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In a previous study we developed a Machine Learning procedure for the automatic

identification and classification of spontaneous cord dorsum potentials (CDPs). This study

further supported the proposal that in the anesthetized cat, the spontaneous CDPs

recorded from different lumbar spinal segments are generated by a distributed network of

dorsal horn neurons with structured (non-random) patterns of functional connectivity and

that these configurations can be changed to other non-random and stable configurations

after the noceptive stimulation produced by the intradermic injection of capsaicin in

the anesthetized cat. Here we present a study showing that the sequence of identified

forms of the spontaneous CDPs follows a Markov chain of at least order one. That is,

the system has memory in the sense that the spontaneous activation of dorsal horn

neuronal ensembles producing the CDPs is not independent of the most recent activity.

We used this markovian property to build a procedure to identify portions of signals as

belonging to a specific functional state of connectivity among the neuronal networks

involved in the generation of the CDPs. We have tested this procedure during acute

nociceptive stimulation produced by the intradermic injection of capsaicin in intact as well

as spinalized preparations. Altogether, our results indicate that CDP sequences cannot

be generated by a renewal stochastic process. Moreover, it is possible to describe some

functional features of activity in the cord dorsum by modeling the CDP sequences as

generated by a Markov order one stochastic process. Finally, these Markov models

make possible to determine the functional state which produced a CDP sequence.

The proposed identification procedures appear to be useful for the analysis of the

sequential behavior of the ongoing CDPs recorded from different spinal segments in

response to a variety of experimental procedures including the changes produced by

acute nociceptive stimulation. They are envisaged as a useful tool to examine alterations

of the patterns of functional connectivity between dorsal horn neurons under normal and

different pathological conditions, an issue of potential clinical concern.
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1. INTRODUCTION TO THE PROBLEM

Previous work (Manjarrez et al., 2000, 2003; Chávez et al.,
2012) has indicated that some specific classes of spontaneous
cord dorsum potentials (CDPs) appear specially associated with
the activation of spinal pathways that lead to primary afferent
depolarization and presynaptic inhibition. These and other
studies led to the proposal that in the anesthetized cat these CDPs
are generated by a segmentally distributed network of dorsal horn
neurons with structured (non-random) patterns of functional
connectivity between them, and that these patterns can be
changed to other, also non-random and stable configurations,
after the activation of nociceptive pathways induced by the
intradermic injection of capsaicin.

Quite recently, we developed a Machine Learning procedure
that allows the automatic selection and classification of CDPs
(Martín et al., 2015). We used this procedure allowed us
to automate the selection and systematic analysis of the
spontaneous CDPs recorded along several hours of continuous
recording. This revealed emerging non-random classes of CDPs
that could be identified and compared among them. The
resulting configurations behaved in a similar way across different
experiments.

We now use this feature to build dictionaries of CDPs. That is,
of a repertoire of specific classes of CDPs produced by neuronal
activity, that allow us to discretize the recorded data as a sequence
of symbols. We use a Markovian approach to determine (a) the
extent to which different sequences of CDPs obtained from the
same experiment are similar and (b) the dependence of spinal
changes induced by nociception on supraspinal modulatory
influences (see Section 6). To this end, we analyzed raw data
from already published studies performed in anesthetized cats.
We found that in both cases, those ensembles generate emergent
phases of activity that are identifiable and follow a Markov
chain of order one. That is, the system has memory in the
sense that firing of neurons is not independent of the preceding
neuronal activation. In view of the concurrent inhibition that
follows individual CDPs (Contreras-Hernández et al., 2015), it
is suggested that the statistical dependence between successive
CDPs results, at least in part, from a structured (non-random)
activation of the inhibitory GABAergic and glycinergic pathways
that follow the generation of particular classes of CDPs.

In addition, we use this markovian property to build a
procedure to identify portions of signals as belonging to a
specific functional state of the connectivity between the neuronal
networks involved in the generation of particular classes of
CDPs. This identification procedure appears to be useful for
the analysis of the sequential behavior of the ongoing CDPs
recorded from different spinal segments in response to a variety
of experimental procedures, among them, the changes produced
by acute nociceptive stimulation induced by the intradermic
injection of capsaicin.

Results we present in this paper indicate that: 1. CDPs
sequences cannot be generated by a renewal (memoryless, or
Markov order zero) stochastic process. 2. By modeling the CDPs
sequences as generated by a Markov order one stochastic process
it is possible to describe some functional features of the activity of

the dorsal horn neurons involved in the generation of the CDPs3̇.
Based on the transition matrix calculated for experimental
sequence it is possible to determine the functional state which
produced that sequence. These procedures are envisaged as a
useful tool to examine alterations in the time domain of the
patterns of functional connectivity between dorsal horn neurons
under normal and different pathological conditions, an issue of
potential clinical concern.

1.1. Outline of the Paper
Section 2 describes the procedure for the acquisition of the signals
and the experimental setup. It includes the definition of the set
of experimental procedures performed in anesthetized cats. In
Section 3 we detail the methodology used to extract the symbols
corresponding to the sequence’s elements of the recorded signals.
Section 4 deals with the probabilistic modeling to describe the
appearance of different symbols in a raw recording. From this
modeling we can see that each experimental maneuver shows
a different probabilistic distribution in pairs of consecutive
symbols.

In Section 5 we prove, using statistical methods, that the
sequence of symbols is markovian of order one. Section 6 shows
how to make profit of this markovian property to identify to
which among several experimental maneuvers a given sequence
of data belongs. We also show the performance of this method
using data from available experiments. Finally, Section 7 provides
some conclusions and future directions of this work.

