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Two mathematical models are part of the foundation of Computational neurophysiology;

(a) the Cable equation is used to compute the membrane potential of neurons, and, (b)

volume-conductor theory describes the extracellular potential around neurons. In the

standard procedure for computing extracellular potentials, the transmembrane currents

are computed by means of (a) and the extracellular potentials are computed using

an explicit sum over analytical point-current source solutions as prescribed by volume

conductor theory. Both models are extremely useful as they allow huge simplifications

of the computational efforts involved in computing extracellular potentials. However,

there are more accurate, though computationally very expensive, models available

where the potentials inside and outside the neurons are computed simultaneously in a

self-consistent scheme. In the present work we explore the accuracy of the classical

models (a) and (b) by comparing them to these more accurate schemes. The main

assumption of (a) is that the ephaptic current can be ignored in the derivation of the Cable

equation. We find, however, for our examples with stylized neurons, that the ephaptic

current is comparable in magnitude to other currents involved in the computations,

suggesting that it may be significant—at least in parts of the simulation. The magnitude

of the error introduced in the membrane potential is several millivolts, and this error also

translates into errors in the predicted extracellular potentials. While the error becomes

negligible if we assume the extracellular conductivity to be very large, this assumption is,

unfortunately, not easy to justify a priori for all situations of interest.
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1. INTRODUCTION

Computational modeling in neurophysiology is a rapidly
developing field taking on problems of enormous complexity.
This is illustrated in the recent paper by Markram et al. (2015)
where the authors present results of amazingly detailed digital
algorithmic reconstruction of a neocortical volume segment
(about 0.29mm3) of rat cortex, containing ∼31,000 neurons
with ∼37 million synapses. The complexity of the project is
astonishing, and it opens amazing perspectives for insight in the
complexities of the brain. The paper also raises questions of more
philosophical nature brilliantly examined in the accompanying
perspective by Koch and Buice (2015).

The development of enormously complex computational
models motivates closer examination of the basis of the
mathematical models underpinning the computations. It is the
purpose of this study to evaluate the accuracy of two basic
models extensively used throughout the field of computational
neurophysiology, and our main question is whether the
popularity of these models is warranted by their accuracy.

The first model we consider is the celebrated Cable equation
used to compute membrane potentials and transmembrane
currents. This model is absolutely essential in computational
neurophysiology, and is used in numerous papers every year.
The derivation of the model is classical and can be found in any
introduction to computational neurophysiology; see e.g., Sterratt
et al. (2011), Ermentrout and Terman (2010), Scott (2002), Dayan
and Abbott (2001), and Koch (1999). An important assumption
in the most common derivation of the Cable equation is that
the extracellular conductivity is very large, and that consequently
the extracellular potential can be assumed to be constant. This
assumption represents a major simplification of the model since
the extracellular field does not have to be represented in the
model, which means that a costly solution of a Poisson equation
in the extracellular domain is avoided.

One way of interpreting the effect of ignoring the coupling

to the extracellular potential is that (as we shall see below)

we disregard the so-called ephaptic current; see e.g., Holt and

Koch (1999). It is well known that neglecting this current
represents a key assumption, and the validity of the assumption,
and also the effect of ephaptic coupling, have previously been
discussed by several authors; see e.g., Buzsáki et al. (2012),
Bhalla (2012), Goldwyn and Rinzel (2016), Anastassiou et al.
(2011), Anastassiou and Koch (2015), and Bokil et al. (2001).
An analytical treatment of the effect of ephaptic currents on
nerve pulses in parallel nerve fibers is given in Chapter 8 of
Scott (2002). That exposition is motived by classical experiments
performed by Katz and Schmitt (see e.g., Katz and Schmitt,
1940) and analyzed by an extension of the scalar Cable equation
to a 2 × 2 system of partial differential equations governing
the membrane potential of the neighboring nerve fibers. This
work is followed up by Shneider and Pekker (2015) who suggest
that the ephaptic current acts as a synchronization mechanism
for action potentials along bundles of neurons. For axons, the
coupling is particularly important in the unmyelinated case; see
Bokil et al. (2001) for an analysis of bundles of olfactory nerve
axons. Furthermore, Goldwyn and Rinzel (2016) recently studied

ephaptic interactions in a bundle of neurons and found that the
effects of the ephaptic currents were small but not negligible.

The question of ephaptic coupling between cells has been
studied for a long time; 75 years ago (Arvanitaki, 1942) stated
that there is no doubt that the activity of an element in the
midst of a cell agglomeration can influence that of its neighbors,
even when specialized contact surfaces for transmission, i.e.,
those loci traditionally known as synapses and which have been
endowed with particular properties are lacking. In Holt and
Koch (1999), Holt and Koch analyse the magnitude and possible
consequences of ephaptic coupling. They observe that spikes
from a neuron can cause an extracellular potential of a few
mV near the cell body, and they analyse the effect of this on
nearby cells. The impact of ephaptic coupling remains uncertain
(Anastassiou et al., 2011; Anastassiou and Koch, 2015), but
it seems to be acknowledged that ephaptic currents may be
significant. However, it is usually not taken into account in
most computational analyses of neurons, and the reason for
this is clearly to improve computational efficiency. In this paper
we will quantify the error introduced by this assumption. We
will compare the results of the Cable equation to those of
an accurate mathematical model which includes the ephaptic
current. The more accurate model will be referred to as the
EMI model since it builds on detailed representation of both
the Extracellular space surrounding the neuron, the Membrane
of the neuron and the Intracellular space of the neuron. EMI
computations are typically much more CPU demanding than
solving the Cable equation, but the model faithfully represents
the physics of the neuron and its surroundings. Variants of the
EMI model have been studied previously by e.g., Krassowska and
Neu (1994), Ying and Henriquez (2007), Henríquez et al. (2013),
Agudelo-Toro and Neef (2013), and Agudelo-Toro (2012). For
linear membrane currents and specialized geometries, analytical
solutions are available; see e.g., Rall (1962), Rall (1969), Klee and
Rall (1977), Krassowska and Neu (1994), Ying and Henriquez
(2007), and Agudelo-Toro and Neef (2013).

The second model we consider is the standard formalism
for computing the extracellular potential based on solutions of
the Cable equation. It is well known that if the current sources
are given by Dirac delta functions, the solution of the Poisson
equation, defined on an infinite domain, can be computed by
an explicit formula, see e.g., Einevoll et al. (2013). Based on
the solution of the Cable equation, the current sources can be
defined for each compartment in the numerical solution, and
the solution of the Poisson equation can (due to linearity) be
given as the sum of contributions from all compartments. Note
that in practice the so-called line-source approximation (Holt and
Koch, 1999) where the current sources are assumed to be evenly
distributed along cylindrical axes of dendritic compartments,
is commonly used rather than the point-source approximation
built on solutions of the Dirac delta functions. However, these
two methods are directly related as a line source can be
arbitrarily accurately approximated by a line of delta-function
sources.

The combined use of the two models (a) and (b) in computing
extracellular potentials is especially intriguing since (a) is solved
based on the assumption that the extracellular field is constant,
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and then (b) is used to compute the non-constant extracellular
potential.

