connectivity induced by a given task.

In high-dimensional supervised learning problems, such as
the one considered in this work, it is of paramount importance
to avoid overfitting. Two popular methods to guard against
overfitting involve the introduction of regularization, thereby
penalizing overly complex models which are more susceptible
to overfitting, and cross-validation. Here a combination of both
approaches is employed. The proposed graph embedding first
employs ℓ1 regularizationmethods in order to reduce the number
of candidate edges to be included. This acts as a variable screening
procedure whose goal is to retain all discriminative variables (in
our case edges) whilst removing noise variables. The latter will
correspond to edges which are not discriminative of the tasks
in question. Such a variable screening procedure is discussed
in Section 2.3.1. Given a subset of screened variables, an LDA
classifier is subsequently trained as described in Section 2.3.2.

2.3.1. Variable Screening
In this section we detail the variable screening procedure
employed within the LDA-driven embedding. As discussed
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FIGURE 1 | The various steps involved in the proposed embedding method are visualized: (1) the SINGLE algorithm detailed in Appendix A

(Supplementary Material] is used to obtain estimates of time-varying precision matrices. (2) The precision matrices are transformed to Laplacian matrices.

(3) The Laplacian matrices are vectorized by taking their upper-triangular components. (4) The vectorized Laplacians of all subjects are stacked vertically. (5) Finally the

PCA/LDA-driven embeddings are estimated.

previously, overfitting is a significant problem in the context of
high-dimensional supervised learning. Throughout this work, we
look to address this issue via the use of a screening procedure.

Formally, the objective of the screening procedure employed
is to significantly reduce the number of candidate variables
to p′ <<

(p
2

)

. This is achieved by retaining only the most
reproducible edges and discarding all others. As such, an
independent ℓ1 penalized LDA classifier was estimated for each
subject. Such models can be efficiently estimated as described in
Clemmensen et al. (2011) and provide the additional benefit of
performing variable selection. The severity of the ℓ1 penalty is
parameterized by a regularization parameter. Such a parameter
plays a fundamental role in the variable selection procedure and
must therefore be carefully selected. While there are a wide range
of methods through which to select the regularization parameter,
in this work cross-validation was employed.

As a result, a regularized LDA model was estimated for each
subject. This resulted in a sparse discriminant vector, β(s), for
each subject. The sparse support of each β(s) may then be studied
in order to recover the set of most reproducible edges. Formally,
we define the reproducibility of the ith edge to be:

ηi =
1

S

S
∑

s = 1

1

(

β
(s)
i 6= 0

)

. (6)

Thus ηi effectively counts the proportion of subjects in which
the ith edge is retained within a regularized LDA classifier.

It follows that edges may therefore be ranked according to
their reproducibility across a cohort of subjects. The proposed
screening procedure retains all edges where ηi is greater than
some specified threshold, ρ ∈ [0, 1]. This serves to retain only
the edges which are active within at least ρ% of all subjects. The
set of screened edges which are active is defined as:

A = {i : ηi > ρ} . (7)

Such a screening procedure can be interpreted as performing
stability selection, as described in Meinshausen and Bühlmann
(2010), where the sub-sampling is performed by studying each
subject independently. This serves to discard a large number
of noisy and non-informative variables, yielding a Laplacian
matrix, L′ ∈ R

S·n×|A|, consisting of only selected variables
which have demonstrated reproducible discriminative power
across all subjects. Finally, we note that it is important that
the aforementioned variable selection procedure is implemented
using only the training data and not the test dataset.

2.3.2. LDA Embedding
The first step of the proposed LDA-driven embedding
corresponds to splitting the data into training and test data.
Throughout this work, the training and test data were obtained
by randomly dividing subjects. As such, a subset of subjects,
Strain, were considered for training and the remainder, Stest ,
were retained for the purpose of testing. The variable selection
procedure, detailed in Section 2.3.1, is subsequently applied to
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data corresponding to training subjects in order to prune the
number of edges considered.

Once the variable screening procedure has been employed,
screened Laplacian matrices are obtained for the training and
test data, respectively. We write L′train and L′test to denote the
training and test screened Laplacian matrices, respectively. An
LDA classifier is subsequently training using only L′train. The
performance of the classifier is validated by studying L′test , which
serves to provides important metrics about the reproducibility
of the embedding and its generalization performance. The full
procedure to fit the LDA-driven embedding is described in
Algorithm 1.