2. DATA ACQUISITION

In this work we used data obtained from experiments performed
in anesthetized cats, paralyzed, and maintained under artificial
ventilation (see Chávez et al., 2012 for a general description of
the experimental procedures). Briefly, spontaneous CDPs were
recorded by means of a matrix of silver ball electrodes (from
8 to 12 depending on the experiment) placed on the cord
dorsum in both sides of the L4–L7 spinal segments against a
similar number of indifferent electrodes, each inserted on the
paravertebral muscles close to the active electrode using AC
amplifiers with filters set from 0.3Hz to 10 kHz.

The experiments lasted between 6 and 10 h and the signals
were recorded and stored digitally for off-line analysis. The
recordings made during the experiments are divided in different
steps, each one of them composed by a number of independent
time steps (s1 . . . sj) of equal time duration (e.g., divided in sets
of lasting 10 minutes of continuous recording).

The aim is to detect the changes of the patterns of neuronal
activity in the dorsal horn produced by the different maneuvers
performed during the experiment. All the studied experiments
record the activity for non contiguous periods where it is assumed
that evident changes would appear.

The initial step of the experiments includes the spontaneous
CDPs recorded under control conditions during a 30–60 min
period. It is referred as control period (ctrl). It measures the
events in the dorsal horn neurons of the cat spinal cord in
the absence of purposeful stimulation. Data are registered for
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a number of successive time steps before performing a specific
procedure.

In this set of experiments we also examined changes
in spontaneous CDPs induced by nociceptive stimulation
produced by the intradermic injection of capsaicin into the left
footpad in preparations with intact neuroaxis. It is referred as
capsaicin period (capsa). The injection of capsaicin activates the
nociceptive peripheral receptors that send signals mostly to the
dorsal horn neurons located in the L5 and L6 lumbar segments.
This period has a duration of 3–4 h. Some of the data presently
analyzed were obtained from experiments aimed to examine the
effects of capsaicin injected after acute spinalization in order to
eliminate supraspinal descending influences in the generation
of the spontaneous CDPs. For this purpose the spinal cord was
cooled and sectioned at T10 level. This maneuver is referred as
spinalization period (esp).

Table 1 shows the experiments presently analyzed and the
procedures followed in each of them. In the text, the different
procedures are labeled as ctrl, capsa, and esp, and the numbers
that follow refer to the order in which they were recorded. For
example, ctrl2 refers to the second time step recording of 10 min
during the control period of the experiment.

Through all the paper the experiment e130221 will be used
as running example to illustrate the different steps of the
methodology and its results. In Section 6.1 the results from the
other experiments will be discussed.

3. SEQUENCE EXTRACTION

Simultaneous recordings from the cord dorsum reveal
spontaneous potentials of different shapes and amplitudes,
as shown in Figure 1. The amplitudes and distributions of
these potentials are quite variable, but specific patterns of CDPs
simultaneously generated in different spinal segments are also
observable during a given time step (see Chávez et al., 2012).

In order to extract a sequence ofCDPs from the recordings, we
use the methodology for the analysis of populations of neuronal
signals described in Martín et al. (2015) and Béjar et al. (2015).
This methodology comprises several phases, from the extraction
of the events in the signal to the analysis of the events behavior
at different levels of granularity in the spatial and temporal
dimensions.

The first three phases of the methodology aim to build
dictionaries of the events relevant for the analysis. In our
domain, the relevant events are the CDPs. As an initial step, we

TABLE 1 | Maneuvers performed in the experiments presently analyzed

and the number of time steps.

Experiment Maneuvers (number of steps)

e110906 ctrl (2), capsa (3)

e120511 ctrl (2), capsa (4), esp (1)

e130221 ctrl (2), esp (2), capsa (4)

e140225 ctrl (2), esp (5), capsa (5)

All time steps have a duration of 10 min each. See text for further explanations.

apply an automated and unsupervised CDPs detection method
assuming smoothness in the definition of the CDPs candidates
and considering that they appear as peaks in the signal. It
is assumed that the background noise in the recordings is
stationary, essentially Gaussian and also independent from the
neuronal signals. Under these assumptions, an automatic event
extraction algorithm detects peaks on the signal using a sliding
window large enough to contain the events. The signal inside
the window is smoothed and selected as CDP candidate if there
is a peak at its center and holds some shape constraints. The
smoothing is used only to detect the position of the maximum of
the window, and it also allows to maximize the ratio noise signal
so it is minimized the amount of spurious CDPs detected. We
have determined experimentally that a filter that eliminates all
frequencies higher that 70 Hz is a good value for this parameter
(see Martín et al., 2015 for more details). This process is done for
all the recorded signals, so after this, we have the positions of all
CDPs candidates for all the experiment.

After these candidates have been identified, the steps before
the generation of the basic set or dictionary of events proceed
as follows. The time of the maximum value within each selected
signal window is considered the time-stamp of the CDPs. Using
experts’ knowledge, a suitable time window around the identified
event maximum was defined. After extracting the time window,
data is preprocessed in order to prepare it for clustering. Selected
CDPs in time windows of duration Tw (100 ms) are resampled
to reduce dimensionality from 10 to 1.6 kHz. To ease the
comparison of different CDPs, also a potential offset is removed
by subtracting the average of a subset of the initial points of
the window corresponding to the beginning of the CDP. Given
that the signal must be sufficiently smooth, CDPs are processed
using PCA as feature extraction method to compute the most
relevant dimensions that describe the whole set of identified
CDPs. Finally, only those dimensions are used to reconstruct each
CDP. In our experiments we use the components that explain
98% of the variance that is enough to obtain a good reconstuction
of theCDPs and eliminates all the high frequency variations in the
signal. After this step we have a collection ofCDPs for each sensor
smoothed and with their initial baseline aligned.

