
ORIGINAL RESEARCH
published: 09 June 2017

doi: 10.3389/fncom.2017.00042

Frontiers in Computational Neuroscience | www.frontiersin.org 1 June 2017 | Volume 11 | Article 42

Edited by:

Sergey M. Korogod,

Bogomoletz Institute of Physiology,

Ukraine

Reviewed by:

Petia D. Koprinkova-Hristova,

Institute of Information and

Communication Technologies,

Bulgaria

Guy Elston,

Centre for Cognitive Neuroscience,

Australia

*Correspondence:

Nicolangelo Iannella

nicolangelo.iannella@gmail.com

Thomas Launey

thomas.launey@riken.jp

Received: 30 September 2016

Accepted: 12 May 2017

Published: 09 June 2017

Citation:

Iannella N and Launey T (2017)

Modulating STDP Balance Impacts

the Dendritic Mosaic.

Front. Comput. Neurosci. 11:42.

doi: 10.3389/fncom.2017.00042

Modulating STDP Balance Impacts
the Dendritic Mosaic
Nicolangelo Iannella 1, 2* and Thomas Launey 3*

1 School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom, 2Computational and Theoretical

Neuroscience Laboratory, Institute for Telecommunications Research, University of South Australia, Mawson Lakes, SA,

Australia, 3 Laboratory for Synaptic Molecules of Memory Persistence, RIKEN, Brain Science Institute, Saitama, Japan

The ability for cortical neurons to adapt their input/output characteristics and information

processing capabilities ultimately relies on the interplay between synaptic plasticity,

synapse location, and the nonlinear properties of the dendrite. Collectively, they

shape both the strengths and spatial arrangements of convergent afferent inputs to

neuronal dendrites. Recent experimental and theoretical studies support a clustered

plasticity model, a view that synaptic plasticity promotes the formation of clusters or

hotspots of synapses sharing similar properties. We have previously shown that spike

timing-dependent plasticity (STDP) can lead to synaptic efficacies being arranged into

spatially segregated clusters. This effectively partitions the dendritic tree into a tessellated

imprint which we have called a dendritic mosaic. Here, using a biophysically detailed

neuron model of a reconstructed layer 2/3 pyramidal cell and STDP learning, we

investigated the impact of altered STDP balance on forming such a spatial organization.

We show that cluster formation and extend depend on several factors, including the

balance between potentiation and depression, the afferents’ mean firing rate and crucially

on the dendritic morphology. We find that STDP balance has an important role to play

for this emergent mode of spatial organization since any imbalances lead to severe

degradation- and in some case even destruction- of the mosaic. Our model suggests

that, over a broad range of of STDP parameters, synaptic plasticity shapes the spatial

arrangement of synapses, favoring the formation of clustered efficacy engrams.

Keywords: STDP balance, dendritic efficacy mosaic, functional compartments, dendritic spike generation, mutual

information index

INTRODUCTION

Activity-dependent changes in the firing properties of cortical neurons can arise from modifying
the spatial arrangement of afferent fibers converging onto dendrites and their corresponding
synaptic strengths (Poirazi et al., 2003a; De Roo et al., 2008; McBride et al., 2008). The pattern of
activity conveyed by such afferents can either strengthen (Bliss and Gardner-Medwin, 1973; Bliss
and Lomo, 1973) or weaken (Kirkwood and Bear, 1994) stimulated synapses. Such physiological
changes are believed to represent a substrate for learning and memory; however the mechanisms
responsible for the spatial arrangement have yet to be fully elucidated.

Experiments show that synaptic plasticity exhibits both associativity (McNaughton et al., 1978;
Levy and Steward, 1979) and cooperativity (McNaughton et al., 1978) between synapses; where
groups of stimulated synapses can collectively induce either LTP or LTD but are each individually
incapable of inducing change. Experiments have also identified two additional properties. The first
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is heterogeneity (nonuniformity) in the form, induction and
location of expression of different types LTP and LTD. The
second is temporal specificity where the temporal order and
separation of pre-synaptic and post-synaptic firing determines
whether a synapse is potentiated or depressed. The magnitude
of change is characterized by a temporally asymmetric function
of spike timing that describes a “critical window” for such
alterations (Markram et al., 1997b; Bi and Poo, 1998; Debanne
et al., 1994, 1998; Zhang et al., 1998).

This latter form of plasticity is typically called spike timing-
dependent plasticity (STDP). The discovery of STDP has
stimulated many experimental and theoretical studies on the role
of action potential timing with respect to the development of
cortical circuits. In particular, previous theoretical studies have
typically used formulations of STDP that allows it to behave as
a competitive learning rule (even though the weakly competitive
version of multiplicative STDP has also been used), illustrating
that the temporal asymmetric window allows the neuron to
learn some temporal structure of its input, even under noisy
conditions (Song et al., 2000; Song and Abbott, 2001; Gutig et al.,
2003).

Historically, competitive learning rules have been important
in explaining not just learning the temporal structure embedded
in the afferent inputs to target neurons, but also the formation of
the various types of cortical maps, most notably the development
of orientation and ocular dominance columns (Kohonen, 1982;
Tanaka, 1990; Miyashita and Tanaka, 1992; Miller, 1994; Erwin
et al., 1995; Swindale, 1996; Young et al., 2007). This suggests
potential link between competitive learning, functional map
formation, and the segregation of independent input streams
onto dendrites. This link has been recently discussed in
Narayanan and Johnston (2012) where the authors have argued
that various functional maps can be imprinted onto dendrites,
each serving different roles.

There is growing interest in the nonlinear synergy between
dendritic excitability and synaptic plasticity in spatially extended
neuron models (Mel, 1992a; Zador et al., 1992; Poirazi et al.,
2001) or STDP (Rumsey and Abbott, 2004, 2006; Iannella and
Tanaka, 2006; Rabinowitch and Segev, 2006a,b; Gidon and Segev,
2009; Iannella et al., 2010). Notably, our previous studies have
demonstrated that the synaptic strengths of axons from different
functional streams of inputs organize themselves into spatially
segregated clusters. This emergent property relies on an STDP
rule admitting strong competition between synapses (Iannella
and Tanaka, 2006; Iannella et al., 2010).

