
ORIGINAL RESEARCH
published: 30 May 2017

doi: 10.3389/fncom.2017.00044

Frontiers in Computational Neuroscience | www.frontiersin.org 1 May 2017 | Volume 11 | Article 44

Edited by:

Matjaž Perc,

University of Maribor, Slovenia

Reviewed by:

Qing Yun Wang,

Beihang University, China

Ergin Yilmaz,

Bulent Ecevit University, Turkey

*Correspondence:

Leonid L. Rubchinsky

lrubchin@iupui.edu

†
Present Address:

Sungwoo Ahn,

Department of Mathematics, East

Carolina University, Greenville, NC,

United States

Received: 10 April 2017

Accepted: 15 May 2017

Published: 30 May 2017

Citation:

Ahn S and Rubchinsky LL (2017)

Potential Mechanisms and Functions

of Intermittent Neural Synchronization.

Front. Comput. Neurosci. 11:44.

doi: 10.3389/fncom.2017.00044

Potential Mechanisms and Functions
of Intermittent Neural
Synchronization
Sungwoo Ahn 1† and Leonid L. Rubchinsky 1, 2*

1Department of Mathematical Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States,
2 Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States

Neural synchronization is believed to play an important role in different brain functions.

Synchrony in cortical and subcortical circuits is frequently variable in time and not

perfect. Few long intervals of desynchronized dynamics may be functionally different from

many short desynchronized intervals although the average synchrony may be the same.

Recent analysis of imperfect synchrony in different neural systems reported one common

feature: neural oscillations may go out of synchrony frequently, but primarily for a short

time interval. This study explores potential mechanisms and functional advantages of

this short desynchronizations dynamics using computational neuroscience techniques.

We show that short desynchronizations are exhibited in coupled neurons if their

delayed rectifier potassium current has relatively large values of the voltage-dependent

activation time-constant. The delayed activation of potassium current is associated

with generation of quickly-rising action potential. This “spikiness” is a very general

property of neurons. This may explain why very different neural systems exhibit short

desynchronization dynamics. We also show how the distribution of desynchronization

durationsmay be independent of the synchronization strength. Finally, we show that short

desynchronization dynamics requires weaker synaptic input to reach a pre-set synchrony

level. Thus, this dynamics allows for efficient regulation of synchrony and may promote

efficient formation of synchronous neural assemblies.

Keywords: neural synchrony, intermittency, neural oscillations, neural assemblies, delayed-rectifier potassium

current

INTRODUCTION

Synchrony of neural oscillations is believed to play important role in a variety of functions of
the brain (e.g., Buzsáki and Draguhn, 2004; Colgin, 2011; Fell and Axmacher, 2011; Buzsáki and
Schomburg, 2015; Fries, 2015; Harris and Gordon, 2015). Improperly organized (too excessive or
too weak) synchrony is associated with several neurological and neuropsychiatric dysfunctions
(e.g., Schnitzler and Gross, 2005; Uhlhaas and Singer, 2006, 2010; Oswal et al., 2013; Pittman-
Polletta et al., 2015; Spellman and Gordon, 2015). However, the synchrony in cortical and
subcortical circuits may not necessarily stay perfect for a prolong intervals of time (if it can
be perfect at all). If synchrony is induced by transient stimulus, the transient character of this
synchrony would be expected. But even in the idling dynamics of neural circuits of the brain
prolonged perfect synchrony is rarely (if at all) reported.
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This implies that for some intervals of time synchrony may
be stronger, while for other intervals of time it may be weaker.
The temporal patterns of synchrony may exhibit variations of
synchrony strength yielding some average synchrony values. Few
long intervals of desynchronized dynamics may be functionally
different frommany short desynchronized intervals, although the
synchrony may be the same on the average.

Detection and quantification of the transient, varying,
intermittent synchronization have been considered in the past
(e.g., Hurtado et al., 2004; Le Van Quyen and Bragin, 2007).
But these attempts were limited by the need in sufficiently
long time-windows to obtain statistical significance, because
synchronization is not an instantaneous phenomenon (Pikovsky
et al., 2001). However, recent developments in time-series
analysis (Ahn et al., 2011) allowed exploring the temporal
patterning of synchrony on very short time-scales. The analysis
of this fine temporal structure of synchronization is possible,
because if some synchrony level is present on the average, then
one can look at each cycle of oscillations and detect whether the
signals are in the synchronous state or not.