Software
Python code implementing all the graph embedding algorithms
discussed in this section are provided in the supplementary
material or can be directly downloaded from https://github.com/
piomonti/pyLGE.

3. SIMULATION STUDY

In this section we provide empirical evidence to demonstrate the
capabilities of the two graph embeddings methods introduced in
Section 2. Throughout these simulations, we produce simulated
time series data giving rise to a number of connectivity patterns
which reflect those reported in real fMRI data. The data is

Algorithm 1: Sparse LDA-driven embedding

1 begin

Input: Normalized Laplacian matrices, L(s) for
s = 1, . . . , S, ρ ∈ [0, 1].

/* Split data into training and test

data (e.g., split over subjects) */

2 - Strain = {1, . . . , S2 } and Stest = { S2 + 1, . . . , S}
/* Build corresponding train/test

Laplacian matrices (will

subsequently be screened to reduce

edges) */

3 - Split L into Ltrain and Ltest as defined by Strain and Stest
/* Variable screening procedure (using

only Strain) */

4 for each subject s ∈ Strain do
5 - Perform 10-fold cross-validation to select

regularization parameter for each subject
6 - Estimate a regularized LDA model using subject

specific data (i.e., vec(L(s)) )
7 - Selected variables (i.e., edges) stored in ηi /* See

Equation (6) */

8 - Recover set of reproducible edges A = {ηi > ρ}

9 - Prune edges to obtain L′train ∈ R
|Strain|·n×|A| and

L′test ∈ R
|Stest |·n×|A|

/* Train LDA embedding */

10 - Fit LDA model using L′train

generated such that the underlying connectivity varies over
time and the Smooth Incremental Graphical Lasso Estimation
(SINGLE) algorithm (Monti et al., 2014) is subsequently
employed to obtain estimates of time-varying connectivity
networks. A detailed review of the SINGLE algorithm is provided
in Appendix A (Supplementary Material). While the SINGLE
algorithm was employed in this work, it follows that any
alternative algorithm could also have been used. The objective of
this simulation is therefore to quantify how reliably the proposed
graph embedding algorithms are able to capture changes in
connectivity structure.

3.1. Simulation Settings
In order to thoroughly test the capabilities of the proposed graph
embedding algorithms, we look to generate simulated data which
contains many of the characteristic properties often associated
with fMRI data. There are two main properties of fMRI data
which we wish to recreate in the simulation study. The first
is the high autocorrelation which is typically present in fMRI
data (Poldrack et al., 2011). The second property we wish to
recreate is the topological properties of the simulated functional
functional connectivity networks. While there is an extensive
literature studying such properties, we look to generate synthetic
data were the covariance structure demonstrates either small-
world or scale-free topologies. This is motivated by research
which suggests functional connectivity networks display thees
topological properties (Bullmore and Sporns, 2009) as well as the
fact that such networks can be easily simulated in practice.

In order to achieve this, we follow the simulation study
described (Monti et al., 2014). This involved the use of
vector autoregressive (VAR) processes to generate autocorrelated,
multivariate time-series. Briefly, VAR models serve as a
generalization of univariate autoregressive models and are
often employed to capture interdependencies between multiple
time series (Cribben et al., 2012). The use of VAR models
therefore allowed for the encoding of both autocorrelations
within components as well as cross-correlations across nodes.
Formally, the the covariance structure across various nodes was
simulated using a random graph algorithm (e.g., an Erdős-
Rényi random graphs) and the use of VAR models served to
introduce autocorrelation between successive observations as
would be expected in the context of fMRI data. We validate
the performance of each graph embedding method using three
distinct random graph algorithms: Erdős-Rényi random graphs
(Erdos and Renyi, 1959), scale-free random graphs obtained by
using the preferential attachment model of Barabási and Albert
(1999) and small-world random graphs obtained using theWatts
and Strogatz (1998) model. Erdős-Rényi random graphs are
included as they correspond to the simplest and most widely
studied type of random network while the use of scale-free and
small-world networks is motivated by the fact that they are each
known to each resemble different aspects of brain connectivity
networks.