Here, we investigate these effects using spike timing-
dependent plasticity (STDP) in a biophysically detailed model
of a reconstructed layer 2/3 pyramidal cell. In this model, the
neuron receives inputs independently from multiple yet equally
sized groups of correlated fibers. We focus on the role of STDP
(im)balance in altering the spatial representation of synapses in
dendrites and especially in the emergence of spatially segregated
clusters of synapse with similar properties and representing
the different input streams. We conclude that dendritic mosaic
robustly emerge over a wide range of dendrite morphology, mean
input frequencies and degree of balance, in a nonlinear and
unpredictable manner.

MATERIALS AND METHODS

Assessing Differences in Spatial Patterns
There are measures that can quantify the spatial differences
or dissimilarity between the resulting spatial organization of
synaptic efficacy from two respective groups for various levels of
competition. One such measure is called the spatial dissimilarity
index (SDI) (Duncan and Duncan, 1955; Traulsen and Claussen,
2004). This indexmeasures of the dissimilarity or equivalently the
overlap between two spatial patterns, where segregated or similar
patterns give a value close to unity or zero, respectively. The SDI
is formulated as:

SDI =
1
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where WA,B
j are the total synaptic efficacies at dendritic position

j contributed by groups A and B, respectively, and WA,B
tot are the

total synaptic efficacies summed over all dendritic sites for each
of these two groups.

To assess the spatial differences between multiple (more than
two) spatial patterns, the above described index is replaced by one
based upon mutual information. We have previously used the
multigroup mutual information index (mMHI) (Iannella et al.,
2010), defined as

mMHI =
∑

j

W·j

Wtot

∑

m

πjm ln

(

πjm

πm

)

, (2)

where subscripts j denotes dendritic location and m indexes the
particular afferent group where:

W·j =
∑

m

Wmj total synaptic efficacy at dendritic location j.

Wm· =
∑

j

Wmj total of groupm’s synaptic efficacies.

Wtot =
∑

m,j

Wmj total synaptic efficacy contributed by all
groups.

πm =
Wm·

Wtot
proportion of groupm synaptic weights.

πjm =
Wmj

W·j
proportion of groupm synaptic weights at j.

To quantify the degree of spatial segregation between multiple
spatial patterns.

The Layer 2/3 Pyramidal Cell Model
A biophysically detailed compartmental model of a reconstructed
layer 2/3 pyramidal neuron receiving randomly timed excitatory
and inhibitory synaptic inputs across the dendrite, was simulated
using the NEURON simulation package (Hines and Carnevale,
2001). The model consisted of 119 sections with 263 segments,
including a simplified myelinated axon, similar to those used
in previous studies (Mainen et al., 1995; Iannella and Tanaka,
2006), consisting of a hillock, initial segment, five nodes and
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five myelin internodes, respectively. The parameters and channel
types used in the simplified axon were the same as those used
in Iannella and Tanaka (2006). A variety of synaptic receptors,
voltage and calcium dependent ion channels known to exist in
real layer 2/3 pyramidal cells were incorporated into the model.
These receptors included the α-Amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor, the calcium permeable
N-methyl-D-aspartate (NMDA) receptor, the ionotropic and G-
protein coupled gamma-aminobutyric acid receptors (GABAA

and GABAB), respectively. The included ion channel currents
were a passive leak Ileak, the fast sodium INa, the delayed rectifier
potassium IKdr, the hyperpolarization activated potassium Ih, the
transient A-type potassium IA, a muscarinic potassium IM, the
T-type calcium IT, (high voltage activated) L-type calcium IHVA,
the calcium dependent potassium C-type IC, the medium after
hyperpolarization (AHP) ImAHP; and the slow AHP IsAHP. These
channels were distributed throughout the dendrites, soma, and
axon with densities according to published experimental data
from the rat. In case when data was absent, both distributions
and parameter values similar to those used in previous studies
were used. Finally, passive properties used in our Layer 2/3model
neuron, were similar or adopted from previous investigations
(Mainen et al., 1995; Iannella et al., 2004, 2010): the dendritic
membrane capacitance was Cm = 0.9 µF/cm2, the resting
potential was−80mV, and the internal resistivity Ra was 200�m.

A full description of the ion channels, their corresponding
currents and distributions used in the simulations were similar or
identical to those used in previous modeling studies (Rhodes and
Gray, 1994; Mainen et al., 1995; Rhodes and Llinás, 2001; Traub
et al., 2003; Iannella et al., 2004, 2010; Iannella and Tanaka, 2006).
These descriptions are detailed in the Supplementary Materials.

Stimulation to the Layer 2/3 pyramidal cell was provided by a
single inhibitory group consisting of 250 afferent fibers and either
two of four groups of equally sized groups of correlated excitatory
fibers. Here, when two groups were used there were 500 afferent
fibers per excitatory group, while for stimulation originating from
four groups there were 250 afferents per group. Furthermore,
there were no or little correlation between the activity carried
by any single afferent fiber from one group and those from any
other group. Put simply, the activity within any single group was
correlated, but the activity of afferents between different groups
were not correlated with each other. Finally, the activity carried
by excitatory and inhibitory fibers are also uncorrelated. These
excitatory groups will be labeled alphabetically, i.e. for two groups
they will be referred to as groups A and B, while for four, they
will referred to as groups A, B, C, and D. Whether inhibitory
or excitatory, each afferent fiber forms five synaptic contacts at
randomly chosen locations throughout the dendrite of themodel,
as suggested by current anatomical data (Thomson et al., 1994,
2002; Markram et al., 1997a; Feldmeyer et al., 2002).

Each simulation began by allowing each excitatory afferent
fiber to connect to five randomly selected positions across
the dendrite. Similarly, each inhibitory afferent also made five
synapses at locations randomly selected throughout the initial
segment, hillock, soma, and dendrite. All synapses were activated
at random times. Inhibitory fiber activity was modeled via
a temporally homogeneous Poisson processes with a mean

frequency of 10 Hz. Excitatory afferent activity was modeled as
correlated Poisson processes where the activity of a particular
group contains higher order statistics (correlations) (Kuhn et al.,
2003). These correlations are mediated by coincident activity
involving distinct subsets of fibers that only belong to a single
group of afferents, while there is no correlation between the
activity of any pair of input fibers that belong to different
groups, i.e., the cross-correlation between these fibers is zero. The
adopted within group correlation coefficient was set to C = 0.05,
with a mean firing rate for all excitatory fibers of 40 Hz, accepted
where otherwise stated.