To build the dictionary for CDPs extracted from each sensor,
the k-means algorithm is used. To select the size of the
dictionaries (number of symbols), different methods for the
estimation of the number of clusters are used to assure the
consistency of the result. Figure 2 shows a shape dictionary
obtained from potentials extracted from a specific segment in one
of the experiments analyzed. This procedure was introduced in
Martín et al. (2015), and shows a good performance to analyze
and characterize the changes that the experimental maneuvers
cause in the system.

It may be seen that this procedure allowed identification and
grouping of twelve different classes of the spontaneous CDPs
generated in the rostral half of the L6 segment in the left side
(L6rL). This experiment was performed to examine the effects of
the intradermic injection of capsaicin produced in a previously
spinalized preparation. That is, in a preparation deprived
of descending influences known to modulate the functional
connectivity between dorsal horn neurons in response to a
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FIGURE 1 | Spontaneous CDPs recorded from L5 to L6 lumbar segments during control, after spinalization and 60 min after the subsequent

intradermic injection of capsaicin. Note that the CDPs increased after spinalization and that capsaicin had different effect on the CDPs recorded in the left and right

side of the spinal cord. L, left; R, right; c caudal; r, rostral. Data obtained from experiment e130221 (negative voltages plotted upward).

nociceptive stimulus. As shown by the histograms in Figure 2,
the behavior of the different classes of spontaneous CDPs in
response to the spinal section and the subsequent injection of
capsaicin was not uniform: after spinalization the probabilities of
occurrence were reduced in some classes of CDPs and increased
in others. Likewise, after capsaicin the probabilities of occurrence
of some classes of spontaneous CDPs were transiently increased
and were reduced or barely affected in others. This behavior is
in contrast with the pronounced changes produced by capsaicin
in preparations with intact neuroaxis (e.g., experiments e110906
and e120511; see also Martín et al., 2015) and underscores the
role played by the supraspinal control exerted on the capsaicin-
sensitive spinal neuronal ensembles that generate the different
classes of spontaneous CDPs (see Section 7).

As next step, the signal is discretized using symbols from the
dictionary obtained for the experiment. For each sensor and step
of the experiment, the sequence of extractedCDPs is labeled using
the dictionary. The labels are assigned considering the euclidean
distance to the prototypes of the corresponding dictionary. The
label of the closest prototype is the label assigned to each CDP.
A pause symbol ($ symbol) is introduced representing the lack of
identifiable activity for a period of time. Its duration is estimated

using the distribution of the time interval between consecutive
CDPs. The mean of this distribution is taken as the duration of
one pause period. Multiple pauses are included if the distance
between consecutive potentials is a multiple of this estimated
time. Notice that pause symbols correspond to parts of the signal
not selected as CDPs and thus discarded. They do not correspond
to periods of lack of activity in the signal. These are considered
noise, random fluctuations of the signal or possible CDPs that did
not have enough quality to be considered. Consequently, pauses
do not have a shared shape.

This discretization yields a string representing the sequence
of events for each segment and experimental maneuver. This
process is represented in Figure 3. Typically, recordings of 10
min generate sequences of a length of 6,000 symbols at the most.

4. SEQUENTIAL STUDY OF CDPs

In a previous work (Martín et al., 2015) we showed that
the set of symbols in the dictionary remains the same along
the whole experiment. One possibility is that the generation
of particular classes of CDPs results from the activation of
different local and relatively stable ensembles of neurons (i.e.,
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FIGURE 2 | Shape dictionary obtained from recordings made in the L6rL segment, and the probability occurrence for each shape at each time step in

experiment e130221. Each shape corresponds to the centroid of a cluster of CDPsand a standard deviation around the prototype. In the histograms green columns

indicate the control, red columns the capsaicin, and black columns the spinalization periods. CDPs amplitude is measured in millivolts, time in milliseconds. Further

explanations in text. (A–L) Represent the label assigned to each CDP class.

to populations restricted to one lumbar segment). It is also
possible that some classes of CDPs are produced by a neuronal
network distributed along several lumbar segments that acquires
different configurations of functionally connectivity depending
on the level of neuronal synchronization, as shown in Contreras-
Hernández et al. (2015). In either case, the relations between the
spontaneous CDPs may provide significant clues on the patterns
of functional connectivity between the neuronal sets involved
in their generation and on how these patterns change under
different experimental situations.

In this context, we will study if the firing of an ensemble
of neurons (and so, the appearance of a specific CDP) depends
on the last activated ensemble of neurons (the kind of the
last appeared CDP). Existence of this dependence would mean
that there is a minimal degree of memory in these neuronal
networks, so firing of local neuronal groups is not independent
from the previous activity, which may well depend on inhibitory

interactions between neuronal activity as recently shown in
Contreras-Hernández et al. (2015).

As a first step to study the sequential dependence amongCDPs
and its implications, the raw signal is translated into a sequence
of symbols using the method already described in Section 3.
Figure 3 provides an example of spontaneous CDPs recorded
from segment L6rL during control period (ctrl) and its translation
as a sequence of symbols. This exemplifies the kind of sequence
of data that will be used for the analysis along this paper.

To study the temporal dependence between CDPs firing, we
will start building for every pair of CDPs a transition probability
matrix. Position row i and column j of the matrix will contain
the conditional probability P(cj|ci) that after appearing CDP of
kind ci, the next CDP will be of kind cj. There is a special column
that represents the pause ($), that is, the different probabilities
that after registering a CDP, no other detectable CDP will appear
in 100 ms. Reciprocally, there is a special row that represents
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FIGURE 3 | Example of discretization of the signal recorded from L6rL

from experiment e130221. In red, the time intervals identified as

spontaneous CDPs by the CDP detection algorithm used by the methodology.