We have evaluated the accuracy of these two basic models by
comparing the results with the results obtained by solving the
EMI model. Our findings can be summarized as follows:

1. We find that the membrane potential computed by the Cable
equation qualitatively resembles the solution of the EMI
model but may differ quantitatively (several millivolts) from
the solution of the EMI model.

2. We find, using reasonable parameters, that the magnitude of
the ephaptic current is comparable to the other currents in our
example model, so that its omission is, in general, difficult to
justify.

3. For our example application the error in neglecting the
ephaptic effect when computing the extracellular potentials
is found to be 10% or more, and stem from the inaccurate
computation of the transmembrane currents when the
extracellular potentials are assumed to be constant.

We have found the EMI model to be a useful framework
for assessing the accuracy of the classical models. The EMI
model is, however, much more computationally demanding, it is
much more difficult to implement correctly, and therefore very
challenging to apply to problems of greater complexity than the
simple problems addressed in the present report.

The rest of this report is organized as follows: In the Methods
Section, we derive the classical Cable equation and highlight what
assumptions are needed to remove the extracellular potential
from the model. Given the solution of the Cable equation, we
show how to compute the extracellular potential by solving a
boundary value problem, how to approximate the solution by
solving a Poisson equation, and how to approximate the solution
of the extracellular potential using a classical summation formula.
Finally, we introduce the EMI model where the dynamics of the
extracellular space, the cell membrane and the intracellular space
are fully coupled, and we show how the EMI model can be solved
numerically. In the Results Section, we study the error introduced
in the model by ignoring the ephaptic currents and how the
ephaptic current depends on the extracellular conductivity.
Furthermore, we compare the extracellular potential around
a single simplified neuron computed by various approximate
models, and we also compare the extracellular potential between
two simplified neurons. Finally, we show that the numerical
solutions seem to converge under mesh refinement and that
infinite domains can be reasonably well represented using large
extracellular domains. Implications and relevance of the results
are examined in the Discussion Section. In an Appendix in
Supplementary Material we give a theoretical estimate of the
error introduced by removing the ephaptic current.

2. METHODS

The standard way of computing the extracellular potential
surrounding a neuron is a two-step process: (a) solve the Cable
equation, and (b) use the transmembrane currents defined

by step (a) to compute the extracellular potential. Our aim
is to assess the accuracy of the solution of these two steps.
For comparison we will use an accurate model combining
the Extracellular domain, the Membrane, and the Intracellular
domain, referred to as the EMI model. Below, the EMI solution
will be regarded as the reference solution, and therefore solutions
computed by all other methods (derived below) will be compared
to the EMI solution.

We will take care to try to explain exactly how the EMI
model and the two-step models are defined and solved although
the derivations presented here can, at least in part, be found
elsewhere. The derivations will also help us clarify what
assumptions underlie the various models.

2.1. The Classical Two-Step Method
We start by describing the two steps of the classical approach
of computing the extracellular potential (Holt and Koch, 1999;
Lindén et al., 2014). The first step is to compute the membrane
potential and transmembrane currents. In the classical approach
this problem is solved assuming a constant extracellular potential.
We briefly review the derivation of the Cable equation in order
to clarify exactly what assumption is made in order to remove the
extracellular potential from the equation defining the membrane
potential. By identifying what term is ignored in the equation,
this term can be evaluated and used to illuminate the accuracy of
the Cable equation.

The second step is to compute the extracellular potential
by using the solution of the Cable equation to define the
transmembrane current sources. This step can be done in
numerous ways, and we will derive alternative methods starting
with the approach considered to most faithfully represent the
physics involved, and then derive simpler and more efficient
methods in order to end up with the classical summation formula
defining the extracellular potential.

2.1.1. The Cable Equation
Consider a simplified neuron geometry illustrated in Figure 1.
The intracellular space of the neuron is denoted by �i and the
boundary of �i is the membrane of the neuron, denoted by Ŵ.
The size of �i is given by lx, ly, and lz . In the derivation of
the Cable equation, the neuron is divided into compartments,
see e.g., Sterratt et al. (2011), Scott (2002), and Ermentrout and
Terman (2010), and it is assumed that the variations in the y-
and z-directions are small and can be ignored. Our derivation

FIGURE 1 | Sketch of a simplified neuron of rectangular cuboid shape

with dimensions lx, ly , and lz. The intracellular domain is denoted �i, the

boundary is Ŵ, and the compartments of length 1x are denoted by �i,k .
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is based on the version of the Cable equation used in Holt
and Koch (1999). The compartments are denoted by �i,k, and
have length 1x. For the k-th compartment, the transmembrane
current density (positive outward) is given by (see e.g., Sterratt
et al., 2011)

Ikm = Cm
dvk

dt
+ Ikion, (1)

where v is the membrane potential, Cm is the cell membrane
capacitance and Iion is the ionic current density out of the cell.
Furthermore, assuming ohmic resistance along the length of the
neuron, we have

1xIk + 1/2 = σi(u
k
i − uk+ 1

i ), (2)

where uki is the intracellular potential in compartment k, σi is the
intracellular conductivity, and Ik+ 1/2 is the intracellular current
density from compartment k to compartment k + 1. Applying
Kirchhoff’s current law, the sum of the currents flowing out of
a compartment must equal the sum of currents flowing into a
compartment, i.e.,

|Ŵk|Ikm = lylz(Ik− 1/2 − Ik+ 1/2), (3)

where |Ŵk| is the membrane area associated with �i,k. Therefore,

|Ŵk|

(

Cm
dvk

dt
+ Ikion

)

=
σilylz

1x

(

uk − 1
i − 2uki + uk + 1

i

)

. (4)

To simplify notations, we assume that ly = lz := h, and we have

Cm
dvk

dt
+ Ikion =

σi

4

h

1x2

(

uk−1
i − 2uki + uk + 1

i

)

. (5)

Certainly, in the limit of small compartments (1x → 0), we have

Cm
∂v

∂t
+ Iion = η

∂2ui

∂x2
, (6)

where we have introduced the conductance

η =
hσi

4
. (7)

The membrane potential is defined as

v = ui − ue, (8)

where ue denotes the extracellular potential. Therefore, we can
replace the intracellular potential ui in Equation (6) by v + ue to
get

Cm
∂v

∂t
+ Iion = η

(

∂2v

∂x2
+

∂2ue

∂x2

)

. (9)

At this point a major assumption is introduced; it is assumed that
the extracellular potential varies so little that it can be taken to be
a constant (see e.g., Sterratt et al., 2011)1;

ue ≈ const. (10)

Building on this assumption we arrive at the classical Cable
equation

Cm
∂v

∂t
+ Iion = η

∂2v

∂x2
. (11)

Note that the term we ignored in the derivation of the Cable
equation is

Ieph = η
∂2ue

∂x2
, (12)

which is referred to as the ephaptic current density (Holt and
Koch, 1999). In the computations below we will compute this
current using the EMI model and use it to quantify the effect of
the assumption underlying the classical Cable equation.