Following Monti et al. (2014), we fix the edge strength
between nodes to be 0.6 in the case of Erdős-Rényi random
networks. In the case of the scale-free and small-world networks
we randomly sample the edge strengths uniformly from
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[−1/2,−1/4]∪[1/4, 1/2] This choice wasmotivated by recent results
which suggest the edges in functional connectivity networks are
highly heterogeneous (Markov et al., 2013). In this manner the
performance of the proposed methods was studied in the context
of three distinct settings. The first setting corresponds to Erdős-
Rényi random networks where the edge weights remain fixed and
is arguably the easiest setting. In the second and third settings,
more complex random graph algorithms are employed and the
edge weights are allowed to vary, thereby increasing the difficulty
of the associated task. 6 We note that the density of the simulated
networks was fixed such that 20% of all possible edges were
present. Finally, we note that within each simulation the network
structure was shared across all subjects, however, the data for each
subject was randomly generated. We note that this is just one of
a range of potential simulation settings which may be employed
but which serve to empirically validate the proposed method.

In many task based studies, subjects are required to alternate
between performing a cognitive task and resting in a cyclic
fashion. As such, the simulations presented in this work consist of
a cyclic connectivity structure, where the underlying connectivity
varies between two simulated networks. As a result, multivariate,
simulated data was generated where the underlying covariance
structure alternated in a cyclic fashion. As noted previously, we
consider three distinct network structures: Erdős-Rényi, scale-
free and small-world networks. Furthermore, networks were
simulated with p ∈ {10, 25, 50, 100, 150} nodes, respectively,
while the number of observations within each segment remained
fixed at n = 100. This allows for the study of the behavior
the proposed of graph embedding techniques as the ratio n/p

decreases. Throughout this simulation, S = 20 datasets where
independently simulated as described above. This served to
replicate a typical fMRI study, where data is typically collected
for a group of around 20 subjects.

3.2. Performance Metrics
In order to evaluate the empirical performance of the graph
embedding methods we consider the discriminatory power
of the estimated embeddings when predicting the underlying
covariance structure. As the underlying covariance structure
is simulated to alternate between two network structures,
this corresponds to binary classification task and traditional
classification scores, such as the area under the ROC curve
(AUC), can be employed (Krzanowski and Hand, 2009). The
benefit of employing the AUC score to quantify performance
of each graph embedding is that no additional classification
algorithm or threshold is required. This is because the AUC
measure effectively computes the discriminative capability
of each graph embedding at all possible thresholds. More
concretely, the embedding scores corresponding to either the
leading principal component of discriminant scores can be
studied directly in this manner. Finally, we note that throughout
the simulation study presented in this work only the leading
embeddings were considered. This serves to demonstrate that
the proposed methods are able to detect significant changes in
the covariance structure. However, it may also be of interested
to consider the detection of more subtle changes. Theoretically,
such changes would be reported in higher level embeddings such

as the second or third principal component embeddings, however
we do not study these properties within this simulation study.

3.3. Results
Data was simulated as described in Section 3.1. The SINGLE
algorithm was subsequently applied in order to estimate time-
varying functional connectivity networks for each subject. A
detailed review of the algorithm is provided in Appendix
A (Supplementary Material). The application of the SINGLE
algorithm required the specification of three hyper-parameters
which were selected as follows: the kernel width parameter was
estimated once across all subjects using cross-validation. The
remaining regularization parameters were selected as detailed
in Monti et al. (2014): this involved minimizing the Akaike
Information Criterion (AIC) on a subject-by-subject basis. Given
the estimated networks, the two graph embedding methods
introduced in Section 2 were applied. Half of the S = 20 subjects
were selected as a training sample, and the networks for the
remaining subjects were kept as a validation set.

3.3.1. PCA-Driven Embeddings
We begin by studying the performance of the PCA-driven
embeddings. Recall that the objective of this method is to obtain
a low-dimensional embedding which maximizes the amount
of explained variance. Figure 2 provides an initial flavor for
the capabilities of the proposed method where the embedding
based on the leading principal component has been visualized
over unseen subjects for various different values of p. Recall
that the underlying covariance structure has been simulated in
a cyclic fashion such that the first and third segments share
the same connectivity structure. Change points are denoted by
dashed, vertical lines. The results presented in Figure 2 serve to
demonstrate the performance of the PCA-driven embedding as
the number of regions p increases. In particular, we note that as p
increases, the performance of the proposed method deteriorates.
This is to be expected as the increases in the number of regions,
p, increases the difficulty associated with the estimation of the
underlying covariance matrices. The dashed red lines in Figure 2

correspond to the graph embeddings obtain for specific unseen
subjects, thereby demonstrating that the estimated embeddings
are robust.