STDP Learning Rule
The synaptic weights of AMPA conductances wj(t) ∈ [0, 1] were
altered by STDP, (NMDA, GABAA and GABAB conductances
remained fixed). Learning was implemented using a nonlinear
STDP rule (Gutig et al., 2003). For clarity, this rule is described
below.

Gutig Rule: Pair Based Nonlinear STDP

1wj =

{

A+(1− wj)
µ exp (−|1t|/τ+) if1t > 0

−A−w
µ
j exp (−|1t|/τ−) if1t ≤ 0

(3)

where 1t = tpost − tpre denotes the timing difference between
pre-synaptic and post-synaptic events. A+ and A− are positive
constants scaling the magnitude of individual weight changes,
and τ+ and τ− are time constants determining the size of the
temporal learning window in which potentiation and depression
occurs. The pre-synaptic event tpre denotes the arrival time of
pre-synaptic input to some specific dendritic location, while the
post-synaptic event tpost typically denotes the time when a local
dendritic spike was generated. When 1t is positive, synaptic
efficacy is potentiated, and depressed otherwise; where individual
changes in synaptic efficacy wj are also weight dependent.
This weight dependence has the form of a power law where
the exponent µ is a positive constant. This STDP rule has a
nonlinear weight dependence when changing the weights of
AMPA receptors. One can’t help to notice that the additive STDP
rule is recovered when µ = 0 and corresponds to changes in
synaptic efficacy that are independent of the weight wj; while
the multiplicative rule is recovered when µ = 1, corresponding
to linearly dependent weight changes. The parameters used for
potentiation and depression components of this learning rule
were A+ = 0.0025, A− = 0.001125, τ+ = 13.5 ms and τ− =

34.5 ms, in agreement with previous experimental observations
(Froemke and Dan, 2002; Froemke et al., 2005). Detection of
post-synaptic events were recorded when the local membrane
potential surpasses a pre-specified threshold of θ = −20 mV.

RESULTS

Competition Dependent Emergence of
Clustered Synaptic Efficacy Engrams
The formation of spatial patterns displaying a clustered
organization typically emerge by balancing the requirements of
co-operation and competition of some limited resource. In the
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case of Gütig’s nonlinear STDP (see Materials and Methods—
STDP learning rules), synapses compete both spatially and
temporally to control the timing of somatic and/or dendritic
spike generation. This competition is believed to take the form
of a spatio-temporal winner-take-all process that ultimately leads
to the formation of synaptic efficacy clusters. A key feature of
Gütig’s nonlinear STDP rule is the presence of the exponent µ.
This parameter controls the weight dependence of the rule and
can be interpreted as a parameter that controls the degree of
competition, since µ = 0 corresponds to the additive STDP and
exhibits strong competition (Song et al., 2000; Song and Abbott,
2001); while µ = 1 recovers the multiplicative STDP rule, a
rule known to display stable yet weak competition dynamics (van
Rossum et al., 2000). For intermediate values of µ the weight
dependence is nonlinear and can be interpreted as introducing
some intermediate degree of strong and weak competition.

To assess spatial segregation and complementarity in the
case of two independent stream of inputs, we used the spatial
dissimilarity index (SDI) (Duncan and Duncan, 1955; Traulsen
and Claussen, 2004) (see Section Materials and Methods). Note
that two spatial patterns are considered to be complementary
when they possess a reciprocal relationship in space so that one
pattern can be considered the negative image of the other. This
index provides a quantitative measure of the difference between
two spatial patterns. Two patterns are similar if the SDI is close
to zero, while values close to unity indicates that two patterns are
spatially segregated.

The SDI varies over time, in a manner that depends on
the exponent µ (Figure 1). Note that for each trial, a different
random seed was used to initialize the simulation, assuring
that both the pattern of afferent connectivity and the activity
seen at any location in the dendrite are different between
trials. There is an optimum value for µ maximizing the SDI;
for which synaptic competition produced the largest degree of
spatial complementarity. Above the optimum, high value of µ

weakens synaptic competition, leading to an increase in the
average size of the efficacy engram contributed by each respective

group of excitatory fibers. Such increases in size increases the
overlap between the clusters contributed by each respective
group of excitatory afferent fibers, to the point where there
is little difference between them. More surprisingly, too high
competition also leads to cluster fragmentation and SDI decrease.

STDP Balance Modulates Spatial
Segregation and Complementarity
Another important facet is to determine how altering the balance
between potentiation and depression (A−τ−/A+τ+ ratio),
impacts the formation of clustered synaptic efficacy engrams.
Previous theoretical studies, using the simple integrate-and-fire
model neuron, have shown that in order to avoid unphysiological
increase of synaptic weights, this ratio is important for stable
yet competitive learning (Song et al., 2000; Song and Abbott,
2001). However, for a spatial model neuron, the impact of such
alterations was unknown. This issue was directly addressed here
by increasing the maximal amplitude of the STDP learning
window’s depression component A−. Again SDI was averaged
from ten trials, each initialized using a different random seed.

The imbalance between depression and potentiation in STDP
was increased from 1 to 6, for which synaptic depression is
overwhelmingly dominant and results essentially in silencing
the neuron. Furthermore, this avoided the situation where,
irrespective of the afferent group, the total synaptic efficacy
contributed by a single group at any location was zero, i.e.,
WA

tot = 0 and/orWB
tot = 0 . Beyond these conditions (ratios> 6),

numerical singularities prevented SDI calculation.
Figure 2 indicates that increasing the imbalance from 1.05 to

6 resulted in a strong non-monotonous effect on the emergence
of synaptic clusters across the dendrite. Firstly, there is a clear
maximum SDI value indicating that for that particular value
of the ratio, the degree of spatial complementarity between the
two patterns is greatest. Secondly, increasing the ratio to a value
of 2.25 eventually leads to a minimum SDI value of ≈ 0.45,
with no clear segregation of synaptic clusters. Finally, further
increases in the balance ratio A−τ−/A+τ+ to 3.3 (Figure 2B)

FIGURE 1 | Synaptic efficacy clusters and spatial complementarity depends upon synaptic competition. The mean SDI calculated over 10 randomly initialized trials,

as a function of both µ and time. We jointly observe the temporal evolution and the effect of altering competition on the resulting SDI.
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FIGURE 2 | STDP balance controls efficacy cluster formation. Each data point of the mean SDI was calculated using 10 randomly initialized trials, as a function of

STDP balance ratio A−τ−/A+τ+. The balance was changed by systematically incrementing A− by 0.0001 until a balance value of 3.3 then by 0.005 , up to a ratio of

6. Increasing the imbalance between depression and potentiation leads to initial degradation in the SDI, and further increases leads to a recovery of clustering. The

spatial distribution of clusters is illustrated for the three balance ratio values of 2.25, 3.3 and 6 (column denoted by A–C, respectively), for each specific afferent group.