2.1.2. Computing the Transmembrane Current Based

on the Solution of the Cable Equation
Next we address the problem of computing the transmembrane
current based on the solution of the Cable equation. Suppose that
the Cable equation is solved numerically using an implicit finite
difference scheme of the form

Cm
vn,k − vn − 1,k

1t
+ Iion,n,k = η

vn,k − 1 − 2vn,k + vn,k + 1

1x2
, (13)

where, as above, 1x denotes the spatial discretization in form
of compartments, 1t denotes the time-step, and n is used to
enumerate the time steps. Then, the associated transmembrane
current density is given by

Ik,nm = η
vn,k − 1 − 2vn,k + vn,k + 1

1x2
. (14)

All the methods discussed below for computing the extracellular
potential rely on an approximation of this current density, but
the methods differ in how the current is approximated and in the
assumptions made on the extracellular domain.

2.1.3. Computing the Extracellular Potential in Terms

of Solving a Boundary Value Problem; The CBV

Method
Consider the simplified 2D geometry illustrated in Figure 2. Our
aim is now to compute the extracellular potential in �e for the
given transmembrane currents computed as explained above.
The problem we have to solve is given by

∇2ue = 0, in�e, (15)

σe
∂ue

∂ne
= Im, atŴ, (16)

1Assuming that the extracellular potential is a linear function of position would

result in the same simplified model.
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FIGURE 2 | Sketch of a simplified neuron geometry and its

surroundings; the extracellular domain �e, the cell membrane Ŵ, and

the intracellular domain �i. The normal vector pointing out of �i, is denoted

by ni and, similarly, ne denotes the normal vector pointing out of �e.

where Im is computed by Equation (14) and ne is the outward
pointing normal vector of �e. The boundary condition at the
outer boundary of �e will be described for the simulations
presented below.

In our computations, the Laplace Equation (15) together
with the boundary condition (16) is solved numerically using
straightforward finite difference approximations leading to a
linear system of algebraic equations. The finite difference stencil
used for Equation (15) will be described below.

We will refer to this method for computing the extracellular
potential as the CBV-method since it comprises the solution of
the Cable equation (C) and the solution of a boundary value (BV)
problem.

2.1.4. Computing the Extracellular Potential by

Solving the Poisson Equation; The CP Method
In the CBV method the transmembrane currents setting up the
extracellular potential are positioned at the interface between the
intracellular and extracellular domains. In the standard method
for computing extracellular potentials (referred to as the CS
method below), the transmembrane currents are instead assumed
to be positioned at the points (or lines) at the center of the
intracellular domain (Holt and Koch, 1999). One step in this
direction is to replace the boundary value problem (15, 16) of the
CBV method with a Poisson equation of the form

∇ · (σ∇u) = −C, in�, (17)

where � = �e ∪ �i. Here σ equals σi and σe in �i and �e,
respectively, and u equals ui and ue in �i and �e, respectively.
The problem now is how to define the current source density C.
In order to define C, we start by recalling that integration by parts
gives

∫

�

∇ · (σ∇u)φ dV =

∫

Ŵ

σ
∂u

∂n
φ ds−

∫

�

∇φ · (σ∇u) dV (18)

for any smooth functions u and φ, see e.g., Grossmann et al.
(2007, p. 140). By choosing φ = 1, and using this identity, it

follows from Equation (17) that the integral of C must be given
by

∫

�i

CdV = −

∫

�i

∇ · (σi∇ui)dV = −

∫

Ŵ

σi
∂ui

∂ni
ds =

∫

Ŵ

Imds,

(19)
where ni is the outward pointing normal vector of �i. We now
want to define the source term C such that the identity (Equation
19) holds. To this end, we define the constants2

Ck =
|Ŵk|

|�i,k|
Im,k, (20)

for every compartment �i,k, where

Im,k =
1

|Ŵk|

∫

Ŵk

Imds (21)

is the average transmembrane current density of the
compartment. Based on these constants, we can define the
source term

C = Ck for x ∈ �i,k. (22)

With this definition of the source term, we have

∫

�i

Cdx =

∫

Ŵ

Imds

and therefore Equation (19) holds provided that the current
source density C is defined by (22).

We can now approximate the solution of the boundary value
problem (15,16) defined on �e with the Poisson problem (17)
defined on the entire � = �e ∪ �i. It remains to be seen that
the current flowing into the extracellular domain �e defined by
boundary condition (16) is the same as the amount of current
flowing out of the intracellular domain �i in the solution of the
Poisson Equation (17). This holds, since by the definition of C we
have

∫

Ŵ

σe
∂ue

∂ne
ds =

∫

Ŵ

Imds = −

∫

Ŵ

σi
∂ui

∂ni
ds. (23)

Note that this method effectively assumes the transmembrane
current to be homogeneously distributed in the intracellular
domain in the computation of the extracellular potential. Again,
the numerical solution of Equation (22) is obtained by the finite
difference method where the right-hand side of the equation is
evaluated in the mesh points. This leads to a linear system of
algebraic equations.

The method of computing the extracellular potential by
solving the Cable Equation (11), using the result to define the
source term C by Equation (22), and then solving the Poisson
Equation (17), will be referred to as the CPmethod (C is for Cable
and P is for Poisson).

2Note that Ck is a constant defined on the compartment�i,k; it is constant in space

but varies in time.
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2.1.5. Computing the Extracellular Potential by the

Point Source Method; The CS Method
The final method for computing the extracellular potential
based on the solution of the Cable equation we will consider
is the point source method. This method relies on two basic
assumptions; first it is assumed that all the current can be
gathered in the center of each compartment; and second, it is
assumed that the extracellular space is infinite. Under these
assumptions, the Poisson equation can be solved analytically, see
e.g., Holt (1998), Holt and Koch (1999), Gold et al. (2006), and
Einevoll et al. (2013). This dramatically increases computational
efficiency and thus this approach is extremely popular and
completely dominates computations of extracellular potentials
around neurons. Again, our aim is to assess the accuracy of this
method.

By using the notation introduced above, we define current
sources for each compartment by

ck = |�i,k|Ck, (24)

and define the associated Poisson problems

σe∇
2ue,k = −ckδ(r − rk), (25)

where r = (x, y, z) and rk is the center of the k−th compartment.
The solution of this problem reads

ue,k =
ck

4πσe|r − rk|
, (26)

and therefore, by linearity, the extracellular potential is given by

ue =
∑

k

ue,k =
1

4πσe

∑

k

ck

|r − rk|
. (27)

Note that |r−rk| denotes the Euclidean distance for r to the point
rk. In the computations below we will refer to this method of
computing the extracellular potential as the CS-method (where
C is for Cable and S is for sum).

2.2. The Extracellular-Membrane-
Intracellular (EMI) Model
The dynamics of a neuron and its extracellular surroundings
can be accurately modeled by explicitly considering the
Extracellular space (�e), the Membrane (Ŵ) and the
Intracellular domain (�i); as mentioned above we call this
the EMI model. Analytical examples of solutions are given
by Krassowska and Neu (1994), finite element formulations
are provided by Ying and Henriquez (2007), Henríquez
et al. (2013), and Agudelo-Toro and Neef (2013); see
also Agudelo-Toro (2012) for a detailed derivation of the
model.