These methods were used to study neural synchronization in
several different systems: synchronization between single units
and LFPs in the basal ganglia of Parkinsonian patients (Park
et al., 2010; Ratnadurai-Giridharan et al., 2016), synchronization
of EEG signals in healthy humans (Ahn and Rubchinsky,
2013), synchronization of LFPs between prefrontal and
hippocampus circuits in normal rats and rats experiencing
repetitive psychostimulant injections (Ahn et al., 2014). All
these studies had one common feature: neural oscillations were
observed to go out of synchrony frequently, but primarily for a
short time interval. The observed synchrony level was reached
by potentially very frequent, but short desynchronizations.

Since this short desynchronization dynamics was observed
across different species, different conditions, and different
signal types, it may be a universal feature of synchronized
activity of neural systems. In this study we are providing a
possible explanation for this apparent experimentally observed
universality. We do so by looking for answers to two questions:
what are the cellular or network mechanisms of this dynamics?
What is its potential functional advantage?

We hypothesize that if this kind of dynamics is universal,
it may be grounded in some general properties of neuronal
excitability. In connection with this hypothesis, it is important
to recall early insightful computational study (Somers and
Kopell, 1993), which suggested that membrane conductances
responsible for spiking help to speed up the establishment of
synchrony. Here we will explore how experimentally observed
short desynchronizations dynamics is defined by the kinetics
of ionic channels, responsible for the generation of spikes. We
also hypothesize that short desynchronization dynamics permits
creation of synchronous states with weaker inputs. This may
make neural systems more adaptable as they can easily create
synchronous assemblies in response to synaptic or sensory
inputs.

Since short desynchronization dynamics may be a generic
phenomenon based on the properties of membrane channels,
which are hard to alter in experiment, we use computational

neuroscience techniques to study very simple conductance-
based neuronal models. We alter the properties of conductances
to explore their critical features for short desynchronization
dynamics and investigate how coupled neurons may be efficiently
entrained by external input. Models are subjected to the same
kind of time-series analysis techniques as were used in earlier
experimental studies. As a result, we reveal potential cellular basis
of short desynchronization dynamics in themodel and present its
potential functional advantages.

METHODS

Neuronal Model
We use a conductance-based modified Morris-Lecar neuronal
model (Izhikevich, 2007; Ermentrout and Terman, 2010). We
choose it because it is a simple (perhaps, the simplest) model
that directly retains membrane conductances. Even though the
original Morris-Lecar model includes calcium and potassium
currents, it is equivalent to a reduced classical Hodgkin-Huxley
sodium-potassium model (Izhikevich, 2007; Ermentrout and
Terman, 2010). So, by studying this neural model, we model
neurons with sodium-potassium spiking mechanism with fast
sodium and delayed rectifier potassium currents.

We consider the model in the form:

v′ = − INa − IK − IL − Isyn + Iapp, (1)

w′ = [w∞ (v) − w] /τ (v) . (2)

v is a transmembrane voltage and w is the gating variable
of potassium current. INa = gNa m∞ (v) (v− vNa) , IK =

gKw (v− vK) and IL = gL (v− vL) are sodium, potassium, and
leak currents; Iapp is a constant parameter and Isyn is a synaptic
current (see below). gNa, gK , gL are the maximal conductances for
the Na+, K+, and the leak currents. The functions

m∞ (v) =
1

1+ exp
(

−2
(

v−vm1
vm2

)) , (3)

w∞(v) =
1

1+ exp
(

−2
(

v−vw1
β

)) , (4)

τ(v) =
1

ε

2

exp
(

v−vw1
2β

)

+ exp
(

−(v−vw1 )

2β

) (5)

are the steady-state activation functions of the gating variables
of the Na+ and K+ currents, and the activation time-constant
for K+ current. The functions m∞(v) and w∞(v) have sigmoid
shapes while τ(v) has a unimodal shape. The term Isyn represents
the synaptic current between cells.