The color coding indicate the synaptic strength for the two afferent group, for each compartment. For a ratio of 2.25 (lowest SDI) each branch receive essentially

similar input strength from the two afferent groups while (B,C) show increasing segregation.

and to 6 (Figure 2C) leads to increased spatial segregation
of synaptic efficacies across the dendrite, contributed by each
afferent group (appearing in Figures 2B,C), and gives rise to
a surprising recovery in the value of the SDI, where spatially
segregated efficacy clusters (appearing to the right of the central
plot) are still present in the dendrite. Intuitively, our expectation
was that increasing the imbalance by favoring LTD, would
lead to degradation of the clustering; surprisingly, the synaptic

efficacy clusters were still present but at the cost of decreased
spatial complementarity of the original tiling pattern. Here,
complementarity is referred as the amount of spatial segregation
and overlap between two patterns where one pattern can viewed
as the “negative” of the other, and example is provided in Figure 3
for an imbalance ratio of 1.5 where one group dominates regions
in dendritic space where the second group does not. Interestingly,
a very steep transition separates the SDI maxima and minima,
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FIGURE 3 | Example of complementarity. Spatial distribution of synaptic efficacy after STDP learning for µ = 0.03 and a balance ratio of 1.5 (the maximum of the SDI

plot in Figure 2). The color coding represents the normalized weights for a each afferent group. Note that the patterns complement each other, with one afferent being

strong where the other is weak, thus giving rise to a large SDI.

with an inflection point at 2. While the exact position of the
inflection point is irrelevant (as it is probablymulti-factorial), this
reveals a high sensitivity of the model to LTP/LTD balance that
may be detected experimentally.

STDP Balance Impacts the Formation of
the Dendritic Mosaic
We have observed the formation of synaptic efficacy clusters
when there are only two different groups of afferent axons. When
more than two streams of inputs are simulated, altering the
balance ratio A−τ−/A+τ+ admitted by the STDP rule also leads
to changes in the formation of dendritic mosaic. To quantify
clustering in these multi stream conditions, we have previously
identified the multi-group Mutual Information Index (mMHI)
to be a suitable metric (Iannella et al., 2010; see Materials and
Methods section for details).

mMHI =
∑

j

W·j

Wtot

∑

m

πjm ln

(

πjm

πm

)

, (4)

Figure 4 shows how STDP imbalance impacts the mMHI for
three values of µ = 0.03, 0.08, 0.15, when the neuron
is being stimulated by four groups of afferent fibers. Note
that the same incremental changes to A− used in Figure 2

was adopted. The general shape of the relationship between
mMHI and balance ratio is comparable to the one quantified
by SDI for two groups of axons and is similar for all values
of mu. This dependency is thus robust to change of clustering
metric and to increase in the number of inputs, suggesting that
this emergent properties could be characterized experimentally
(see Section Discussion) .

Mean Input Frequencies and STDP Balance
Jointly Influences the Dendritic Mosaic
We have shown above that both the degree of synaptic
competition and LTP/LTD balance ultimately determines the
emergence of the dendritic mosaic. Previously, we have shown

that the mean firing frequency of afferent inputs also play an role
in this emergence (Iannella et al., 2010).

We thus examined the interplay between firing frequency and
STDP balance. Figure 5, illustrates how increasing the degree of
imbalance affects the mMHI, for a mean input frequency of 10
Hz. Note that in contrast to Figure 4, themMHI reaches a plateau
(≤ 0.25) at high ratio rather than showing monotonous increase.
Equally surprising is the apparent lack of correlation between the
low mMHI and the pattern of synaptic efficacy clusters. For a
balance ratio of 1.8 (Figure 6, Row B) corresponding to maximal
mMHI, we observed intense clustering, with most dendritic
compartments being dominated by a single input stream (bright
color). Clearly, these inputs have been potentiated through STDP
while the inputs from other streams have been depressed.

For lower (A) and higher (C) balance ratio, this pattern
is degraded, with a decrease of the contrast between clusters
and appearance of overlaps (regions where two or more stream
remain strong, thus shown in black). For a balance ratio of 6
(Figure 6C) we even observed subsections of the dendritic tree
where efficacy clusters were absent. These dendritic subsections
had essentially become regions that do not respond to any group
of afferent inputs.

Increasing both the mean input frequencies and the degree of
imbalance induce non-trivial changes for the mMHI (Figure 7).
Above 20 Hz, a local mMHI minimum replaces the steady decay
seen at lower frequency. The value of the mMHI minimum
is approximately independent of frequency but frequency
determines the balance ratio at which the minimum occurs. The
mMHImaximum remains at 1.8A−τ−/A+τ+ for all frequencies.
Note that already at 40Hz, the upward slope of the mMHI
tend toward an asymptotic limit. Indeed no further change were
observed at frequencies >40Hz. Thus, the mMHI in the 0 ∼ 2.5
A−τ−/A+τ+ range is similar for all input frequencies and below
and in the 2.5 ∼ 6 range for input frequencies above 30 Hz. This
suggests that the conditions required for the optimal tiling of
synaptic clustering are robust for a wide range of parameters.
The unexpected appearance of a local minimum at ∼2.5 may
be linked to the degree of local excitability, the number of post-
synaptic events generated by incoming inputs and where they
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FIGURE 4 | STDP imbalance impacts the dendritic mosaic. Increasing the A−τ−/A+τ+ ratio leads to changes in the mMHI for three different values of the exponent

µ appearing in the Gütig STDP model of synaptic competition. Note that we used here the same incremental increases in the value of A− as in Figure 2, for the three

different values of µ = 0.03, 0.08, 0.15.

FIGURE 5 | Mean Input Frequency and STDP balance jointly affect the dendritic mosaic. At a given mean input frequency of 10 Hz and µ = 0.03, stepwise increase

of A−τ−/A+τ+ produces changes in the mMHI, with a maximum for a ratio of 1.8. Note that (A), (B), and (C) appearing in Figure correspond to balance ratio values

of 1.1, 1.8, and 6, respectively.

occur in dendrites. The number of generated action potentials
clearly follows a nonlinear relationship with the mean frequency
of the inputs locally targeting the dendrite.