The main elements of the model are sketched in Figure 2.
Note that � = �i ∪ �e contains a single cell, where �i is
the intracellular domain of the cell and �e is the extracellular
space surrounding the cell. We let ui and ue denote the intra-
and extracellular potentials, and at the interface between the

intracellular and extracellular domains, given by Ŵ, we define the
membrane potential by v = ui − ue. Then the electrical potential
defined in � = �i ∪ �e is governed by the system

∇ · σi∇ui = 0, in�i, (28)

∇ · σe∇ue = 0, in�e, (29)

ue = 0, at ∂�e, (30)

ne · σe∇ue = −ni · σi∇ui, atŴ, (31)

ui − ue = v, atŴ, (32)

Im = −ni · σi∇ui, atŴ, (33)

∂v

∂t
=

1

Cm
(Im − Iion), atŴ, (34)

where σi and σe are intra- and extracellular conductivities, ni and
ne are the normal vectors of �i and �e, Cm is the cell membrane
capacitance, and the ion current density is given by Iion.

2.2.1. Numerical Methods
We describe the finite difference scheme for solving the system
(28)–(34) in the case of passive ion currents; i.e., for a case where
Iion is linear. In this case the problem (28)–(34) is linear and it is
straightforward to define a fully implicit finite difference scheme.
In the description of the solutionmethod, we will consider the 2D
case illustrated in Figure 3. The extension to 3D is notationally
messy but conceptually straightforward.

The system (28)–(34) can be triggered in several different
ways. Since we want to compare results using the Cable equation
and the EMI model, we will apply an initial condition that can be
used in an identical manner for both methods. This is achieved
by assuming that the membrane potential is given at time t = 0,
and by adding a one dimensional synaptic input current.

We let (u
n,j,k
e , vn,j,k, u

n,j,k
i ) denote finite difference

approximations of (ue, v, ui) at (tn, xj, yk) = (n1t, j1x, k1y)
for given mesh parameters 1t, 1x and 1y. The computational
nodes used for the discrete version of the system are shown in
the right panel of Figure 3; nodes of the extracellular domain are
marked by “×,” the intracellular nodes are marked by “◦,” and
the nodes on the membrane are marked by “⊗.”

Suppose that v = vn−1 is known at time t = tn−1. The update
from tn−1 to tn is computed by solving a coupled linear system
defined by a finite difference version of the system (28)–(34). In
each node of the extracellular domain the elliptic Equation (29)
is replaced by a finite difference scheme of the form

σ
j + 1/2,k
e (u

n,j+1,k
e − u

n,j,k
e )− σ

j − 1/2,k
e (u

n,j,k
e − u

n,j−1,k
e )

1x2

+
σ
j,k + 1/2
e (u

n,j,k + 1
e − u

n,j,k
e )−σ

j,k − 1/2
e (u

n,j,k
e − u

n,j,k − 1
e )

1y2
= 0,

(35)

where σ
j+1/2,k
e = σe((j + 1/2)1x, k1y). Likewise, the elliptic

equation (28) is replaced by a finite difference scheme of similar
form (ue replaced by ui and σe replaced by σi). The numerical
scheme given by Equation (35) provides one equation for all

Frontiers in Computational Neuroscience | www.frontiersin.org 6 April 2017 | Volume 11 | Article 27

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Tveito et al. Computing Membrane and Extracellular Potential

FIGURE 3 | Sketch of the computational mesh for �e and �i; the nodes of �e are marked by “×,” the nodes of �i are marked by “◦,” and the

membrane is defined as the intersection of �e and �i marked by “⊗.”

nodes in the domain �e\Ŵ and (as explained above) for all nodes
in the domain �i\Ŵ.

It remains to specify three equations for all nodes on the
membraneŴ since there are three unknowns, (ue, v, ui), in each of
the membrane nodes. One equation is clearly given by Equation

(32); i.e., u
n,j,k
i − u

n,j,k
e = vn,j,k for all nodes (xj, yk) on the

membrane Ŵ. The second equation is provided by replacing the
flux-equality Equation (31) by a finite difference equation, and
the third equation is the discrete version of Equation (34) in
terms of an implicit scheme;

vn,j,k −
1t

Cm
(I
n,j,k
m − I

n,j,k
ion ) = vn − 1,j,k. (36)

Here, Im is defined as a discrete version of Equation (33).
Furthermore, in the passive case, the function Iion is linear with
respect to v and therefore the entire system is linear.

The four corners of the membrane mesh need special
attention. In these nodes we define two extracellular and two
intracellular flux terms; one term from the normal derivative in
the x-direction and one from the normal derivative in the y-
direction. Furthermore, we let the sum of the two intracellular
fluxes equal the sum of the two extracellular fluxes in the flux-

equality Equation (31) and let I
n,j,k
m in Equation (36) be the mean

of the two intracellular fluxes. In the 3D extension we similarly
define three extracellular and three intracellular flux terms for the
corner nodes where three membrane planes intersect, and two
extracellular and two intracellular flux terms for the edge nodes
where two membrane planes intersect.

In the case of simple, rectangular geometries, this numerical
strategy is straightforward. However, for more complex
geometries, finite element or finite volume methods should be
used.

3. RESULTS

In this section we will report results using the methods described
above. We will start the section by investigating the error in the
membrane potential introduced by ignoring the ephaptic current
Equation (12).

Secondly, we will compare the extracellular potential
computed by the CBV, CP, and CS methods with the solution of
the EMI model. Clearly, there are a set of different assumptions

TABLE 1 | Definition of the methods used to compute the extracellular

potential.

Abbreviation Explanation Method

CBV Cable equation, Boundary Value problem (11), (15), (16)

CP Cable equation, Poisson equation (11), (17)

CS Cable equation, solution given by a Sum (11), (27)

EMI Extracellular Membrane Intracellular (28)–(34)

underlying these methods: The CS method is unique in assuming
the extracellular domain to be infinite. In order to be able to
compare the results of the CS method with the other methods,
we have used large extracellular domains. In order to estimate
how large the domain must be, we have systematically increased
the size of the extracellular space until convergence of the EMI
solutions and then used the largest domain for our comparisons.

For the CS method the transmembrane currents are gathered
in the center of each compartment thus giving rise to the
classical formula of the solution, whereas for the CP method the
transmembrane currents are distributed over each compartment,
and numerical methods are used to compute the solution of the
associated Poisson equation. In contrast, in the CBV and EMI
methods the transmembrane currents setting up the extracellular
potentials are placed at the interface between the intracellular
and extracellular domains. The CBV and EMI methods are thus
defined on the same domain, and the only difference lies in the
proper self-consistent modeling of ephaptic effects in the EMI
method.

For convenience, the abbreviations (CBV, CP, CS, and EMI)
and references to the methods are summarized in Table 1.