In order to be obtain a more comprehensive understanding
regarding the performance of the embedding, we consider the
predictive power of the embeddings when trying to uncover the
underlying covariance structure. In this setting, the underlying
covariance structure was treated as a binary variable with two
classes: each of which serves to indicate one of the two underlying
connectivity regimes. The embedding corresponding to the
leading principal component was then employed to discriminate
across the class. The AUC score was then employed to obtain
a measure of the discriminative capabilities of the embedding
(Krzanowski and Hand, 2009). Detailed results are provided in
Table 1A where the mean AUC score across all unseen simulated
subjects is reported together with the standard deviation. As
expected, there is a clear decline in the discriminative capabilities
of the embedding as the dimensionality of the network increases.
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FIGURE 2 | Visualization of PCA-driven embeddings for simulated data where the number of nodes varies p ∈ {20, 50, 100, 150}. Each panel shows the

mean PCA-driven embedding over 10 unseen, simulated datasets (i.e., 10 unseen subjects). The thick blue line corresponds to the average of the leading principal

component across subjects, defined in Equation (5). Standard deviations are indicated by the shaded regions. The dashed red lines show the leading principal

component for three randomly selected subjects, thereby providing an indicating of the variability across subjects. Results are shown when the underlying connectivity

structure was simulated using three distinct graph algorithms: Erdős-Rényi, scale-free and small-world random graphs. Vertical dashed lines indicate a change in

covariance structure.

TABLE 1 | Mean AUC scores for each of the proposed graph embeddings

are shown when the underlying covariance structure is simulated using

three distinct methods.

p Erdős-Rényi Scale-free Small-world

(A) PCA-DRIVEN

10 0.94 (0.02) 0.94 (0.04) 0.92 (0.05)

25 0.95 (0.03) 0.88 (0.07) 0.80 (0.08)

50 0.91 (0.03) 0.84 (0.06) 0.79 (0.07)

100 0.73 (0.05) 0.76 (0.06) 0.70 (0.05)

150 0.66 (0.06) 0.64 (0.05) 0.67 (0.06)

(B) LDA-DRIVEN

10 0.97 (0.01) 0.96 (0.05) 0.97 (0.06)

25 0.95 (0.03) 0.93 (0.06) 0.83 (0.07)

50 0.90 (0.04) 0.89 (0.06) 0.78 (0.07)

100 0.75 (0.06) 0.77 (0.05) 0.73 (0.06)

150 0.68 (0.05) 0.70 (0.04) 0.69 (0.06)

Results are presented for networks with varying numbers of nodes, p. Standard deviation

are provided in brackets.

3.3.2. LDA-Driven Embeddings
While the PCA-driven embeddings are motivated by the
need to understand components of estimated networks which
demonstrate the greatest variability, it is also important to

consider embeddings which are discriminative across multiple
cognitive tasks. The LDA-driven embeddings introduced in
Section 2.3 are one potential method through which to achieve
this. Briefly, the objective of such an embedding is to learn a linear
combination of edges which is maximally discriminative across
across tasks.

The fundamental difference between the PCA and LDA-
driven embeddings is that the latter is a supervised embedding.
As a result, it is crucial to avoid any potential overfitting. As
described in Section 2.3, the proposed method employs a variable
screening procedure based on regularized models. This use of
regularization also serves to penalize complex models which are
naturally more prone to overfit.

We note that the underlying covariance structure was
simulated in a cyclic fashion which alternated between two
distinct regimes. As a result, the objective of the proposed
embedding is to differentiate between two distinct classes. Due to
the properties of LDA, this results in a 1-dimensional embedding
(Hastie et al., 2009). This embedding is visualized for networks
of varying dimensions in Figure 3. Following the discussion in
Section 3.3.1, we notice there is a clear deterioration in the quality
of the embeddings recovered as the dimensionality, p, increases.
This is to be expected as the number of observations, n, remains
fixed. More comprehensive results are provided in Table 1B,
where the mean AUC score over unseen datasets is reported.
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FIGURE 3 | Visualization of LDA-driven embeddings for simulated data where the number of nodes varies p ∈ {20, 50, 100, 150}. Each panel shows the

mean LDA-driven embedding over 10 unseen, simulated datasets (i.e., 10 unseen subjects). The thick blue line corresponds to the average of the linear discriminant

scores across subjects. Standard deviations are indicated by the shaded regions. The dashed red lines show the linear discriminant scores for three randomly

selected subjects, thereby providing an indicating of the variability across subjects. Results are shown when the underlying connectivity structure was simulated using

three distinct graph algorithms: Erdős-Rényi, scale-free and small-world random graphs. Vertical dashed lines indicate a change in covariance structure.