STDP Balance and Mean Input Frequencies
Jointly Influence Local Spiking
In the previous section, we saw how the mean input frequencies
and the degree of STDP balance affects the emergence of the
dendritic mosaic. Here, we analyze the corresponding alterations
to local neuronal response at the soma and several representative
dendritic locations, as shown in Figures 8A,B. Firing rate at the
soma (when subjected to inputs from all four afferent groups)

dramatically decreases from 86 Hz to 0.2 Hz as the degree of
imbalance (balance ratio) increases from 1.05 through to 1.8
(Figure 8A).

For larger degrees of imbalance (from 1.8 to 6) the neuronal
firing rate remains relatively constant around 0.03 Hz. In
contrast, the firing rate for the dendritic locations display
maximal spikes rates at different values of the balance ratio
(Figure 8B) and different level of activity, even when LTD is
favored (high STDP imbalance ratio).

Influence of Morphology
In the realistic model presented above, we have measured
how STDP balance and mean input frequency influence the
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FIGURE 6 | Mean Input Frequency and STDP balance jointly affect the dendritic mosaic. Spatial organization pattern of synaptic efficacies associated with Figure 5

for a balance ratio A−τ−/A+τ+, of 1.1 (A), 1.8, (B), and 6 (C), for each of the four afferent groups. Increasing the balance ratio changes the patterning of synaptic

efficacies. Note that while (C) corresponds to a low mMHI (Figure 4), the inputs are still clustered, albeit with lower complementarity (i.e., some dendrite segments still

show similar synapse strength for different inputs streams after STDP plasticity).

emergence of efficacy clusters. Since clustering emerge from
local interactions of synaptic inputs, we wondered to what
extend dendritic morphology plays in the appearance and
stability of the mosaic. Historically, Rall (1964) was the first

to show how neural morphology can influence the firing

properties of neurons, using simple compartmentalized ball-

and-stick models (Rall, 1964). To directly investigate whether

the morphology of the dendrites impacts the emergence of the

dendritic mosaic, we chose to compare a realistic (reconstructed
from tracing) neuron morphology to an extremely simplified

simple cable equivalent. This extreme approach allowed us to

preserve the active properties of the original cell with only

simple transformations while reducing the morphology to an
unbranched dendrite. We thus generated the simplified models

using two published reduction methods that map complex

dendritic morphologies to an unbranched cable structure while

maintaining axial resistance and without altering the active

properties used in the original model. An alternative approach

could be to systematically change the lengths and diameters of

dendritic branches, or to gradually merge branches together until
significant mosaic alterations are detected. This approach has
the double handicap of being both computationally intensive

and not amenable to experimental testing. Instead, in a future
study, we intend to compare mosaic formation in realistic but
different morphologies such as CA1 pyramidal cell, Purkinje cell
and spinal cord motoneurons and compare simulation data to
physiological data.

The first of these methods relies upon a very simple
construction yielding a simplified equivalent cable morphology
of the original dendritic tree, consisting of only three identified
regions but conserving the electrical properties, length and total
surface area of the original cell (Iannella et al., 2004), as shown in
Figure 9. The second method is based upon combining branches
into an equivalent cylinder where the axial resistance of the
original branches are not altered (Destexhe et al., 1998). This
requires summing the cross sectional area of each contributing
branch and results in an equivalent cylinder with a radius given
by the square root of sum of all contributing radii squared,

r =

√

∑

i r
2
i . The length of the cable is taken to be the average

length of contributing branches weighted by their respective
radii ri, in order to take different contributing branch lengths
into account, l =

∑

i liri/
∑

i ri. The resulting total surface
area of the simplified model differs from the original, requiring
correction of all conductances and the membrane capacitance
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FIGURE 7 | Mean Input Frequency and STDP balance leads to nonlinear

effects on mMHI. Increasing both the balance ratio A−τ−/A+τ+ (stepwise as

in Figure 2) and the mean input frequency leads to nontrivial changes in the

mMHI, with appearance of a local mMHI minimum for higher firing frequencies.

Note that the balance ratio at which this minimum is observed seem to

depend on the firing frequency.

by a multiplicative factor to maintain input resistance (see
Destexhe et al., 1998 for more details). The Destexhe simplified
morphology is presented in Figure 9.

Figure 10 presents the mMHI index as a function of STDP
imbalance for both of these simplified models. Altering the
morphology while keeping the same active properties alters the
mMHI (Compare to Figure 2). Notably, for the first method,
there is an initial sharp drop followed by a slower monotonic
rise in the mMHI index while for the second method, mMHI is
a monotonic function of balance. Both mMHI profiles are less
complex than profile obtained for the complex model (Figure 2),
showing that dendritic morphology plays an important role in
the emergence of the dendritc mosaic and its constituent synaptic
efficacy clusters.

Increasing the degree of imbalance (by increasing the balance
ratio) leads to different quantitative effects on the resulting spatial
patterning of synaptic efficacy for each simplified model. For
the Iannella reduced model one clearly sees that for an initial
balance ratio value of 1.15 there is a preference to form large
spatial clusters that occupy distinct portions of the unbranched
dendrite, thus indicating that for this balance ratio, STDP
implements an underlying spatial winner-take-all process that
allow large spatial clusters to emerge. The formation of large
spatial clusters, however, is a transient occurrence since a small
increase in the balance ratio from 1.15 to 1.33 leads to the
emergence of smaller clusters spread throughout the dendrite
that can overlap in space with other clusters contributed by other
groups.

This is in stark contrast to the formation of large distinct
clusters. The appearance of large spatial clusters usually indicates
synergy between synapses however the transformation from

large to small clusters signifies a sudden loss of spatial extent
of co-operativity between synapses. Increasing the balance
ratio further leads to small synaptic efficacy clusters that
are sparsely distributed but can overlap with other efficacy
clusters contributed by other afferent groups. In comparison,
the Destexhe simplified model results in only small clusters that
are spread out throughout the entire extent of the unbranched
dendrite, but as the balance ratio is increased, this gives rise
to small efficacy clusters that can spatially overlap with other
clusters (contributed by other afferent groups) but are also freely
distributed along the extent of the dendrite.