3.1. Model Parameters
We consider the Cable equation and the EMI model using
the parameters given in Table 2 (unless otherwise stated). The
domain � = �i ∪ �e is defined as

� = [0, Lx]× [0, Ly]× [0, Lz], (37)

and the intracellular domain, �i, is shaped as a rectangular
cuboid of size lx × ly × lz located in the center of �. The ionic
current density Iion is defined as

Iion = Ileak + Isyn, (38)
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TABLE 2 | Parameters used in the computations of the Cable equation and

the EMI model.

Parameter Value Parameter Value

Lx 60 µm gL 6 · 10−7 µS/µm2

Ly 20 µm gsyn 1.25 · 10−3 µS/µm2

Lz 20 µm vrest −90 mV

lx 50 µm veq 0 mV

h, ly , lz 6 µm t0 0 ms

1x, 1y, 1z 0.5 µm α 2 ms

1t 0.02 ms σi 0.7 µS/µm

Cm 2 · 10−5 nF/µm2 σe 0.3 µS/µm

where Ileak is the leak current density given by

Ileak = gL(v− vrest), (39)

and Isyn is the conductance-based synaptic current density with
single-exponential dynamics (see Gerstner et al., 2014) given by

Isyn = gs(x)e
−

t − t0
α (v− veq). (40)

For the first 10% of the cell in the x-direction, gs(x) is given by
the value gsyn in Table 2. On the remaining part of the membrane
gs(x) is set to zero.

We use the initial condition v = vrest = −90 mV for
the membrane potential. In addition, we apply the boundary
condition ∂v

∂x = 0 at the start and the end of the cell in the
Cable equation and the boundary condition ue = 0 on the
outer boundary of �e in the EMI, CBV and CP methods unless
otherwise stated.

3.2. Numerical Assessment of the Error in
Membrane Potential Introduced by
Ignoring the Ephaptic Current
In Figure 4 we show the membrane potential computed by
solving the Cable equation and the EMI model for different
values of h, σi, σe, and gL. The solutions are compared in the
compartment 25 µm from the start of the cell (i.e., in the center
of the cell in the x-direction). The difference is several millivolts,
but it is reduced as the intracellular conductivity σi is reduced
or the size h (recall that h = ly = lz) of the neuron is
reduced. Furthermore, we observe that the difference is reduced
as the extracellular conductivity, σe, or gL is increased. These
observations are consistent with our theoretical finding in an
Appendix in SupplementaryMaterial given belowwhere we show
that, under reasonable assumptions, the error introduced in the
transmembrane potential by removing the ephaptic current goes
like

O

(

hσi

gLσe

)

. (41)

To summarize, the error increases when h or σi are increased, and
the error decreases if gL or σe are increased.

3.3. The Magnitude of the Ephaptic Current
Decreases as the Extracellular
Conductivity is Increased
As mentioned above, the derivation of the Cable equation relies
on the assumption that the extracellular potential is constant, and
under that assumption, the ephaptic current defined by Equation
(12) can be ignored. This can also be understood on biophysical
grounds as a high extracellular conductivity implies a low
extracellular resistance so that potential drops due to extracellular
currents driven through the extracellular medium will be small.
In the limit of very large extracellular conductivities these
potential drops will become negligible, i.e., the assumption of
constant extracellular potentials in the standard Cable equation
will become fulfilled.

In Table 3 the maximum magnitude (absolute value) of the
ephaptic current (computed by solving the EMI model) is given
as a function of the extracellular conductivity σe, and we note
that the magnitude decreases as σe is increased. In addition, we
report the value of the maximum ephaptic current multiplied by
the value of σe and observe that this value is close to a constant,
so we have

Ieph ∼ O (1/σe) . (42)

Therefore, for very large values of σe, the ephaptic current can be
ignored, but the reported values of σe are in general not so large
that this assumption can be generally trusted.

It is also interesting to compare the size of the ephaptic current
with the size of the other currents involved in the dynamics of
the model neuron. Figure 5 shows the time evolution of each of
the terms in Equation (9) and we observe that the size of the
ephaptic current is comparable to the size of the other terms in
the equation. The peak of the ephaptic current is located at the
jump in the synaptic input.

3.4. Comparing the Extracellular Potential
Computed by the CBV, CP, CS, and EMI
Methods
In this section we will compare the extracellular potentials (EPs)
computed by the EMI, CBV, CP and CS methods described
above (see Table 1 for definitions of the abbreviations). When
comparing the predicted extracellular potentials for the various
methods, observed differences will expectedly have different
model origins. For the EMI and CBV methods the key physical
difference is in the lack of inclusion of ephaptic effects in the CBV
method. Compared to EMI and CBV where the transmembrane
currents setting up the EP are at the true membrane interface
between the intracellular and extracellular domains, the CP and
CS methods assume that the EP-generating currents are defined
as the right-hand side of the Poisson Equation (17). For the CS
method the current source density is gathered in a single point
in the center of the neuronal compartment, whereas for the CP
method the current density is evenly distributed over the entire
compartment (See Figure 1).
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FIGURE 4 | Comparison of the membrane potential computed by solving the Cable equation (red) and the EMI model (blue) for some different values

of h, σi, σe, and gL, where we recall that h = ly = lz (the width of the neuron). The plots show how the membrane potential in the compartment 25 µm from the

start of the cell changes with time from t = 0.1 to 0.5ms. The parameters used in the computations are given in Table 2 except for the values given above each plot.

We observe that the difference between the two solutions increases when the value of h or σi is increased, and the difference decreases when the value of σe or gL is

increased. Note that in order to observe any effect of changing the value of gL, we increase the default value by a factor of order 100–1,000 in the lower panel of the

figure.

3.4.1. Convergence under Mesh Refinements
In Figure 6 we show the extracellular potential computed by
the EMI method for four different values of the discretization
parameter 1x = 1y = 1z. The solutions for the 0.5 µm
resolution and the 0.25 µm resolution appear to be similar and
we use a spatial discretization of 1x = 1y = 1z = 0.5 µm for
the rest of our computations.

To reduce the computational cost in this case, we consider the
stationary version of the model, i.e., we set the time derivative
in Equation (34) to zero. We use the parameter values given in
Table 2, except for an increased value of gL = 3 · 10−5 µS/µm2

and a domain of size 60× 60× 60 µm.We again let gs(x) be gsyn
for the first 10% of the cell in the x-direction and zero elsewhere
and apply the boundary condition ue = 0 on the outer boundary
of the extracellular domain.

3.4.2. Convergence of the EMI Solution as the

Domain Size is Increased
In the derivation of the CS method, the extracellular domain is
assumed to be infinite (see Section 2.1.5). When comparing CS
and EMI results, we therefore wish to compare the solution of
the CS method to the solution of the EMI model as the size of the
extracellular domain approaches infinity.

We again consider the stationary version of themodel with the
parameter values given in Table 2, except for an increased value
of gL = 3 · 10−5 µS/µm2 and an increased domain size.