As with the PCA-driven embeddings, we note there is a drop
in performance as the number of nodes, p, increases. We note
that the LDA-driven embeddings typically out-perform the PCA-
driven embeddings. We attribute this to the supervised nature
of the LDA-driven embedding. Formally, the objective of PCA-
driven embedding is to learn a low-dimensional representation
which captures maximal variance. A decrease in the ratio n/p

leads to a corresponding increase in the variability of estimated
networks. This may be partially responsible for the difference
in embeddings shown in Figure 2 as p increases. On the other
hand, the objective of the proposed LDA-driven embedding is to
learn a linear combination of edges which is discriminative across
multiple classes. As such, the drop in the ratio n/p does not result
in significant changes to the magnitude of estimated embeddings.

4. APPLICATION

In this section we present an application of the proposed graph
embedding techniques to a task-based fMRI dataset taken from
the Human Connectome Project (Elam and Van Essen, 2014).

4.1. HCP Working Memory Data
The data consisted of working memory task data taken from
the Human Connectome Project (Elam and Van Essen, 2014).
During the tasks subjects were presented with blocks of trials

consisting of either 0-back or 2-back workingmemory tasks. Two
datasets were provided for each subject, corresponding to a left-
right (LR) and right-left (RL) acquisitions. Throughout both the
left and right acquisition subjects were required to perform the
same working memory task with the only difference that the
block design of the task varied slightly from one acquisition to
another. Throughout this work, they were treated as separate
scans and studied independently. Data corresponding to S = 206
of the possible 500 subjects was selected at random1. Thus a total
of 2× 206 = 412 datasets were studied.

4.1.1. Data Pre-processing
Preprocessing involved regression of Friston’s 24 motion
parameters from the fMRI data (Friston et al., 1996). Sixty-
eight cortical and sixteen subcortical ROIs were derived from
the Desikan-Killiany atlas (Desikan et al., 2006) and the ASEG
atlas (Fischl et al., 2002), respectively. A full list of the regions
employed, together with their MNI coordinates, is provided in
Appendix B (Supplementary Material). Mean BOLD timeseries
for each of these 84 ROIs were extracted and further cleaned
by regressing out timeseries sampled from white matter and

1The selection of 206 subjects was based on the data available at the time of

the study. Due to the computational burden associated with preprocessing and

preparing data, only data for 206 randomly selected subjects was available.
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cerebrospinal fluid. Finally, the extracted timecourses were high-
pass filtering using a cut-off frequency of 1

150 Hz.

4.1.2. Network Estimation
As in the simulation study, time-varying functional connectivity
networks were estimated for each subject using the SINGLE
algorithm. This required the specification of three hyper-
parameters: the width, h, of the Gaussian kernel as well as the
regularization parameters, λ1 and λ2. A fixed kernel width of
h = 15, selected via cross-validation, was employed across all
subjects. The regularization parameter were selected on a subject-
by-subject basis by minimizing AIC. This involved an extensive
grid-search over all possible combinations of λ1 and λ2. In order
to reduce the computational burden associated with selecting λ1
and λ2, an initial search was performed on a reduced subset of the
subjects. This served to identify a region of the parameter space
that was consistently selected across subjects, thereby greatly
reducing the computational cost.

4.1.3. Results
The estimated functional connectivity networks produced by
the SINGLE algorithm were subsequently analyzed using the
proposed graph embedding methods. Recall that the objective of
the PCA-driven embedding was to provide a low-dimensional
embedding which captures a large portion of the variability
present in the data. This was achieved in an unsupervisedmanner
by considering the embeddings associated with the k = 2
reading principal components. We note that both the LR and
RL acquisitions for each subject where considered simultaneously
as the goal was to understand variability across the entire
population.