Each CDP is labeled using the shapes dictionary obtained from the segment

L6rL for this experiment using the closest shape according to the euclidean

distance. Symbol $ represents a pause in the sequence because the signal

was not identified as a CDP (shown in black). The labels for the CDPs and the

pause symbols form the discretized sequence. The CDPs in the figure

correspond to the 0.3 hz–10 khz filtered signal resampled to 1.6 khz before

processing with PCA.

the probability that after a pause, another CDP cj appears.
The probability values are estimated by counting the pairs of
consecutive CDPs appearing in the whole sequence

P(cj|ci) =
Number of times cj is followed by ci

Number of times ci appear
(1)

Figures 4–6 show three transition matrices for the same segment
L6rL from different time steps of the experiment: Figure 4 in a
control step, Figure 5 after spinalization, and Figure 6 after 60
min of the intradermic injection of capsaicin. A visual inspection
of the matrices shows:

1. Not all positions in a column have the same probability
values. This finding seems to support the proposal that there
is a dependence between CDPs in time firing, because all
probabilities of generating a CDP (all values in the column)
are different depending on the previous observed one (row in
that column).

2. Visually they appear to be quite different: So, we would
expect different sequences of CDPs in different steps of the
experiment. For instance, sequences belonging to ctrlwould be
different from those in capsa or esp. This observation suggests
that it should be possible to predict from a sequence to which
step of the experiment it belongs.

However, these are merely visual observations and a formal
analysis of them is needed. In Section 5 we will study the first
proposal and in Section 6 we will study the second one.

5. MARKOVIAN ANALYSIS

Time dependence between consecutive events can be formalized
using Markov chains (Isaacson and Madsen, 1976; Florian et al.,
2011). Such formalism allows studying processes with a kind of
memory in which the probability of the current event depends
only on the last n events occurred. Parameter n is called the order

FIGURE 4 | Transition matrix for CDPs recorded from segment L6rL at

the beginning of the experiment e130221 (ctr1). Position row i, column j

shows probability of transition from CDPi toward CDPj . Compare this figure

with Figures 5, 6.

FIGURE 5 | Transition matrix for CDPs recorded from segment L6rL

after spinalization (esp1). Same experiment and display as that of Figure 4.

of the Markov chain and describes the degree of memory of the
system. Considering theCDPs recorded in the sequence as events,
we could model the sequence as aMarkov chain of order nwhere:

P(ct|ct−1 . . . c0) = P(ct|ct−1...ct−n) (2)

We will start proving that the sequence of CDPs recorded in all
spinal segments can be modeled as a Markov chain of order one.
Later we will show that the sequence is not of order higher than
one.
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FIGURE 6 | Transition matrix for CDPs recorded from segment L6rL 60

min after the intradermic injection of capsaicin in the already

spinalized preparation (capsa3). Same experiment and display as that of

Figure 4.

5.1. First Order Tests
The standard way to check the markovian nature of a sequence
is to perform a Pearson χ

2 hypothesis test (Anderson and
Goodman, 1957), which compares the goodness of fit of an
observed distribution with respect to an expected distribution
with H0 stating that there is no difference between them.

In our case, the test is performed by comparing the observed
distribution of consecutive pairs appearing in the recorded
sequence, with the expected distribution that should appear
assuming independence of a CDP with respect to the previous
one. The observed distribution consists in matrixO that contains
in position i, j the number of times that CDP cj was preceded
by CDPs ci in the recorded sequence. The expected distribution
matrix E under the independence hypothesis stores in position
i, j the expected number of times CDP cj would be preceded
by CDP ci under the independence hypotheses. This number is
computed as:

Ei,j = nP(cj)P(ci) (3)

where P(cj) and P(ci) are the frequency of CDPs cj and ci
respectively in the whole recording, and n is the number of
CDPs recorded. Notice that join probability P(cj, ci) = P(cj)P(ci)
under the independence hypothesis. To translate this probability
to actual expected events, we multiply this joint probability by n.

Hence, H0 claims that the sequence of CDPs recorded is
generated by a renewal stochastic process and thus distribution
O is statistically similar to E. H0 holding at a significant p-value
would mean that the probability of appearing of a CDPs does not
depend on the previous recorded CDP.

Once we have the observed and the expected frequencies, we
compute the test-statistic

χ
2
n(n−1) =

n
∑

j,i=1

(Oi,j − Ei,j)
2

Ei,j
(4)

that follows a χ
2 distribution with n(n − 1) degrees of freedom.

This statistic measures the differences or divergence of the
observed distribution O with respected to the H0-expected
distribution E. The higher the value, the higher the divergence.

In the experiments shown in Table 1, for all lumbar segments
and time steps of the recorded data, resulted that computed
value χ

2 was larger than expected, returning a p-value [following
the χ

2
n(n−1)

distribution]) lower than 0.0001. So H0 is extremely

unlikely and, therefore, H0 must be rejected in all cases.
One problem with χ

2 test is that it assumes that events follow
a normal distribution (χ2 distribution is the sum of squared
normal distributions), which has not been proved. So, we did
a complementary test that will also be helpful later on to study
possible higher orders for the Markov chain.

As in the previous case, we establish a H0 hypothesis stating
that the sequence is generated by a renewal stochastic process.
H0 now will be tested with a randomized test using surrogate
data (van der Heyden et al., 1998). We generate 10,000 random
sequences under H0 hypothesis (each sequence with the same
length than the original one and definitely not markovian),
keeping the frequency of each CDP equal to that of the original
sequence. Each sequence is simply generated as a random
permutation of the original sequence, so each one maintains the
frequency of each CDP but any markovian structure is removed
because the previous CDP is randomly changed.

If the original sequence is not markovian, it is expected to
find that the divergence of O with respect to E computed using
Equation (4) is similar to the divergence of probability matrices
obtained from surrogate data to E. So, we computed for each
of the 10,000 randomized sequences the divergence in their
distribution with respect to the expected matrix.