Figure 7 shows the stationary solution of the EMI model for
four different sizes of the extracellular domain. We observe that
as the size of the extracellular domain increases, the solution
of the EMI model appears to converge, and we assume that
the solution for a domain of size 120 × 120 × 120 µm is
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sufficiently large to represent the EMI solution of an infinite
domain.

3.4.3. One Single Simplified Neuron
Our first test case for comparing the methods for computing
the extracellular potential is a single neuron of the form given
above. The extracellular potential computed by the CBV, CP,
CS, and EMI methods are presented in Figure 8 (see Table 1

for definitions of the abbreviations). In Table 4 we report
the maximum difference between the extracellular potential
computed by the EMI model and the extracellular potential
computed by each of the other methods. The deviation of the
CBV result from the EMI result is smaller than the difference
to the CP and CS results. Thus the largest differences appear
to come from the different assumptions of placement of the
transmembrane currents in the EP-generating step (compare

TABLE 3 | Maximum absolute values of Ieph from time t = 0.02 to 1 ms as

a function of σe as computed by the EMI method.

σe (µS/µm) Imax
eph

(nA/µm2) σe · Imax
eph

(nAµS/µm3)

0.1 0.616 0.0616

0.3 0.208 0.0623

0.6 0.104 0.0625

1.5 0.042 0.0626

3.0 0.021 0.0627

We observe that σe · Imaxeph is close to constant for the different values of σe. The parameters
used in the computations are given in Table 2.

CBV vs. CP and CS). The effect of the ephaptic current (CBV vs.
EMI) is smaller.

3.4.4. Two Simplified Neurons
In Figure 9 we show the extracellular potential around two
neurons of the form given above computed by the CBV, CP, CS,
and EMI methods. In the upper part of the figure the neurons
are separated by a distance of 10 µm in the y-direction and
in the lower part the neurons are separated by a distance of 4
µm. In Table 5 we report the maximum difference between the
extracellular potential computed by the EMI method and each of
the other methods for the two test cases.

As for the case with a single simplified neuron above, the
deviation of the CBV result from the EMI result is seen to be
smaller than the difference to the CP and CS results. Interestingly,
in the lower part of Figure 9 where the distance between the
two neurons is very small (4 µm), the EMI and CBV results are
essentially identical in the space between the cells.

3.4.5. Confined Extracellular Space
Figure 10 shows the extracellular potential around a neuron in
a domain of size 60 × 20 × 20 µm computed by the EMI,
CBV, CP, and CS methods. The left panel shows the solution
for a homogeneous Dirichlet boundary condition, and the right
panel shows the solution for a homogeneous Neumann boundary
condition on the outer boundary of the extracellular space.

As explained above, the CS method is founded on the
assumption of an infinite extracellular space. We have therefore
focused on a very large computational domain mimicking

FIGURE 5 | Values of each of the terms in Equation (9). In the (Upper panel), we show the time evolution of the terms in the point (8, 10, 7 µm) inside the

synaptic input zone and the point (12, 10, 7 µm) outside the synaptic input zone. In the (Lower panel), we show the values of the terms for y = 10 µm, z = 7 µm,

and x ∈ [5 µm, 30 µm] at time t = 0.02 ms (left) and t = 0.2 ms (right). The solution of the EMI model is used to compute each of the terms. In addition, we show η ∂2v
∂x2

for the corresponding solution of the Cable equation, where Ieph is assumed to be zero. We observe that the size of Ieph is comparable to the size of the other terms in

Equation (9) and that neglecting Ieph leads to a considerable difference in the value of the term η ∂2v
∂x2

. The parameters used in the computations are given in Table 2.
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FIGURE 6 | Extracellular potential computed by the stationary EMI model for four different values of 1x = 1y = 1z. We show the solution in a rectangle

of size 60 × 30 µm on the plane in the center of the domain in the z-direction. The white area represents the cell. We use the parameters given in Table 2 except for

an increased value of gL = 3 · 10−5 µS/µm2 and a domain of size 60 × 60 × 60 µm.

FIGURE 7 | Comparison of the extracellular potential around a neuron computed by the stationary EMI model for four different sizes of the

extracellular domain. The plots to the left show the solution in a rectangle of size 60 × 30 µm on the plane in the center of the domain in the z-direction. The white

area represents the neuron. The plot to the right shows the extracellular potential along a line 2 µm above the neuron in the y-direction and in the center of the domain

in the z-direction. The parameters used in the computations are given in Table 2 except for Lx , Ly , and Lz , which are specified for each simulation, and gL, which is

set to 3 · 10−5 µS/µm2.

the properties of an infinite domain. Certainly, also limited
domains are of interests and simulation results are given in
Figure 10 using both Dirichlet and Neumann type boundary
conditions. Although we present results for all four models, it
is important to keep in mind that a confined domain breaks a
basic assumption underlying the CS method and consequently

we get very large errors, especially in the case of Neumann type
boundary conditions.

Note that in the case of Neumann boundary
conditions, the solution is not uniquely determined
by the systems defining the EMI, CBV, and CP
methods, and we expand the systems with the additional
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FIGURE 8 | The extracellular potential around a neuron shaped as a rectangular cuboid computed by the stationary versions of the EMI, CBV, CP, and

CS methods. The plots to the left show the solution in a rectangle of size 60 × 30 µm on the plane in the center of the domain in the z-direction. The white area

represents the neuron. The plot to the right shows the extracellular potential along a line 2 µm above the neuron in the y-direction and in the center of the domain in

the z-direction. We use the parameters specified in Table 2 except for Lx = Ly = Lz = 120 µm and gL = 3 · 10−5 µS/µm2. The abbreviations (EMI, CBV, CP, and

CS) are summarized in Table 1.

TABLE 4 | Maximum difference between the solution for the extracellular

potential in �e \ Ŵ computed by the EMI method and each of the other

methods for the test case in Figure 8.

Method Maximum difference (mV) Relative maximum difference (%)

CBV 0.024 11.3

CP 0.058 27.7

CS 0.113 53.7

The relative maximum differences are computed as the maximum difference divided by
the maximum absolute value of the extracellular potential computed by the EMI method.
The abbreviations (EMI, CBV, CP, and CS) are summarized in Table 1.

constraint
∫

�e

ue dV = 0 (43)

in order to obtain unique solutions of the
methods.

3.4.6. Effects of the Size of the Synaptic Input Area
In Figure 11 we show the extracellular potential surrounding a
neuron for four different sizes of the synaptic input area. The
upper panel shows the extracellular potential computed by the
EMI method, and the lower panel shows a comparison of the
extracellular potentials computed by each of the methods along
a line above the neuron. We note from the simulations that
the results are qualitatively similar for all different sizes of the
synaptic input region. Therefore, we choose to focus on the 10%
synaptic input region as the base case for our simulations.

3.4.7. Simulation Time
Table 6 shows the CPU time for the simulations shown in the left
panel of Figure 10 using a direct and an iterative solver.

The EMI model is clearly much more computationally
expensive than the classical CS method. This is expected because
the EMI model involves solving a large coupled system of
equations, whereas the CS method only requires solving the
Cable equation which involves a much smaller number of
unknowns. After solving the Cable equation, the CS methods
assumes that the extracellular potential may be found directly by
the explicit formula (27), so no further equations has to be solved.