We consider neurons connected with excitatory
synapses adapted from Izhikevich (2007) and Ermentrout
and Terman (2010). For a cell i , the synaptic current
Isyn, i = gsyn

(

vi − vsyn
)

∑

j 6=i

sj, where the sum is over those cells

that send synaptic inputs to a cell i. The synaptic variable s is
modeled by the first-order kinetic equation in the form:

s′ = αs (1− s)H∞ (v− θv) − βs s, (6)
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whereH∞ (x) = 1/[1+exp
(

− x
σs

)

] is a sigmoidal function and v

is the presynaptic neuron voltage (Izhikevich, 2007; Ermentrout
and Terman, 2010). The parameter values are gNa = 1, vNa = 1,
gK = 3.1, vK = −0.7, gL = 0.5, vL = −0.4, Iapp = 0.045,
vm1 = −0.01, vm2 = 0.15, β = 0.145, vw1 = 0.08, ε = 0.02,
gsyn = 0.005, vsyn = 0.5, αs = 2, βs = 0.2, θv = 0, σs = 0.2. We
will further vary the values of ε, β , and vw1 as will be described in
the Results.

Synchronization Analysis
Phase analysis is frequently used to analyze synchronous neural
activity of both continuous (LFP, EEG) and spiking signals (see,
e.g., Lachaux et al., 1999; Hurtado et al., 2004; Le Van Quyen
and Bragin, 2007). This analysis was used in experimental studies
revealing prevalence of short desynchronization dynamics (Park
et al., 2010; Ahn and Rubchinsky, 2013; Ahn et al., 2014;
Ratnadurai-Giridharan et al., 2016). So we assume a very similar
approach here. For a spiking activity, a phase of a neuron i is
reconstructed by computing

ϕi (t) = arctan

(

vi(t)− v̂i

wi(t)− ŵi

)

, (7)

where (v̂i, ŵi) is a rest state of a neuron, set as a center of
rotation in the (vi, wi)-plane. Then we consider an average
synchronization index to measure the strength of the phase
locking between two signals (Pikovsky et al., 2001; Hurtado et al.,
2004):

γ =

∥

∥

∥

∥

1

N

∑N

j=1
ei1ϕ(tj)

∥

∥

∥

∥

2

, (8)

where 1ϕ
(

tj
)

= ϕ1

(

tj
)

− ϕ2

(

tj
)

is the phase difference, the tj
are the sampling points, N is the number of data points to be
considered, and ‖.‖ is the absolute value of a complex number.

This phase synchronization index γ varies from 0 (lack of
synchrony) to 1 (perfect synchrony). It provides an average value
of phase-locking. Theremay be cycles of oscillations, where phase
difference is close to the average value of the phase difference
(phase-locked, synchronized state) and where it is not close to
it (desynchronized state).

To study the fine temporal structure of the dynamics of
synchronization we use the methods recently developed in Park
et al. (2010) and Ahn et al. (2011). Whenever ϕ1 crossed the zero
from negative to positive values, we recorded the value of ϕ2,
generating a set of consecutive phase values {φi}, i = 1, . . . ,N.
If the value of φi differs from the average value of φi by less than
π/2 then the neurons are considered to be in a synchronized
state, otherwise they are in the desynchronized state. We chose
the value of the threshold to be π/2 because the experimental
studies we discussed above used this value. The duration of
desynchronization events is defined as the number of cycles of
oscillations that the system spends in the desynchronized state
minus one. The mode of the distributions of desynchronization
durations is defined as the number with the highest probability of
desynchronization durations.

We characterize the fine temporal structure of intermittent
synchronization by quantifying the properties of distribution
of desynchronization durations. We compute the relative
frequencies (probabilities) of the durations of desynchronization
events. This is similar to how the experimental data were
characterized in the studies of the temporal patterns of synchrony
(Park et al., 2010; Ahn and Rubchinsky, 2013; Ahn et al., 2014;
Ratnadurai-Giridharan et al., 2016). We use the mode of the
distribution of desynchronization durations and the probability
to observe this mode, pmode. If the mode of the desynchronization
duration is short, but other desynchronizations (especially longer
ones) are almost as frequent, then the dynamics is not necessarily
dominated by short desynchronizations. However, if pmode is
close to one, then all other desynchronization durations are rare.

In our approach the duration of synchronization and
desynchronization intervals is measured not in the absolute time
units, but in cycles of oscillations, as was done in experimental
studies. It makes easier to compare synchronization patterns
between rhythms of different frequency. However, as we study
the differences between different desynchronization durations
in the modeling, we also compare the dynamics with the same
frequencies of rhythms (see Results).