Figure 4B(i) shows the mean PCA-driven embeddings across
all S = 206 subjects2. The background is colored to denote the
task taking place at each point in time: red is used to denote
2-back working memory task while purple denotes a 0-back
working memory task and a white background is indicative
of rest. The embeddings associated with the first and second
leading principal components display a clear oscillatory pattern
which is correlated with the underlying task. Moreover, there
is a lag in the oscillations of the 2nd principal component
embedding with respect to the first, suggesting that distinct
dynamics in the connectivity structure may be captured by
each.

The left panel of Figure 4A shows the functional connectivity
networks associated with each of the two principal component
embeddings. Red edges indicate positive associations while
blue edges indicate the opposite. The associated functional
connectivity networks appear to reflect independent network
dynamics. The network associated with the first principal
component displays strong interhemispheric coupling, especially
across motor regions but also for other mid-range connections,
such as between motor and frontal regions as well as
between frontal and medial temporal regions. Decreased
inter-hemispheric coherence has previously been linked to
poor working working memory performance in patients with

2Note that only LR acquisition datasets plotted here, as the task design varied from

LR to RL acquisitions.

traumatic brain injury (Kumar et al., 2009). In addition,
interactions between the medial temporal lobe and frontal areas
has been demonstrated for working memory tasks (Axmacher
et al., 2008). On the other hand, the network associated with
the second principal appears to show increased long-range
coupling between frontal and parietal regions in the brain.
This is in-line with the well-established engagement of the
frontoparietal attention network during working memory tasks
(Vossel et al., 2014; Wallis et al., 2015; Constantinidis and
Klingberg, 2016). Finally, we note that the ordering of the
embeddings is itself significant. In the context of resting state
data we would expect the leading embedding to correspond to
the Default Mode Network (DMN) as such a network has been
widely reported to be active during rest (Greicius et al., 2009).
However, from Figure 4A we note this is not the case, suggesting
that the networks recovered are induced by the associated
task.

In contrast to the PCA-driven embeddings, the LDA-driven
embeddings are a supervised method which seeks to identify
a reduced subset of edges which are discriminative across
tasks. In this section we study the contrast between 0-back
and 2-back working memory tasks3. As noted previously, two
datasets were available for each subject. In such a supervised
learning task care was taken to differentiate between the LR
and RL acquisition datasets as there were small differences
in task-design. The approach taken here was to build an
LDA-driven embedding using only the LR acquisition datasets
across all subjects and then validate this model using the
unseen RL acquisition datasets. All

(p
2

)

potential edges were
screened as described previously and only those selected over
60% of the time were studied. A threshold of 60% was
selected in order to obtain embeddings with high discriminative
accuracy whilst remaining easily interpretable. In particular,
the variable screening strategy with a threshold of ρ = 60%
served to reduce the number of candidate edges to p′ =

126 <<
(p
2

)

.
The results for the LDA-driven embedding are shown in

Figure 4B(ii). This corresponds to the results of applying the
LDA-driven embedding to the unseen RL acquisitions, averaged
across all S subjects. The resulting embedding is strongly
correlated with the onset of the 0-back working memory task
(denoted by purple shading in the figure). This serves as an
empirical validation that the embedding is able to discriminate
across the two classes. The discriminative performance of the
LDA-driven embedding was subsequently studied on a subject by
subject basis by calculating the AUC score over the unseen RL
acquisition dataset. The mean AUC score across all subjects was
0.69 with a standard deviation of 0.14.

We are also able to study the embedding in the context
of the associated functional connectivity network, shown in
Figure 4A(iii). While the networks associated with the PCA-
driven embedding recovered edges which displayed high
variability, the edges reported by the LDA-driven embedding are
discriminative across the 0-back and 2-back working memory
tasks.

3We note that alternative contrasts may also have been employed.
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FIGURE 4 | Visualization of results when linear graph embedding methods are applied to HCP data. (A) The brain networks visualize the functional

connectivity networks associated with each of the embeddings. Positive edges are displayed in red while negative edges are visualized in blue. The networks shown

correspond to the following embeddings: (i) 1st principal component embedding, (ii) 2nd principal component embedding, and (iii) the LDA-driven embedding. (B)

Visualizations are provided for the PCA (left) and LDA (right) driven embeddings. The shaded background regions indicate the underlying cognitive task (blue indicates

a 0-back task while red indicates a 2-back working memory task).