Results showed that all randomized sequences had divergence
smaller than the original sequence. We could expect some of the
randomized sequences to have, by chance, a smaller divergence
value than the original one. The number of such sequences would
determine the p-value for hypothesis H0. None of them had a
higher deviation, so we conclude that the p-value for H0 is lower
than 1 over 10,000. Thus, as expected, H0 is again rejected.

5.2. Higher Orders Tests
We also tried to test if themarkovian process is of order two. That
would mean that appearance of one CDP depends on the last two
preceding CDPs. Given that we know that the sequence is at least
of order one, now hypothesis H0 is that the sequence is not of
order two.

In this case, building a χ
2 test is difficult as many of the

entries in the observation matrix become zero. Notice that now
transition matrices are from pairs of CDPs to a single CDP, so
the size of matrix O is n3. For our experiment, with 13 symbols
we have 2.197 entries in the matrix. With sequences of at the
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most 6,000 symbols we can not compute a reliable statistic. This,
added to the hypothesis of normal distribution, motivated us to
use a randomized test. Again, we had to generate randomized
sequences following H0, that is, the frequency of each pair of
consecutive CDPs is maintained as in the original sequence, but
removing possible second order dependencies, thus removing
existing dependencies among triplets of consecutive CDPs. This
randomization can be done following the Whittle’s algorithm
(Pethel and Hahs, 2014). We reduced the number of randomized
sequences from 10,000 to 1,000. With that number of surrogate
examples, we have enough power to estimate a significant p-value
of 0.001.

In all experiments described in the paper, we had an average
p-value of 0.34, which is not enough to reject H0, so we must
conclude that most probably the sequences are not of order two.

We don’t have sufficient data to produce a statistically
significant test for higher orders of dependence, so conclusion
should be that sequences of CDPs cannot be explained by a
renewal stochastic process and that they should be modeled by
a markov process at least of order 1.

6. PREDICTING SEQUENCES

Once we know that CDPs sequences are markovian of order one,
we wonder if we can take advantage of this effect to recognize,
given a short sequence of raw recording, to which step of the
experiment it belongs.

We explore this possibility by building a transition matrix
(ml,s) for each lumbar segment l in step s of the experiment. This
matrix represents ourmodel of the sequence. Suchmodels consist
in the set of transition probabilities between each pair of CDPs:

ml,s = {P(ct+1
l,s

= ci|c
t
l,s = cj) | ∀ci, cj ∈ CDPs} (5)

where probabilities of transitions P(ci|cj) are estimated from
the sequence Cl,s of CDPs recorded in lumbar segment l and
step s. This set of probabilities corresponds to the observed
transition matrix, used in previous markovian tests and depicted
in Figures 4, 6. Table 2 contains a description of the notation.

The complete experiment is modeled by setM:

M = {ml,s | ∀l ∈ L, s ∈ S} (6)

where L is the set of studied lumbar segments, and S is the set of
recorded temporal steps. Remember that a temporal step consist
in data recorded that spans for several minutes, usually 10, during
the experiment.

The Markovian property of conditional dependence limited
to only the last CDP, allows us to easily compute from a model
ml,si the likelihood to generate data Cl,sj recorded in another time
step sj.

Given that we have a markov process of order one, the
probability for a CDP ct+1 depends only on the previous CDP
ct , so for a lumbar segment l and time step si and model ml,si its
probability can be defined as:

P(ct+1
l,sj

|ctl,sj;ml,si )

TABLE 2 | Description of major symbols.

Notation Description

L Set of lumbar segment

s Time step, a contiguous subset of the recording

S Set of time steps

Cl,s Sequence of CDPs from lumbar segment l and time step s

C
k
l,s Subsequence of the last k CDPs from sequence Cl,s

C
n−k
l,s Subsequence of CDPs from sequence Cl,s without the last k

CDPs

ct
l,s CDP from a sequence Cl,s at time instant t

ml,s Probability model for lumbar segment l and time step s

estimated from a sequence Cl,s of CDPs

mn−k
l,s Probability model for lumbar segment l and time step s

estimated from sequence C
n−k
l,s

P(Cl,s|ml,s) Likelihood of sequence Cl,s for lumbar segment l

and time step s given model ml,s

P(ct+1
l,s |ct

l,s;ml,s) Probability of CDP ct+1
l,s given CDP ct

l,s and model ml,s

S(si , sj ) Similarity index between time step si and sj

For a sequence of CDPs Cl,sj , the probability of each individual
CDP is dependent only on the previous CDP, and so independent
of the other ones. In this case, the probability of the sequence
P(Cl,sj | ml,si ) can be factorized as the product of the individual
conditional probabilities:

P(Cl,sj | ml,si ) =

n−1
∏

t=1

P(ct+1
l,sj

|ctl,sj;ml,si ) (7)

where P(Cl,sj |ml,si ) is the probability for model ml,si to
generate sequence Cl,sj , n is the length of sequence Cl,sj , and

P(ct+1
l,sj

|ct
l,sj
;ml,si ) is the probability in model ml,si of occurring

ct+1
l,sj

in position t + 1 of sequence Cl,sj given that in position t

of the same sequence appeared ct
l,sj
.