RESULTS

We will study the dynamics of coupled model neurons as we
vary parameters of potassium current. We do so by varying
three different parameters: ε, β and vw1 (see Equations 4 and
5), they all affect the effective value of activation time-constant
τ(v) of potassium current. Larger values of τ delay activation
of potassium current and promote characteristic shape of spike
with very sharp rise of voltage, faster decay of voltage, and
prolong interval between spikes. Lowering effective values of
τ in the model (for example, by using larger values of ε) will
lead a model neuron to generate less spiky and more quasi-
sinusoidal profile of activity (Figure 1). By changing the values
of ε, β , vw1 we can study the model neurons exhibiting spiking
activity like at Figure 1A as well as more sinusoidal activity like
at Figure 1B (which is not necessarily very realistic, but will help
in understanding the mechanisms and functions of physiological
activity).

FIGURE 1 | Numerical simulation of a voltage of an isolated neuron (Equations

1–5). Examples of spiking activity (ε = 0.001) (A) and quasi-sinusoidal activity

(ε = 0.5) (B).
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Kinetics of Voltage-Gated Potassium
Channel and the Temporal Patterning of
Synchronization
We consider a minimal neuronal network to exhibit
synchronized dynamics: two neurons mutually connected
with excitatory synapses (Figure 2). These two neurons satisfy
(Equations 1–5) and the synapses are described by Equation (6).
We consider two weakly coupled neurons with a small difference
in firing rate (that is, the frequency of oscillations of voltage)
due to slightly different ε. Note that since ε1 6= ε2 and the
coupling strength gsyn = 0.005 is weak, two cells are not fully
synchronized. Thus, the synchrony is intermittent rather than
perfect.

The Effect of the Peak Value of Activation

Time-Constant
The magnitude of the voltage-dependent activation time-
constant τ(v) of potassium current is inversely proportional
to the parameter ε in such a way that the maximal value of
τ(v) is 1/ε. We consider here how ε affects the durations
of desynchronization events and accompanying changes in the
average synchrony level and the mean frequency of spiking.

As the values of ε1 and ε2 increase, the fine temporal structure
of synchronization changes as evident by the changes of themode
of the distribution of desynchronization durations (Figure 3A).
Smaller values of ε promote short desynchronization intervals
lasting for only one cycle of oscillations. On the contrary,
the increase in ε leads to the increase of the mode of the
distribution of desynchronization durations. That is, as ε

increases, the most frequent desynchronization intervals are
getting longer. Since the activation time-constant τ(v) is inversely
proportional to ε, larger value of τ(v) (which promotes spike-
like waveform in the model) promotes short desynchronization
dynamics.

The synchrony strength γ experiences only very small
variations (Figure 3B). This indicates that the durations of
desynchronizations may be independent of the synchrony
strength. The same level of synchrony may be reached
with numerous short desynchronizations or few long
desynchronizations.

The mean frequency (firing rate) grows substantially
(Figure 3C). This is expected because the growth rate

FIGURE 2 | Diagram of a minimal network of excitatory coupled neurons. We

use ε1 6= ε2 (i.e., neurons have different firing rates) and the coupling strength

gsyn is not very strong.

of w is proportional to ε (Equation 2). As a result, while
desynchronization intervals measured in cycles of oscillations
are longer for larger ε, their durations in the absolute
time are not necessarily growing. We will address this
issue below.

Note that the probability of the dominant duration of
desynchronization events pmode (thin gray line without dots in
Figure 3A) is mostly close to 1 and always higher than 0.5.
Thus, the desynchronization durations of the corresponding
number of cycles is really dominant (because the sum
of all probabilities of the durations of desynchronization
events is 1).

The Effect of the Widths of Voltage-Dependence of

the Activation Time-Constant τ(v)

In the model, the parameter β is related to the width of the
steady state activation function w∞(v) and range of activation
constant τ(v), where τ(v) is substantially different from 0. The
results presented below will show that it is mostly the widths
of voltage-dependence of the activation time-constant τ(v) that
matters for the properties of desynchronization durations. As
β increases, the width of τ(v) increases. That is, the range of
voltages, where the activation time-constant is different from 0, is
getting larger. This may effectively bring τ closer to the maximal
possible value (which is 1/ε in the model) for a larger range of
voltage and thus for a longer time. Thus, similar to the decrease
of ε, larger β will promote more “spiky” and less quasi-sinusoidal
waveforms.