Moreover, in the computations reported in the table, the

extracellular potential is computed for all nodes in the mesh.

In the CS method this is not necessary, and the CPU time
for the CS method could possibly be further reduced by
only computing the values for the points of interest. This
is not possible for the EMI method (or the CBV or CP
methods) because the systems of equations has to be solved
for all nodes in order to find the solution in a single
point.

In contrast, the simulation time for the CBV and CP methods

are more comparable to that of the EMI model, at least for the

direct solver. This is because these methods also rely on solving

a linear system of equations for all nodes in the extracellular

domain or the entire domain for the CVB and CP methods,

respectively.
The extra complexity introduced in the EMI model by

solving for the membrane, intracellular and extracellular

potentials simultaneously is apparent, however, when an iterative

method is applied to solve the linear system. The fourth
column of Table 6 shows the solution time for each of
the methods using the bistable conjugate gradient stabilized
method with an incomplete LU preconditioner. In this case,
the CBV and CP methods are much faster than the EMI
method.
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FIGURE 9 | The extracellular potential around two neurons computed by the stationary versions of the EMI, CBV, CP, and CS methods. The plots to the

left show the solution in a rectangle of size 60 × 40 µm on the plane in the center of the domain in the z-direction. The white areas represent the neurons. The plots to

the right show the extracellular potential along the line in the center of the space between the two neurons. In the upper five plots, the neurons are separated by a

distance of 10 µm in the y-direction, and in the lower five plots the neurons are separated by a distance of 4 µm. In all plots gs(x) is given by gsyn for x ∈ [55, 60 µm]

and is zero on the rest of the membrane for the lower neuron. For the upper neuron gs(x) is given by gsyn for x ∈ [60 µm, 65 µm]. We use the parameters specified in

Table 2 except for Lx = Ly = Lz = 120 µm and gL = 3 · 10−5 µS/µm2. The abbreviations (EMI, CBV, CP, and CS) are summarized in Table 1.

4. DISCUSSION

In the present paper we have compared four different
methods for computing neural dynamics. In the
numerically comprehensive EMI model the intracellular
and extracellular dynamics are solved self-consistently and
the membrane potentials and extracellular potential are
computed simultaneously. For the other methods (CBV,
CP, CS; see Table 1 for definitions of abbreviations) the
membrane potential is first computed using the Cable
equation, and the resulting transmembrane currents
are used in a second step to compute the extracellular
potential.

In the CBVmethod the transmembrane currents are placed on
the interface between the intracellular and extracellular domains,
and the only difference with the EMI model is the lack of
self-consistency in the two-step computational scheme inherent
in the CBV scheme, that is, the transmembrane currents are
first computed using the Cable equation assuming a constant
extracellular potential, while a non-constant potential (both in
space and time) is computed in the second step.

For the CP and CS methods an additional assumption is made
in the second step, namely that the effect of the transmembrane
currents are assumed to be represented in terms of currents
source densities. Specifically, for the CP method, the current
source density is distributed evenly over a neuronal compartment
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and a numerical scheme is used to solve the resulting Poisson
Equation (17), and for the CS method the source density is
concentrated in a single point and thus the classical sum formula
(27) of the solution can be applied.

TABLE 5 | Maximum difference between the solution for the extracellular

potential in �e \ Ŵ computed by the EMI method and each of the other

methods for the test cases in Figure 9.

Method Maximum difference (mV) Relative maximum difference (%)

(A) Neurons separated by 10 µm

CBV 0.025 12.6

CP 0.087 43.2

CS 0.086 42.4

(B) Neurons separated by 4 µm

CBV 0.014 5.2

CP 0.141 52.9

CS 0.128 48.3

The relative maximum differences are computed as the maximum difference divided by
the maximum absolute value of the extracellular potential computed by the EMI method.
The abbreviations (EMI, CBV, CP, and CS) are summarized in Table 1.

4.1. Ignoring the Ephaptic Current
4.1.1. Error in Membrane Potential Introduced by

Ignoring the Ephaptic Current
To study the error introduced by ignoring the ephaptic current
in the Cable equation, we compared the membrane potential
computed by solving the Cable equation to the corresponding
solution of the EMI model. In our simple test case, we found that
the membrane potential computed by the Cable equation could
differ several millivolts from the solution of the EMI model and
that the magnitude of the error seems to decrease with the value
of the intracellular conductivity, σi, and the cell width, h. This
suggests that the Cable equation is applicable for computing the
membrane potential for sufficiently thin dendrites.

4.1.2. Ephaptic Current Decreases with Increasing

Extracellular Conductivity
In the derivation of the Cable equation, it is assumed that the
extracellular conductivity σe is so large that the extracellular
potential varies very little in space and can be assumed to be a
constant. As a result, the ephaptic current Ieph will be zero and
may be removed from the model. In our numerical simulations
of the EMI model, we confirmed that the size of Ieph decreases
when the value of σe is increased (see Table 3). In fact, we found

FIGURE 10 | Extracellular potential around a neuron computed by the EMI, CBV, CP, and CS methods. We consider the stationary version of the models and

the parameter values given in Table 2 except for an increased value of gL = 3 · 10−5 µm. A Dirichlet boundary condition, ue = 0, is applied in the simulation in the left

panel and a Neumann boundary condition, ∂ue
∂ne

= 0, is applied in the right panel. The (Upper panels) show the extracellular potential in the plane in the center of the

domain in the z-direction for each of the methods. The (Lower panel) shows the solution along a line 2 µm above the cell in the y-direction and in the center of the

domain in the z-direction. Note that in the case of Neumann boundary conditions, we include the additional constraint
∫

�e
ue dV = 0 for the EMI, CBV, and CP

methods in order to obtain unique solutions. The abbreviations (EMI, CBV, CP, and CS) are summarized in Table 1.
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FIGURE 11 | Extracellular potential around a neuron with a synaptic input area of length 5, 10, 20, and 30% of the total cell length. The (Upper panel)

shows the extracellular potential computed by the EMI method in the plane in the center of the domain in the z-direction. The (Lower panel) shows the solution for

each of the methods along a line 2 µm above the cell in the y-direction and in the center of the domain in the z-direction. The figure shows the solution of the

stationary version of the models using the parameter values given in Table 2 except for an increased value of gL = 3 · 10−5 µm. We apply a homogeneous Dirichlet

boundary condition on the outer boundary of the extracellular domain. The abbreviations (EMI, CBV, CP, and CS) are summarized in Table 1.

TABLE 6 | CPU time in seconds for the EMI, CBV, CP, and CS methods.