Instead of working with probability values, we will work
(for numerical stability reasons) with the logarithm of the
probabilities:

log(P(Cl,sj | ml,si )) = log

(

n−1
∏

t=1

P(ct+1
l,sj

|ctl,sj;ml,si )

)

(8)

=

n−1
∑

t=1

log(P(ct+1
l,sj

|ctl,sj;ml,si )) (9)

6.1. Experiments
To test if likelihood can help to recognize for a sequence of
recorded data the type of time step it belongs to, we performed
the following experiment (see Figure 7): for each lumbar segment
l and time step s, we extracted sequences consisting of its last 100
CDPs. This corresponds roughly to 12 s of recorded data. We
call this sequences C100

l,s
. The task will be to recognize the source

sequence from which a sequence of 100 CDPs was extracted.
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FIGURE 7 | Summary of the prediction process described in Section 6.1 for segment (L6rL): (A) For each 10 min step, we remove the last 100 CDPs of the

recorded sequence (C100
l,s ). (B) Building, for each step of the experiment, the model with the remaining data (Cn−100

l,s ). (C) Given an unknown sequence of 100 CDPs,

computation of the log-likelihood of each model for that particular sequence. (D) Obtaining the model with maximum log-likelihood and return prediction of

membership. Average prediction accuracy for all segments in several experiments is shown in Table 3.

Using the remaining data in the sequence (Cn−100
l,s

), we built a

model mn−100
l,s

. Notice that the probabilities are now computed
using a shorter sequence of data (all data recorded except the
last 100 CDPs). This is done with the purpose of implementing
a cross-validation procedure, avoiding the use of the testing
sequence to build the model. After this procedure is performed,
we have for each step s and lumbar segment l, a sequence of 100
CDPs (C100

l,s
) and a modelmn−100

l,s
.

Subsequently: for a given lumbar segment l, we randomly
selected a sequenceC100

l,∗
of last 100 CDPs of unknown origin. The

task consisted in trying to predict the time step s from which it
was extracted. In order to do so we computed, using equation
8, the likelihood of each model mn−100

l,s
to generate C100

l,∗
. The

model with higher likelihood should belong to the time step
that originated the sequence. However, notice that there may be
several recordings, each one 10 min long, for each step of the
experiment.

For instance, we have in experiment e130221 two control
recordings, two more spinalization recordings and, finally, four
capsaicin recordings. Trying to predict for that experiment where
the sequence of the last 100 CDPs of sensor L6rL of ctrl1
(C100

L6rL,ctrl1
) belongs, returns the following log-likelihood values

for each model:

Likelihood for model ctrl1: -217.56

Likelihood for model ctrl2: -216.50

Likelihood for model esp1: -253.80

Likelihood for model esp2: -247.84

Likelihood for model capsa1: -252.60

Likelihood for model capsa2: -360.21

Likelihood for model capsa3: -261.66

Likelihood for model capsa4: -267.26

Notice that log-likelihood values are always negative (given that
probabilities are lower or equal than 1) and that the higher the
value of the log-likelihood is, the higher the likelihood. We will
consider a success when the predicted sequence belongs to the
right time step. In the example shown above, the most likely
model to generate the sequence is ctrl2, because it has the highest
log-likelihood. We take it a success in prediction because it
corresponds to a control step recording.

This procedure has been repeated for all testing sequences
C100
l,s

of each state s for all lumbar segment l, and success in
prediction was averaged. For instance, in experiment e130221,
the average of success in prediction is 88.6%. A random classifier
would have a success rate of 37.4% in this case.

Table 3 shows average prediction accuracy among all
segments and time steps in all the considered experiments. It
also shows how accuracy changes as the length of the sequence
used to predict also varies. For larger sequences the success rate
is higher. For comparison, the table also shows accuracy of a
random classifier for each experiment. Each one has a different
result for the random classifier because each experiment has a
different number of time steps for each kind (see Table 1). Values
for the random classifier have been obtained through a standard
Montecarlo estimation.

6.2. Results
Notice that predictions are not always 100% successful. However,
instead of considering that as an error, we think that it also
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TABLE 3 | Average percentage of success in membership prediction for all

experiments with respect to the length of the sequence.

Experiment Random Likelihood classifier

classifier Length of sequence to predict

50 100 150 200 250 300

e110906 51.9 85 92.5 95 92.5 92.5 95

e120511 42.8 58.4 65.0 68.8 71.4 63.6 68.8

e130221 37.4 80.7 88.6 88.6 92.0 91 93.2

e140225 37.4 76.4 75.0 77.7 75.0 73 77.1

In general, the longer the sequence used to predict, the better the results obtained. First

column shows average accuracy obtained from a random classifier.

could explain something about the inner structure of the spinal
neuronal connectivity.

For instance, in experiment e110906 100% accuracy is
consistently achieved in all segments except in segments L6rR,
L5rR, L5cR, all of them from the right side of the cat’s spinal
cord. In all experiments, the injection of capsaicin was applied
in the left hindlimb, and this explains the different effect in the
right side of the spinal cord (see also Figure 1).

Nevertheless, though prediction results of a particular
recording of a given time step for a lumbar segment could not
be always accurate, the consensus of all lumbar segments it is
very accurate as shown in Table 4 that provides a detailed view of
results for experiment e130221. Notice that considering the most
common prediction for all lumbar segments in a given time step,
results are 100% correct in all experiments (Rokach, 2010).

Finally, by examining the errors in prediction, we can see that
in most cases the right prediction has the second highest log-
likelihood, and it is very close to the highest one. This can be
observed in Table 5 where we change the successful prediction
criteria to have the right prediction among the k models with
higher log-likelihood. Notice how precision is increased as we are
more permissive in this criteria.

These results suggest that the likelihood approach used allows
a valid prediction of the step where data were originated, even
for small sequences of data. It also encourages us to try to
build a similarity index between different steps of the experiment
in order to understand the high level behavior of the neural
networks during an experiment.

7. DISCUSSION

7.1. About the Method
In this paper we used data from four experiments (see Table 1)
to identify a class of Markov processes that describe the local
interactions between the populations of dorsal horn neurones
which generate the spontaneous CDPs examined by Contreras-
Hernández et al. (2015) and Béjar et al. (2015).