Figure 4 shows how the parameter β affects the synchronized
dynamics of coupled neurons. Larger values of β promote
shorter desynchronization episodes (Figure 4A). There is also
an effect on the synchrony strength (Figure 4B) and the
frequency (Figure 4C). Shorter desynchronizations correspond
to the higher synchrony level. As β is changing, the frequency
is changing. This may mitigate the short desynchronization
phenomena if desynchronization duration is measured in
absolute units of time instead of cycles of oscillations.
Nevertheless, similar to the case considered above, a change in
parameter that leads to larger values of activation time-constant τ
(increase in β) promotes desynchronizations of shorter durations
[as signified by the high value of the probability at the mode
of distribution of desynchronization durations (gray thin line in
Figure 4A)].

The Effect of the Voltage of Half-Activation and

Maximal Activation Time-Constant
We now consider the effect of vw1 which is the midpoint of the
steady state activation functionw∞(v), that is the voltage at which
half of the channels open. The same parameter defines the voltage
at which the activation time-constant τ(v) peaks. Increase in vw1

shifts both curves w∞(v) and τ(v) in the direction of higher
voltages. The conductance will start to increase at higher voltage
and at a later time, and will start to decrease at earlier time. Thus,
larger value of vw1 may be expected to have an effect analogous to
decrease in τ .

The results of numerical simulation presented at the
Figure 5 support this. Lower values of vw1 promote
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FIGURE 3 | The effect of ε1 when ε2 = 1.2ε1. (A) Mode value of the durations of desynchronization events (black line with black dots) and the corresponding

probability to observe the mode value (gray line). The high (close to one) value of probability at mode indicates that the desynchronizations of corresponding duration

are strongly prevalent. (B) Synchronization strength index γ . (C) The mean frequency of activities of both neurons. Since ε2 = 1.2ε1, neuron 2 has slightly higher

frequency than the mean frequency while the neuron 1 has slightly lower frequency than the mean frequency.

FIGURE 4 | The effect of β when ε1 = ε and ε2 = 1.2ε. (A) Mode value of the durations of desynchronization events (black line with black dots) and the

corresponding probability to observe the mode value (gray line). (B) Synchronization strength index γ . (C) The mean frequency of activities of both neurons.
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FIGURE 5 | The effect of vw1 when ε1 = ε and ε2 = 1.2ε. (A) Mode value of the durations of desynchronization events (black line with black dots) and the

corresponding probability to observe the mode value (gray line). (B) Synchronization strength index γ . (C) The mean frequency of activities of both neurons.

shorter desynchronizations (Figure 5A). In this case, the
synchronization strength is larger for short desynchronization
dynamics (Figure 5B), but the frequency is almost constant
(Figure 5C). Thus, the desynchronizations are short here not
only if measured in the number of cycles (spikes), but also
measured in absolute time units.

Changing Desynchronization Durations

Independently of Both Frequency and Synchrony

Strength
The changes in desynchronization durations in the numerical
experiments above are accompanied by changing either average
synchrony strength or firing rate (or even both). Here we
consider whether the desynchronization durations can vary
independently of both synchrony strength and firing rate. To
study this, we modify the Equations (4) and (5) so that the
values of parameter β in equations for w∞(v) and τ (v) are not
identical. This means the half-activation voltage is different from
the voltage at which τ(v) has maximal value:

w∞(v) =
1

1+ exp
(

−2
(

v−vw1
βw

)) , (9)

τ(v) =
1

ε

2

exp
(

v−vw1
2βτ

)

+ exp
(

−(v−vw1 )

2βτ

) . (10)

Smaller βw makes the slope of the steady-state activation function
w∞(v) larger, while smaller βτ makes the width of the constant
function τ(v) smaller. We let βw and βτ be changing in opposite

directions. As βw decreases from 0.134, βτ increases from 0.061
at a different rate (βw = 0.134−0.001k and βτ = 0.061+0.0005k,
where k = 0, 1, . . . , 40.). For other parameters, we use ε2 =

1.3ε1, ε1 = 0.03, Iapp = 0.04, gsyn = 0.005, vw1 = 0.07.
These changes of βw and βτ are not necessarily biologically
realistic, but they allow us to explore whether the changes of
desynchronization durations must covary with the changes of
average synchrony or firing rate.