5. DISCUSSION

The study of dynamic functional connectivity networks is an
important avenue of neuroscientific research which has become
popular in recent years (Calhoun et al., 2014). As a result, many
methodologies have been proposed through which to estimate
time-varying connectivity networks. However, one aspect that
has been overlooked has been how to effectively interpret and
visualize the estimated networks and how these are modulated
by the underlying task. In the past this issue has been partially
addressed via the use of a wide range of methods including
univariate testing on edges (Monti et al., 2014, 2015), tracking
of graph metrics such as degree centrality (Calhoun et al., 2014)
and clustering methods (Allen et al., 2012).

In this work we look to address these issues via the use of
graph embedding methods based on linear projections over the
set of edges. The motivation behind the use of linear methods
stems from the fact that they may subsequently be interpreted
in the context of functional connectivity. As a result, such
methods allow for the identification of entire networks which
vary throughout a task. In this manner, we are able obtain a more

holistic understanding of the dynamic reconfigurations which are
taking place.

Formally, the two embedding methods presented in this
work are based on principal component analysis and linear
discriminant analysis, respectively. These two approaches
correspond to unsupervised and supervised learning methods,
respectively, and can therefore be seen as complementary
tools through which to understanding dynamic functional
connectivity in further detail. The PCA-driven embedding
presented is closely related to the eigen-connectivity approach
introduced by Leonardi et al. (2013). Here PCA is employed to
report a weighted combination of edges which demonstrates the
largest variability over time. In the context of task-based fMRI,
we hypothesize such edges will be related to the underlying task,
however such an approach can also be applied in the context
of resting-state data, indeed this is the original application
presented by Leonardi et al. (2013). Conversely, the LDA-driven
embedding corresponds to a supervised embedding algorithm
which is explicitly designed for task-based fMRI data. First,
a screening procedure is applied in order to weed out non-
informative edges and yield sparse and interpretable networks.
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LDA is subsequently employed to learn an embedding which is
discriminative across tasks.

The empirical capabilities of the proposed embeddings are
studied throughout a series of simulation studies. These involved
the generation of synthetic data whose properties resemble many
of those typically reported in fMRI data. These simulations
provide an important insight into the performance of the
proposed graph embeddings. In particular, they serve to highlight
the drop in performance as the number of regions increases given
a fixed number of observations as can be clearly seen in Table 1.
It is important to note that the aforementioned simulation study
focused only on quantifying performance between two binary
states. While this allows for the performance of the embeddings
to be readily quantified, it follows that the dynamics of functional
connectivity networks may by vary constantly and therefore be
far more difficult to track.

We further note that the simulations presented have employed
the SINGLE algorithm to obtain sparse functional connectivity
networks. However, the graph embedding methods presented
do not require sparse networks per se and may be employed
in the context of dense networks as well. Moreover, while the
simulations have focused primarily on the properties of the
leading PCA or LDA embeddings, higher order components
could be employed to study more complex dynamics in
connectivity structure. Furthermore, studying the contributions
of higher order components may potentially serve as a way of
quantifying the complexity of the data at hand.

It is also important to consider the limitations of the
proposed methods. Firstly, both embeddings are rooted on
the assumption that an equal number of observations are
available across all subjects. If this were not the case the
estimated embeddings would be biased toward subjects with
larger number of observations. Furthermore, the PCA-driven
embedding described in Section 2.2 is also premised on the
assumption that variability in connectivity structure over time

dominates an inter-subject variability. It follows that if this were
not to be the case, the embedding would instead recover the set
of edges which display the greatest inter-subject variability. This
is perhaps a more pertinent issue in the context of resting state
data as we expect there to be clear changes in network structure
induced by distinct cognitive tasks.

An important area for future work would be to study the
performance of the proposed graph embeddingmethods on fMRI
data consisting of very large numbers of brain regions (e.g.,
in the hundreds or thousands). It would also be of interest to
consider more complex graph embeddings which further exploit
the properties of networks, for example via the use of heat
kernels (Chung et al., 2016a,b). Moreover, graph embedding
methods could be employed in a variety of contexts. An
exciting potential application is in personalized neurofeedback
based on functional connectivity (Lorenz et al., 2015, 2016a,b,
2017; Monti et al., 2016). In such a setting, the use of graph
embedding methods could potentially be employed to provide
easily interpretable score for subjects to optimize via the use of
neurofeedback.
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