We found that in these experiments the spontaneous CDPs
recorded from a particular spinal segment are markovian and
have order one, as shown in Section 5. That is, the generation of
a particular type of CDP depends on the type of the preceding
CDP. In addition, we also found that this markovian property
can be used to build a procedure to identify portions of signal

TABLE 4 | This table details the prediction results in experiment e130221.

ctrl1 ctrl2 esp1 esp2 capsa1 capsa2 capsa3 capsa4

L4cR

L4cL

L5cR

L5cL

L5rR

L5rL

L6cR

L6cL

L6rR

L6rL

L7rL

Consensus

Each cell shows prediction for C100
l,s , where l is the spinal segment (row) and s is the time

step (column). Prediction is represented in colors: green means that prediction belongs to

a ctrl step, black means that prediction is a esp step, and red means a capsa step. In this

case, ideally, the two first columns should be green, next two black, and at the end four

columns in red. The number of cells properly colored with respect to the total number

of cells corresponds to accuracy reported in Table 3. Last row labeled as Consensus

represents the most voted prediction for all rows in that column. Notice that in this and all

experiments, voting consistently provides the proper prediction.

TABLE 5 | Percentage of success defined as proper prediction among the

set of k models with higher log-likelihood.

Experiment k

1 2 3 4

e110906 92 95 100 100

e120511 65 86 94 94

e130221 89 95 99 100

e140225 75 88 97 100

as belonging to a specific functional state of the connectivity
between the neuronal networks involved in the generation of the
CDPs. The functional implications of these findings are discussed
in Section 7.2. Although, our results agree with the findings
reported by Contreras-Hernández et al. (2015), the functional
organization of the ensembles of neurons that produce this
information has to be further investigated. To this end, and
based on the idea that the studied processes are markovian (see
Section 6), we introduced a method to predict the membership
of a sequence C100

l,∗
of the last 100 CDPs of a time step reds ∈

S (see Figure 7). In Table 3, we show the accuracy of this
method applied to the four selected experiments to validate the
hypothesis.

The log-likelihood of a subsequence given a model can also
be used as a similarity criterion among time steps (s ∈ S). This
allows to partition the time steps according to their similarity
and to define a set of classes characterizing the different behaviors
during an experiment. These classes are still to be characterized
and further studied. We believe that this analysis will contribute
to understand how the patterns produced by ensembles of
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neurons change during different experimental situations such as
nociceptive stimulation (capsa) or acute spinal lesions (esp).

Some concerns could arise about the impact of the
preprocessing of raw signal on the obtained results. Specifically
there are few parameters that could impact on the extracted
sequences used to test the markov properties of the signal. First of
all, for the extraction of the CDPs wework on the raw signal (at 10
kHz frequency) filtering frequency only to detect the position of
the signal maximum in the selected windows. Filtering involves
the elimination of frequencies higher than 70 Hz, enough to filter
out most of the noise. In Martín et al. (2015) we provide details
about the effect of different frequency cutoffs and the relative
signal-to-noise ratio.

Another parameter affecting the sequences is represented by
the data denoising. To this end PCA is performed allowing to
reconstruct signals using PCA components accounting up to 98%
of the variance. As a result, a large portion of the high frequency
noise is eliminated without significantly compromising the
shapes of the selected CDPs.

Finally, last parameter affecting the sequences selection is
represented by the number of clusters used to compute the
symbols dictionary. We implemented an optimal methodology
for selecting the best suited number of clusters for the set of
CDPs (Martín et al., 2015). The proposed methodology generates
the optimal number of clusters also yielding other suboptimals
with smaller or larger number of clusters. Using these subobtimal
could in principle affect the markovian properties of the signal.
However, to prove that even in these cases the markovian
property still holds, we did some experiments with the same
raw data but using a suboptimal number of clusters for building
the CDPs dictionaries. In particular, we applied the randomized
methodology described in Section 5.1 to test whether sequences
show the markovian property of order 1. The p-values obtained
for each experiment are reported in Table 6. Eventually each p-
value shown is the maximum obtained in all sequences (with
different segment and step) of the experiment. The results show
that even in those cases the significance of the markov property
is high.

In conclusion, we can see that the detection of the phenomena
is robust when changing the parameters of the pre-processing
steps of the methodology. Notice also that the effect of
introducing false CDPs in our analysis, given that noise is not
markovian, would only add difficulty in detecting the markovian

TABLE 6 | Obtained p-values testing markov behavior of degree 1 for each

experiment varying the number of symbols considered in raw signal.

Experiment Optimal 8 15

e110906 5.30e-25 1.25e-07 1.07e-34

e120511 1.72e-34 1.99e-54 1.72e-34

e130221 6.83e-30 3.62e-38 6.83e-30

e140225 3.54e-23 4.79e-50 3.54e-23

Each value presented is the maximum p-value obtained for all sequences of the

experiment. In all cases we have a p-value a lot lower than 0.05 that show robustness

of the detection of the markovian property with respect to the number of symbols

considered.

property. However, our analysis shows clearly, with a p-value very
close to zero for all experiments, that the markovian property of
degree at least one is fullfilled by all the sequences studied.

7.2. Some Functional Implications
Previous studies in the spinal cord of the anesthetized cat
have been addressed to examine the functional organization of
the dorsal horn neurons contributing to the generation of the
spontaneous negative and negative-positive CDPs (nCDPs and
npCDPs, respectively). During low levels of dorsal horn neuronal
synchronization, the network would generate nCDPs and activate
the pathways mediating non reciprocal post-synaptic inhibition.
In contrast, during high levels of neuronal synchronization,
npCDPs would be mostly generated and would preferentially
activate the pathways mediating presynaptic inhibition.