Figure 6 shows that in this case the synchrony strength
and the firing rate are almost constant while the mode
of desynchronization durations changes drastically. In other
words, simultaneous variations of the width of w∞(v) and
τ(v) vary the distribution of desynchronizations independently
from synchrony strength and firing rate. Thus, the same
level of synchrony strength may be supported either with
many short desynchronizations or few long desynchronizations
regardless of whether the durations of desynchronizations
are measured in cycles of oscillations or in absolute time
units.

Short Desynchronization Dynamics and
Synchronization Threshold
To study potential functional advantages of short
desynchronizations dynamics, we will consider two mutually
excitatory connected neurons (as before) receiving common
synaptic input from a third neuron: neuron 3 excites neurons
1 and 2 through the excitatory synapses (but does not get any
feedback, Figure 7).
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FIGURE 6 | Changing synchronization durations independently from synchrony strength and firing rate. (A) Mode value of the durations of desynchronization events

(black line with black dots) and the corresponding probability to observe the mode value (gray line). (B) Synchronization strength index γ . (C) The mean frequency of

activities of both neurons.

FIGURE 7 | Diagram of a minimal network of excitatory coupled neurons

receiving common synaptic input. Neurons 1 and 2 have different firing rates.

They are mutually coupled through excitatory synapses and receive synaptic

input from neuron 3.

We consider two different versions of three-neuron networks
in Figure 7. In the first version, the parameters are selected
in such a way that when gsyn1 = 0 neurons 1 and 2 exhibit
dynamics with mostly short desynchronizations. The second
version exhibits partially synchronized dynamics with the most

common desynchronization intervals lasting for 4 cycles of
oscillations when gsyn1 = 0. In other words, we consider how
two coupled neurons exhibiting either short desynchronization
dynamics or longer desynchronization dynamics respond to the
common synaptic input.

One network has βw = 0.094 and βτ = 0.081, this is
the left end of the horizontal axis in Figure 6A. The mode of
desynchronization durations is just 1 andwewill call this network
“cycle 1” network (short desynchronizations network). The other
network has βw = 0.134 and βτ = 0.061, this is the right end of
the horizontal axis in Figure 6A. The mode of desynchronization
durations is 4 and we will call this network “cycle 4” network
(longer desynchronizations network). It is important to note
that both networks have almost the same synchrony strength
(Figure 6B) and firing rate (Figure 6C). So, except the difference
in desynchronization durations, the dynamics of two networks
are similar. That is, they have the same synchrony level and the
same period of oscillations in the absence of synaptic input from
the neuron 3.

In the numerical experiments, ε1 = 0.03 and ε2 =

1.3ε1, the same values as used in Figure 6. We consider four
different values of the firing rate in the neuron 3: ε3 =
{

0.5ε1,
ε1+ε2

2 , 1.5ε1, 2ε1
}

. So, the firing rate in neuron 3 is
either substantially lower than in neurons 1 and 2, equals to the
average of firing rates of neurons 1 and 2, or is higher than firing
rates in neurons 1 and 2. All other parameters of neurons 1, 2,
and 3 are the same and fixed as those used in Figure 6.
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Now let us consider these two networks as the common input
to neurons 1 and 2 is getting stronger due to increase of gsyn1
from zero (while gsyn = 0.005 is fixed, that is, the coupling
between neuron 1 and neuron 2 is relatively weak). As synaptic
input from neuron 3 to neurons 1 and 2 is getting stronger,
neurons 1 and 2 are becoming more synchronous and will
eventually be in full synchrony with each other due to common
synaptic input and mutual synaptic coupling.

We compute the synchrony index γ for “cycle 1” and “cycle
4” networks (γ (1C) and γ (4C) respectively) when increasing
values of gsyn1. To study how differently these networks are
synchronized, we consider the absolute and relative difference
of synchronization indices γ (1C) and γ (4C) for different values
of gsyn1. Figure 8 presents the averages of γ (1C) − γ (4C)

(thick solid line) and γ (1C)− γ (4C)

γ (4C) (the insert figure). Both

quantities indicate how much synchronization in “cycle 1” (short
desynchronizations) network is stronger than synchronization in
“cycle 4” network when they receive the same synaptic input from
the neuron 3.