Inspecting the spatial organization of clusters that have
emerged in both simplified models reveals some interesting
common traits. For both simplified models, increasing the degree
of imbalance leads to the formation of small localized synaptic
efficacy clusters that are sparsely distributed in dendritic space.
Notably, when balance ratio is large, there are spatial regions in
the dendrite that are devoid of any input (see Figure 11 these
are indicated by black arrowheads), while in other regions there
can be two or more localized clusters that overlap, potentially
mutually augmenting their inputs (see Figure 11 indicated by red
arrows).

Since there is a drastic change of synaptic efficacy, we
wondered about the concurrent alterations the neuron’s input-
output relationship in both the space and time domains.
Samples of the membrane potential recorded from three different
locations, the soma and two different dendritic locations
respectively labeled as “S,” “Pos 3,” and “Pos 5” as indicated in
Figure 12 before and after STDP learning for both simplified
models. Figure 12 illustrates these membrane potential traces
for each model at two different values of the balance ratio
A−τ−
A+τ+

= 1.15 and A−τ−
A+τ+

= 6.0 denoted by A1 and A4,

respectively. Here, when a balance ratio of 1.15 is used, one can
observe small qualitative changes to the membrane potential at
the above described locations after STDP. Conversely, a large
balance ratio value leads tomarked qualitative alterations to these
membrane potential traces after STDP (A4). Specifically, the
membrane potential tends to the resting state, with the occasional
occurrence of spikes or burst of spikes, at the three specified
locations.

DISCUSSION

In this study, we investigated how synaptic competition
and STDP jointly determines the formation and stability of
clustered synaptic efficacy engrams in a realistic biophysical
model. Similar to our previous study (Iannella and Tanaka,
2006), when the model received inputs from two groups of
correlated afferent fibers (with no inter-group correlation), STDP
learning results in the formation of interdigitated regions of
synaptic efficacy clusters, forming a spatially complementary
pattern of synaptic strength for each respective group of
afferents. With four groups of afferent fibers (again with
intra-group correlation), we still observe the emergence of
the dendritic mosaic as a result of STDP learning. Here we
examined the relative contribution and influence of mean
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FIGURE 8 | STDP balance affects local spiking. (A) Layer 2/3 cell used in simulations indicating the locations of the soma and four distinct dendritic locations denoted

by pos 1 through to pos 4, respectively. (B) Increasing the A−τ−/A+τ+ balance causes a rapid monotonous decrease of somatic firing rate (B) while dendrites show

complex responses, measured at 4 different locations (pos 1–4) (C), using a mean input stimulus frequency of 10 Hz. All four dendritic locations show a spiking

maxima for the balance ratio resulting in maximal mMHI (1.8) but only approximately and with marked differences. Notably, for larger values of the balance ratio, the

dendritic firing rates reduce to zero for positions 3 and 4, while the other two locations show sustained nonzero rate.

FIGURE 9 | Unbranched cable morphology. Application of the reduction schemes proposed by us (Iannella et al., 2004) and by Destexhe et al. (1998) to transform

the original dendritic tree into an unbranched cable composed of three sections, each with different radii. Pos 1, 2, and 4 are at the middle of each section while Pos 3

and 5 are at 0.2 and 0.8 of the most distal section.
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FIGURE 10 | The mMHI in reduced models. mMHI is computed for the balance ratio A−τ−/A+τ+ ranging from 1.15 to 6.0, using a mean input stimulus frequency of

40 Hz. Note that mMHI was more densely sampled for balance ratio between 1.15 to 3.3, as in Figure 2.

input frequency, the degree of synaptic competition, and
the balance between potentiation and depression, in this
phenomenon.

Considering the non-linear dynamic of the system under
study (a spatially extended model with full complement of ion
channels) and the stochasticity introduced through the random
arrival times of the afferent inputs, analysis of parameters
contributions to spatial pattern formation is not possible
analytically. Here we addressed the issue by an exhaustive
exploration of the parameter space through simulation, both in
a complex model and in a model with simplified morphology but
similar electrophysiological properties.

One of the key features used of the model is that it detects
local dendritic spikes to convey post-synaptic timing information
locally, as opposed to the global nature of the back propagating
action potential (BPAP). Whether BPAPs can fulfill the role of
telling every synapse in the dendrite when the neuron fired an
action potential has come into question. Experiments have shown
that the BPAP does not fully invade the dendrite due to voltage
attenuation (Larkum et al., 2001; Stuart and Häusser, 2001) and
that synaptic activity either reduce or block BPAP invasion into
the dendrite completely (Paré et al., 1998; Mickus et al., 1999;
Larkum et al., 2001). In addition, changes in synaptic efficacy
can occur without the need of a BPAP (Schiller et al., 2000;
Golding et al., 2002; Holthoff et al., 2004) and constant synaptic
bombardment across the dendrite can cause spike generation
in dendrites, which may also limit BPAP propagation (Paré
et al., 1998; Larkum et al., 2001). Therefore, it seems unlikely
that the BPAP could provide every synapse located within the
dendritic tree with the necessary timing information of when
postsynaptic firing occurred. Post-synaptic timing information
carried by locally triggered dendritic spikes may provide a more
robust signal. From a theoretical standpoint, the use of dendritic
spikes may play an important computational role in permitting
the neuron to develop functional compartments, allowing the
neuron to perform complex computations or increase itsmemory
storage capacity (Poirazi et al., 2001, 2003b; Polsky et al.,
2004).

A defining feature of our model is the emergence under
STDP of synaptic clusters forming a dendritic mosaic
(tessellation). This was observed over a restricted region of
the multidimensional parameter space defined by (1) the degree
of synaptic competition, (2) mean input frequency, and (3)
the amount of synaptic balance. In addition, we found that
when STDP learning is dominated by depression, learning
still gives rise to synaptic clusters despite the imbalance
introduced between depression and potentiation components
of the temporal learning window. Note however that the
spatial organization of these clusters fail to form a continuous
tiling pattern in some regions of the dendrites. This result in
degraded dendritic mosaic, with areas essentially devoid of
synaptic inputs. Functionally, this may correspond to regions
of silent synapses or the synaptic cold-spot previously described
experimentally (Zador et al., 1992). Finally, comparison with
simple model derived from the realistic one shows degraded
ability to form a mosaic, confirming the role of local non-
linearities. Specifically, our model layer 2/3 pyramidal cell was
compared to two equivalent cable models (whose reduction
has been detailed elsewhere, Destexhe et al., 1998; Iannella
et al., 2004) that conserve input resistance of the original
neuron. Both full and reduced models used identical sets of
ion channels. After STDP learning, analysis of the mutual
information index and of the corresponding synaptic clusters
shows an altered mosaic formation, for a wide range of STDP
balance. These differences arise since altering the morphology
of the dendrites ultimately changes how synaptic inputs interact
with each other and with local channels in dendrites. This
leads to non-linear inputs summation and local alteration
of input resistance, thus altering the local conditions of
STDP.