System size CPU time (s) CPU time (s)

Direct solver Iterative solver

EMI 208,491 34.9 15.5

CBV 101 + 191,422 29.6 1.9

CP 101 + 203,401 35.2 3.3

CS 101 + 0 1.0 1.0

In the third column the linear systems of the EMI, CBV, and CP methods are solved
using direct Gaussian elimination, and in the fourth column the linear systems are
solved using the bistable conjugate gradient stabilized method with an incomplete LU
preconditioner and a relative tolerance of 10−5. The second column reports the number
of unknowns in the linear systems to be solved in each of the methods. In the EMI model,
we solve a coupled system for the extracellular, membrane, and intracellular potentials
simultaneously. In the CBV, CP, and CS methods, on the other hand, we first find the
membrane potential by solving the Cable equation consisting of 101 compartments. Then,
we find the extracellular potential by solving an equation for each node in the extracellular
or entire domain, for the CP and CBV methods, respectively. In the CS method, the
extracellular potential is given directly from the solution of the Cable equation by an
explicit formula. The parameters used in the simulation are given in Table 2 except for
an increased value of gL = 3 · 10−5 µm. The table reports the solution time for the
stationary versions of the models with homogeneous Dirichlet boundary conditions.

that the maximum absolute value of Ieph appeared to be inversely
proportional to the value of σe. However, we also observed that
the magnitude of Ieph was similar in size to the other currents
involved in the model (see Figure 5). This suggests that Ieph
is not negligible for the stylized neuron geometries and model
parameters chosen here.

4.2. Error in Neglecting Ephaptic Currents
The CBV and EMI methods are defined on identical domains,
and the key physical difference between the methods is the

absence of ephaptic effects in the CBV method. Comparisons
of computed extracellular potentials indeed show such ephaptic
effects of varying magnitudes, both for the extracellular potential
outside a single activated neuron (Figure 8) and between two
activated neurons (Figure 9).

4.3. Effects of Position of Transmembrane
Currents
To explore the effects of assumed positions of transmembrane
currents, it is easiest to compare results from the three methods,
i.e., CBV, CP, and CS, where the transmembrane currents in all
cases are found from the Cable equation. Here effects from the
ephaptic current are in all cases absent. For the present examples
we observe that CS and CP results are typically quite similar, but
both quite different from the CBV results (Figures 8, 9). From
the point-source formula in (27) we see that the contribution to
the extracellular potential from a point current source is inversely
proportional to distance, and it is thus not surprising that this
difference in assumed source positions has a sizeable effect on the
predicted extracellular potentials.

4.4. Effects of Size of Extracellular Domain
Both in the CP and CBV methods (as well as in the EMI
model) the extracellular domain is finite, while in the CS method
the extracellular domain is infinite so that the solution of the
Poisson equation can be given as an explicit sum. With a very
small extracellular domain, corresponding to a small piece of
brain tissue embedded in an insulator, large deviations from
the infinite-domain results will be observed (Figure 7; see also
Figure 10).

In order to compare results with the CS method, we here
computed the EMI solution for gradually larger domains until
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the solutions appeared to converge. Further, we regarded the
converged solution as the solution of the EMI problem for an
infinite extracellular space, i.e., we estimated that the difference of
the results for the largest considered domain and a (hypothetical)
infinite domain was negligible for the present purposes. Roughly
speaking, convergence was obtained for an extracellular space
extending twice the length of the cable in every direction.

4.5. The Simplified Geometry
Today, simulations of neurons typically use much more complex
and realistic geometries than what has been applied here. Already
in Clark and Plonsey (1968) were able to analytically evaluate the
extracellular potential of a cylindrical neuron, and it is certainly
of interest to evaluate the models and methods discussed here
in more realistic geometries. The generic limitation of the finite
differencemethod used here is that it is hard to apply, correctly, to
non-rectangular geometries. In Agudelo-Toro and Neef (2013),
the finite element method is used and this gives much more
freedom to represent realistic geometries. However, the code
used in Agudelo-Toro and Neef (2013) required extremely fine
times steps and we therefore focused on simplified geometries
where the problem could be solved using a reasonable number
of time steps. The solution of the EMI model using an implicit
formulation will likely reduce the time step restrictions and this
is subject for ongoing investigations.

Another limitation in the present study is the size of the
extracellular space. This space is actually quite limited (see e.g.,
Syková and Nicholson, 2008), but the assumption of an infinite
extracellular space is necessary for the application of the classical
CS method (summation method), and thus we have used very
large extracellular domains in order to provide fair comparisons
with the classical model at the cost of simulating more realistic
volumes.

4.6. Neural Tissue
The EMI model provides a useful framework for accurate
computations of the electrophysiology of a small number of cells
and their surroundings. It is, however, very hard to apply this
methodology to neural tissue consisting of huge numbers of
cells. In simulations of cardiac tissue, the Bidomain approach has
successfully been applied to simulate the electrophysiology, see
e.g., Keener and Sneyd (2009), Franzone et al. (2014), Sundnes
et al. (2006); Roth (2013), and Trayanova (2011). Recently, a
similar approach has been applied to neural tissue, see Meffin
et al. (2014) and Tahayori et al. (2014). Most likely, some
form of homogenization process is needed to derive tractable
mathematical models for neural tissue.

4.7. Possible Additive Effects for
Non-linear Membrane Dynamics
We have focused on a linear membrane model in order
to highlight the effect of removing the ephaptic current
in the simplest possible case. More generally, the question
is whether ephaptic coupling would constitute a “feedback”
mechanism with electric fields altering the activity of the same
neural elements that gave rise to them in the first place,
see Anastassiou and Koch (2015). For a linear model, this

feedback mechanism was recently found to be the small but
not negligible, see Goldwyn and Rinzel (2016), which clearly
is consistent with our findings. However, the effect may
very well be larger for non-linear models of the membrane
dynamics; small electric fields can be amplified by non-linear
effects, see Radman et al. (2007). At present, we have not
conducted systematic simulations using a non-linear membrane
model.

4.8. Other Assumptions
We note also that the current study was limited to standard
simulation frameworks in neuroscience, where intra- and
extracellular currents are assumed to be purely Ohmic, so
that Equations (28) and (29) apply in the bulk solutions.
That is, we did not include possible contributions from
advective currents, displacement currents and ionic diffusion
currents. These currents are typically neglected, as they are
believed to play negligible roles for the system electrodynamics
under most biophysically relevant conditions. However,
computational studies have indicated that at least ionic
diffusion could, in some scenarios, influence electrical
potentials (see e.g., Qian and Sejnowski, 1989; Bédard and
Destexhe, 2013; Halnes et al., 2013, 2016; Pods et al., 2013;
Pods, 2017). These effects were not accounted for in the
current study. We also confined our simulations to linear,
passive membranes even if it known that active voltage-gated
channels affect the extracellular potential; see e.g., Ness et al.
(2016).

5. CONCLUSION

We have compared various methods for computing membrane
potentials and extracellular potentials. For the simple test cases
considered here, non-negligible errors were observed when
neglecting ephaptic effects, i.e., when comparing results from the
EMI model with the CBV model building on results from the
Cable equation. Further, substantial differences in the predicted
extracellular potentials were observed depending on whether
transmembrane current sources were assumed to be placed in
the center of the neural compartment or at the membrane
interfaces. This study motivates further analysis of the errors
for computations based on more realistic representations of
the geometry and dynamics of the neurons using the EMI
model.
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