When this input is weak (gsyn1 is small), γ (1C) and γ (4C) are

close to each other. When gsyn1 is large, γ (1C) and γ (4C) are
again close to each other because both networks are necessarily
strongly synchronous due to strong input. However, for the
values of gsyn1 between zero and synchronization threshold

value, γ (1C) − γ (4C) is large and positive. So the networks
exhibiting short desynchronizations dynamics in the absence

of input (“cycle 1” networks) reach either the same synchrony
levels or higher synchrony levels than long desynchronization
(“cycle 4”) networks for the same strength of synaptic input
gsyn1. This phenomenon is observed regardless of the firing
rate in presynaptic neuron 3 (i.e., regardless of ε3). Sometimes
this difference in the synchronization strength is moderate, but
sometimes it is quite substantial (see Figure 8). The synchrony
index is bounded by one from above, so the magnitude
of the phenomenon is more emphasized by observing the
relative value of synchronization index difference (inserts in
Figure 8).

We also measure the threshold value gsyn1 for two neruons
to reach synchornized dynamics without desynchronization
events (Figure 9). This does not imply complete synchrony, but
implies only small deviations between the phases of two signals,
so that it is small enough to have no desynchonization events.
As can be seen in Figure 9, the computed synchrony thresholds
for short desynchronization (“cycle 1”) network were lower
than the synchrony thresholds for long desynchronization
(“cycle 4”) network for all considered firing rates (all
possible ε3).

The results presented in Figures 8, 9 indicate that with average
synchrony level and mean firing rate being equal, neural systems
with short desynchronization dynamics reach higher synchrony
for the same synaptic input strength and need weaker inputs to be
synchronized than neural systems with long desynchronization
events.

FIGURE 8 | The synchrony difference γ (1C) − γ (4C) is plotted for different strength of synaptic input gsyn1, normalized synchrony difference ( γ (1C)− γ (4C)

γ (4C) ) is

presented at the inserts (γ (1C) and γ (4C) represent the synchrony index γ for “cycle 1” (short desynchronizations) and “cycle 4” (long desynchronizations) networks,

respectively). Subplots (A–D) are for different values of the firing rate of incoming signal, corresponding to ε3 =
{

0.5ε1,
ε1+ε2

2 , 1.5ε1, 2ε1

}

respectively.
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FIGURE 9 | Threshold value of synaptic strength gsyn1 to reach synchornized

dynamics without desynchronization events for different values of ε3. Black

squares represent the critical value of gsyn1 for short desynchronization (“cycle

1”) network and the gray circles represent the critical value of gsyn1 for long

desynchronization (“cycle 4”) network.

DISCUSSION

Cellular Mechanisms of Short
Desynchronization Dynamics
Imperfect synchrony is widely observed in the activity of neural
networks of the brain. New time-series analysis techniques
showed that intervals of synchronous dynamics are interspersed
between desynchronized episodes, and most desynchronized
episodes are very short (see references in Introduction). This
stereotyped fine temporal structure of neural synchronization is
not an artifact of the analysis method because other types of
patterning of synchronization are possible in non-neural coupled
oscillators (Ahn et al., 2011; Rubchinsky et al., 2014).

The present study provides potential mechanisms for this type
of temporal patterning of neural synchrony. We varied several
parameters of potassium conductance and identified conditions
leading to the intermittent neural synchrony with predominantly
short desynchronization episodes similar to experimental ones.
All these conditions (large peak value of activation time-constant,
large width of dependence of activation time-constant on voltage,
lower values of voltage for peak activation time-constant) lead to
the relatively large values of the activation time-constant τ(v) in
the right range of voltages. The large value of τ(v) leads to the
delay in activation of potassium current, so that a sharp spike
can be generated. And, as our results show, it promotes the short
desynchronizations dynamics.