Our study provide new insight on the interplay between
synapse location, active dendritic properties, morphology
and synaptic plasticity in shaping the strengths and spatial
arrangements of synapses. One strong prediction arising from
this study is that “inputs clustering” may be the favored and
natural outcome of synaptic plasticity when neurons receive
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FIGURE 11 | Synaptic efficacy clusters in simplified model. Spatial

organization pattern of synaptic efficacies associated with Figure 10 for

balance ratios A−τ−/A+τ+, of 1.15 (A1) and 6.0 (A4), for each of the four

afferent groups. Increasing the balance ratio has qualitatively different effect on

the two simplified models (compare A1), but high ratio yields clear local

clustering for both models (A4). Note that at high ratio, some regions are

essentially devoid of dominant input (black arrowheads) while some regions

show mixed dominance by two or more inputs (red arrowheads).

different streams of correlated inputs, as often seen in sensory and
associative brain areas. Indeed, in the visual and auditory systems
(and probably other sensory systems), clustering functionally
related inputs on different dendritic domains seem to play
a role in tuning the neuron for contrasting stimuli in time
and/or spac (McBride et al., 2008; Jia et al., 2010; Kleindienst
et al., 2011; Podgorski et al., 2012). Our results indicate that
maximum clustering -and thus the ability to discriminate stimuli-
emerge and is only produced and maintained for a narrow
band of input frequency. This implies that there is conflict
between building the ability to discriminate between stimuli
(through STDP) and the ability to encode stimuli intensity as
spike rate. Indeed, our results predict that a neuron exhibiting

mosaic clustering should exhibit approximately constant EPSP
frequency when stimulus intensity varies widely. This limitation
only exists however if STDP is maintained throughout life. If
the mosaic is formed during a developmental critical period,
before “crystallization” in the adult then the same neuron
would exhibit both synaptic mosaic (input discrimination) and
ability to integrate rat-coded signals. We predict that genetic or
pharmacological manipulation of plasticity balance in the young,
typically by changing the level of GABA inhibition (Hensch
et al., 1998; Morales et al., 2002; Takesian and Hensch, 2013),
homeostatic mechanisms (Turrigiano and Nelson, 2004), the
activity of NMDA receptors (Medina et al., 1999; Quinlan et al.,
1999; Krapivinsky et al., 2003; Bender et al., 2006; Nevian
and Sakmann, 2006), should permanently impair formation of
cluster, with the correlate that this would diminish the ability to
detect contrast stimuli in the adult.

Comparing the profiles of somatic and dendritic firing rates
(Figure 8) with the mMHI (Figure 8), it appears that the non-
monotonic variations of mMHI with increased imbalance may
result from the interplay between membrane excitability and
the exposure to STDP. This results in a large reduction of the
neuron’s (somatic) firing rate after STDP learning, from 86 Hz
to 0.2 Hz to 0.03 Hz. The reason is that STDP net effect is
to reduce synaptic weights. Interestingly, an emergent feature
in this context is the presence of dendritic regions that seem
to resist being silenced (enduring the suppressive nature of
STDP due to increasing balance ratios), and responding with
higher rates of spike generation than those observed at the
soma. This suggests that these particular regions of the dendrite
essentially behave as functional subunits, providing the neuron
with additional levels of processing (similar to what one expects
from a neural network) before global integration and spike
firing takes place in the soma (albeit at a diminished rate). Put
simply, one observes the emergence (via STDP) of neuron that
functionally behaves more as a two-layer (or more) distributed
network rather than as a globally weighted summation device.
This view is in agreement with the view that dendritic
branches can potentially behave as independent functional units
(computational subunits) and secondly, that they may promote
functional compartmentalization of inputs in dendrites (Poirazi
et al., 2003b; Losonczy and Magee, 2006; Harvey and Svoboda,
2007; De Roo et al., 2008; Larkum et al., 2009; Govindarajan
et al., 2011; Kleindienst et al., 2011; Legenstein and Maass,
2011; Makino and Malinow, 2011; Harnett et al., 2012; Major
et al., 2013; Sajikumar et al., 2014). It is important to note,
however, that dendritic branches behaving as computational
subunits tend to be dynamic in nature where the spatial and
temporal patterning of inputs and the nonlinear nature of the
dendritic membrane drives the functional properties of dendritic
integration.

Furthermore, the firing profiles at different dendritic locations
(Figure 8) are the result of generating dendritic spikes at different
rates and depend on the nonlinear nature of the dendritic
channels and local branching morphology. The clustering
results in tuning various portions of the dendritic tree in
an unsupervised manner. This self-organization process causes
specific portion of the dendritic tree to become maximally
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FIGURE 12 | Electrical activity before and after STDP. Traces of the membrane potential recorded from the soma and dendritic locations Pos 3 and Pos 5 before and

after the of STDP, for two different values of STDP balance denoted by A1 = 1.15 and A4 = 6. After STDP, the membrane potential tends to the resting potential

value, with spikes or spike bursts occurring irregularly. Note that the two simplified models converge to remarkably similar pattern of activity, despite the markedly

different synaptic mosaic (see Supplementary Materials for other locations).