These studies showed in addition that the spontaneous nCDPs
and npCDPs were followed by a silent phase during which no
other spontaneous CDPs were generated. Since the CDPs evoked
by stimulation of a cutaneous nerve were also depressed when
preceded by spontaneous nCDPs and npCDPs, it was concluded
that the silent phase was due to the concurrent activation
of GABAergic and glycinergic inhibitory pathways (Chávez
et al., 2012; Contreras-Hernández et al., 2015). Yet, the analytic
methods available at that time provided limited information
on the functional organization and possible selectivity of these
inhibitory interactions.

We now used Markov processes to describe the interactions
between spontaneous CDPs recorded in a particular spinal
segment. As shown in Section 5, we found in all experiments that
the generation of the CDPs could be described by a Markov order
one process, which means that the network had memory and that
generation of a particular kind of CDP depended on which CDP
was previously generated. We also found that these interactions
were non-random, a situation consistent with the proposal that
individual CDPs are followed by a structured activation of a
segmentally distributed and rather selective inhibitory networks
that contribute to the shaping of the sensory information arriving
from the periphery.

The main outcome of the markovian analysis was the finding
that the time sequence of the spontaneous CDPs extracted from
the potentials recorded from a given segment was also non-
random and had a specific structure that could be associated
with a particular functional state of the network. That is, the
temporal sequences of the spontaneous CDPs obtained from
control (ctrl) recordings were basically different from those
sequences recorded after spinalization (esp) that is on spinal
segments devoid of supraspinal control or after capsaicin (capsa).
We would be dealing here with a signature like process that
characterizes the configuration of the neuronal connectivity of
the whole neuronal ensemble during a particular functional state.

From a functional point of view, it is clear that in a chain of in
series interconnected sets of neurones the activation of each set
will affect the responses of the next set in the chain and so on a
situation that could lead to Markov processes of different orders.
In the case of the spontaneous CDPs presently analyzed we are
dealing with ensembles of mutually interconnected sets, where
each set is influenced by the activity of the other sets. Therefore,
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it is quite feasible that the effects of a particular class of CDP on
the subsequent CDP will be probably stronger than interaction
with more remote events.

Although, discussion on the functional implications of these
findings is beyond the scope of this publication, it should be
noted that at present time we have limited information pertaining
the kind of dorsal horn neurons involved in the generation of
the different classes of CDPs except for the negative and negative
positive CDPs (see Contreras-Hernández et al., 2015) where it
was shown that depending on the magnitude of the correlation
between the neurons the same ensemble may generated nCDPs
and npCDPs. So the question remains on whether the same set of
neurons generates the different classes of CDPs or whether each
of them is generated by a specific set of tightly coupled neurons.
Nevertheless, it is tempting to suggest that the segmentally
correlated sequences of neuronal activity might be acting as
a dynamic functional switch, directing the flow of sensory
information arriving to the spinal cord. They might be acting
by introducing, via presynaptic mechanisms, a specific signature
to the ensemble of sensory fibers to inform the supraspinal
structures on the functional state of the spinal cord, which may
in turn modulate the state of neuronal sensitization induced by
nociception.

7.3. Relation with Other Previous Works
Our observations indicate that CDP sequences cannot be
generated by a renewal (memoryless, or Markov order zero)
stochastic process, but rather by a Markov order one stochastic
process. Other previous works in neuronal activity also found
temporal dependences in neuron firing. For instance, Ratnam
and Nelson (2000), based on the analysis of the time sequences
of the action potentials transmitted by single sensory fibers of the
electric organs of theApteronotus leptorhynchus, concluded that a
Markov process of at least fourth-order is required to adequately
describe spike activity.

This could seem to be in contradiction with our work.
Yet it must be pointed out that this situation is completely
different from the CDPs presently analyzed because they are
produced by populations of interconnected neurons whose
activity is determined, in addition to the intrinsic patterns
of neuronal connectivity, and by excitatory and inhibitory
influences generated at segmental and supraspinal level.

As demonstrated in a preceding paper (Contreras-Hernández
et al., 2015), the CDPs are followed by an inhibitory period
attributed to the activation of GABAergic and glycinergic
pathways. The duration of this inhibitory phase is quite variable
and we believe it plays a significant role in setting up the
probabilities of occurrence of the next CDP. This by itself could
impose a non-renewal Markov one process in the network. It
is clear to us that the preceding events could also exert some
influence on the final outcome. But in this sense we must keep in
mind that we are dealing here with networks of interconnected
neurons where it is really difficult (but not impossible) to
establish causal relations. We believe that our inability of detect
higher order Markovian processes is more a consequence of
the properties of these networks rather than a limitation of the
employed computational procedures.

7.4. Future Work
At this point, two lines of research emerge from this work.

First, we have seen that our method is able to predict the
maneuver fromwhich a data sequence was registered (see Section
6). However, our method can introduce a bias in some cases.
For instance, it may happen that the behavior of sequences from
different maneuvers could correspond to the same functional
state of the spinal cord. An example could be when, after some
time, the effect of capsaicin injection disappears and the state
of the spinal cord returns to something similar to control, or
when the application of some drug cancels the effect of capsaicin.
In those cases time steps belonging to different maneuvers can
be confused. We plan to extend this study in an unsupervised
manner so themethod could be able to detect changes in behavior
of the state not defined by the label of last maneuver made on the
cat.

Second, we would like to study the role of synchronization
of events across all the lumbar segments. The objective of this
study will be to enhance the model of the sequential behavior
and to cast some light about the functional connectivity among
different neural groups generating CDPs in different lumbar
segments. This analysis is complementary to the presented
here. Markovian analysis could be considered as a horizontal
analysis (considering time dimension in the x-axis) of temporal
dependences. Study of synchronizations could be considered a
vertical study (synchronization in the same time step) of the
signals at the same time. However, for this other study, the
markovian analysis does not help because we lose the temporal
dimension.
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