The results of the computational modeling also indicate
that the distribution of desynchronization durations may
be independent of the synchronization strength. The same
synchrony strength may be achieved with desynchronizations
of different durations. Moreover, our results regarding
comparison of synchronization in networks exhibiting short
desynchronizations and long desynchronizations are obtained
for the case when not only average synchrony level is the
same, but the period of oscillations (the firing rate) is the
same. By appropriate adjustment of model parameters we

dissociated the effects of frequency of oscillations and of average
synchrony strength from the effects of fine temporal patterning
of synchronized dynamics.

These model-based observations fit with experimental
observations of the changes in the distribution of
desynchronization durations in prefrontal cortex-hippocampal
synchrony in behavioral sensitizations experiments (Ahn
et al., 2014). In these experiments, the desynchronization
durations were predominantly short and their distributions were
altered after psychostimulant administration, while the average
synchrony levels stayed the same.

The “spikiness” of oscillations of transmembrane voltage is
a very generic property of many neurons, which relies on the
fast activation of current with high reversal potential and slow
activation of current with low reversal potential. Our results show
that the same conditions that promote short desynchronization
dynamics promote the characteristically sharp shape of an action
potential. This may explain why very different neural systems
exhibit short desynchronization dynamics, as we described in
Introduction.

Limitations of the Modeling Approach
We use a very simple model of a neuron and very simple model of
a network. There aremany factors, whichmay affect synchronous
dynamics of neural activity, yet they are not represented in the
model. Other important factors, which affect neural synchrony,
are different membrane currents and their properties (we have
a model with just two conductances and consider only several
parameters of one conductance) and the size of the network
(we have a very small network). Heterogeneity of the networks
is also important (we have a very minimal representation of
heterogeneity). Synaptic plasticity is not incorporated in our
model (and is the subject of the future research). Finally,
noise may affect temporal patterns of synchrony, which is not
considered in this study either.

However, even though these factors are not incorporated in
the model (which captures only some very basic mechanisms of
neural activity), the model is able to generate realistic synchrony
patterns. So, the right way to interpret the modeling results is to
see what these basic mechanisms are capable of. These modeling
results suggest that these very basic neural mechanisms are
capable of explaining the properties of experimentally observed
intermittency of neural synchrony. As we discussed above,
short desynchronization dynamics has been observed in several
different neural systems. An ability of a minimal neural network
considered here to describe the properties of the intermittent
synchrony (which is common to all those systems) is probably an
indicator that the general neural mechanisms built in the model
are adequate to the considered phenomena.

Inhibition is playing an important role in neural
synchronization, but is not considered in our model. The
experimental data discussed here were collected from cortical
and subcortical networks with excitatory and inhibitory
synapses. It will be interesting to see how the intermittent
patterns of synchrony are affected by inhibitory synapses.

We would also like to note that our earlier study with more
advanced neural and network model (which included excitatory
and inhibitory synapses) did provided a quantitatively adequate
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description of the short desynchronization dynamics at the beta-
band oscillations in the basal ganglia in Parkinson’s disease (Park
et al., 2011). The present modeling study is not designed to
provide a quantitative description of a specific experiment, but
rather it provides a qualitative description of common aspects of
neural synchrony in different neural systems.

Potential Functional Significance of Short
Desynchronization Dynamics
Our computational results suggest one way of how short
desynchronization dynamics can be beneficial for neural
systems. With two important properties of dynamic (average
synchrony strength and firing rate) being equal, neural systems
with short desynchronizations are easier to synchronize with
common synaptic input. We showed that the same strength
of common synaptic input leads to larger synchrony level
in short desynchronization system. In other words, short
desynchronization dynamics allows reaching a pre-set synchrony
level with weaker input. So, if a strong synchrony is needed,
systems with short desynchronizations will reach the pre-set

synchrony strength with weaker inputs compared to longer
desynchronizations.

Given the functional importance of synchronization in
many neural systems (see references in Introduction), short
desynchronization dynamics may allow for efficient regulation
of synchrony levels. While the same level of synchrony may
potentially be achieved with few long desynchronization episodes
as well as withmany short desynchronization episodes, only short
desynchronization dynamics is experimentally observed in the
neural synchrony in the brains. Our modeling results suggest that
this short desynchronizations dynamics is easier to control with
synaptic input. Thus, very basic properties of delayed rectifier
potassium current (its delayed activation) is likely to promote
efficient formation and break-up of synchronized assemblies.
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