responsive to specific inputs. This is akin to the branch specific
plasticity recently described by Losonczy et al. (2008), Kleindienst
et al. (2011), Legenstein and Maass (2011), Makino and Malinow
(2011), and Sajikumar et al. (2014). These results thus point
to previously not fully unrecognized properties of dendrites,
allowing different sections of the dendritic tree to be “selectively
tuned” through synaptic plasticity processes that take into

account the nonlinear nature of dendritic voltage depolarization
and the statistical structure of the inputs. Such selective tuning
may allow the dendrites to process inputs independently and
to compartmentally store input features in a robust manner.
This added complexity yield a more dynamic and nontrivial
computational model of neuronal processing and input/output
responses.
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Relation to Other Models
There is renewed interest in investigating how synaptic
plasticity applied to passive or active dendritic trees shapes
the storage of input features via the formation of dendritic
compartmentalization (Rabinowitch and Segev, 2006a,b). For
example, Tamosiunaite et al. (2007) have reported a type of
winner-take-all competition between dendritic branches. In
contrast to our study and that of Legenstein and Maass (2011),
they only considered the case where individual input groups were
initially spatially segregated and would target single branches
(Tamosiunaite et al., 2007). More realistically, Legenstein and
Maass (2011) have directly implemented neuronal mechanisms
where both functional compartmentalization of input features
takes place and dendritic branches compete and behave as
individual computational subunits. These authors have shown
that when explicitly incorporating two levels of competition, one
between dendritic branches and the other at the winning branch
between locally situated synapses, correlated synaptic activity is
strengthened while the efficacy of other synapses decays with
time. This permits the features of single input pattern to be stored
locally even in one single branch. This type of self-organization
thus allows the storage of multiple input features by a single
neuron in different non-overlapping regions of the dendrite.

Mechanisms Underlying Inhomogeneous
Spatial Patterns of Clusters
The functional benefits of spatially organized synaptic inputs
are well documented (Rall, 1964; Mel, 1992b). The precise
biophysical mechanisms leading to this organization, allowing
memory engram to be represented in “synaptic clusters” are
thus of prime interest, both from biological and theoretical
perspectives. Previous studies of neural networks self-
organization into functional maps have shown that non-linear

interaction of short-range excitation and longer-range inhibition
are fundamental in the emergence of any type of clustered
organization (Haken, 1977; Kohonen, 1982; Haken, 1983).
This interaction is important since it sets up a winner-take-all
mechanism which, under the appropriate conditions, ultimately
leads to the development of the functional clusters thus forming
the map. The interaction function is spatial in nature and usually
balanced in the sense that positive and negative areas of the
function are (nearly) equal and thus balance each other out. This
type of interaction is also envisioned to occur in dendritic trees.

Limitations of the Study
Our study describes the conditions under which synaptic efficacy
clusters may emerge to form a dendritic mosaic. We found that
it is jointly determined by multiple factors, including mean input
frequency, the degree of synaptic competition, synaptic balance
and dendrite morphology. The region in this multidimensional
parameter space where both synaptic efficacy clusters and the
dendritic mosaic emerge as a result of STDP learning correspond
to a physiological range (frequency) or range used by others.
Future work may consider investigating the role of synaptic
balance when both excitatory and inhibitory synapses undergo
plastic change, to elucidate how balance and plastic inhibitory

synapses jointly impact the spatial organization of both excitatory
and inhibitory synaptic efficacies.

A novel extension may be to investigate other forms of
morphological influences. Recent studies have pointed out
additional influence of neuronal morphology on synaptic
plasticity and on formation of cortical circuits. For example,
important differences in the shape and distribution of dendritic
spines along neuronal dendrites between pyramidal cells
from different cortical areas, layers, and species have been
observed (Murayama et al., 1997; Elston, 2003; Bianchi et al.,
2013; Elston and Manger, 2014). In primates, for example, both
the numbers, density, and distribution of dendritic spines differ
for pyramidal neurons in different cortical areas, while in the
mouse the spine density seems to be constant (Murayama et al.,
1997; Elston, 2003; Ballesteros-Yáñez et al., 2006; Benavides-
Piccione et al., 2006; Bianchi et al., 2013; Elston and Manger,
2014). Another aspect are dendritic spines, as these are the loci
where the formation and refinement of cortical circuitry through
processes of synaptic plasticity and (consequently) synaptic
transmission takes place. In basal dendrites, it has been reported
that the size of the spine head is proportional to the number of
post-synaptic receptors and pre-synaptic docked vesicle, while
the length of the spine neck seems to be associated with the
calcium compartmentalization (Ballesteros-Yáñez et al., 2006).
Taken together, all these point to the need to re-examine the role
played by neuronal morphology in brain development, especially
the impact of developmental morphological changes, synaptic
plasticity, and synaptogenesis has on the formation of cortical
circuits including the patterning of convergent afferent inputs
to neurons. Although such a study would be highly valuable,
care needs to be taken to incorporate biophysically meaningful
processes that correctly capture the biochemical processes of
activity-dependent synaptic plasticity, neuronal growth, and
spine creation and elimination. The results of such a study will
be presented in a future publication and is thus beyond the scope
of this paper.

Another extension would be to base the STDP plasticity
on an explicit biophysical model of calcium dynamics and
biochemical signaling cascades involved in learning andmemory.
One candidate is the plasticity rule first introduced by Graupner
and Brunel (2007). Using such a rule would allow to correlate the
emergence of synaptic efficacy clusters with the underlying states
of the biochemical signaling cascade, generating experimentally
testable predictions. Other potential improvements are an
explicit modeling of dendritic spines and of the underlying
reaction-diffusion processes, along with Graupner’s calcium-
based plasticity rule (Graupner and Brunel, 2007).We expect that
the spatially restricted calcium signals may allow the emergence
of synaptic mosaic for more streams of correlated inputs, beyond
the two and four groups tested in the current model.

CONCLUSIONS

This current study illustrates how the level of synaptic balance,
admitted by STDP, impacts the formation of synaptic efficacy
clusters in dendrites. We believe that the current study
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provides useful insights for the interplay between synapse
location, synaptic plasticity, and the active properties of
the membrane not only shapes the strengths and spatial
arrangements of synapses but highlights the emergence of a
functional compartmentalization from STDP. Furthermore, we
also illustrated that cellular morphology can play a significant
role in the emergence of efficacy clusters. In particular our results
hint that dendritic branches, under the right conditions, can act
as (near) independent functional units, in agreement with other
authors (Losonczy et al., 2008; Kleindienst et al., 2011; Legenstein
and Maass, 2011; Makino and Malinow, 2011). This permits a
novel subdivision of dendritic space and paves the way for the
formation of selectively responsive regions of the dendrite and
further suggests that the distributed storage of information is the
natural mode of information storage in neural circuits. Finally,
we are considering further extensions to the current research,
such as the inclusion of more detailed biochemistry, dendritic
spines, and reaction diffusion processes. These extensions would
permit a deeper understanding, at the subcellular level, into
how the interplay between synapse location, calcium based
biochemistry, and synaptic plasticity in neuronal dendrites
shapes dendritic information storage within neural circuits.
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