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Adolescence is a sensitive period for the development of romantic relationships.

During this period the maturation of frontolimbic networks is particularly important for

the capacity to regulate emotional experiences. In previous research, both functional

magnetic resonance imaging (fMRI) and dense array electroencephalography (dEEG)

measures have suggested that responses in limbic regions are enhanced in adolescents

experiencing social rejection. In the present research, we examined social acceptance

and rejection from romantic partners as they engaged in a Chatroom Interact Task.

Dual 128-channel dEEG systems were used to record neural responses to acceptance

and rejection from both adolescent romantic partners and unfamiliar peers (N = 75).

We employed a two-step temporal principal component analysis (PCA) and spatial

independent component analysis (ICA) approach to statistically identify the neural

components related to social feedback. Results revealed that the early (288 ms)

discrimination between acceptance and rejection reflected by the P3a component was

significant for the romantic partner but not the unfamiliar peer. In contrast, the later (364

ms) P3b component discriminated between acceptance and rejection for both partners

and peers. The two-step approach (PCA then ICA) was better able than either PCA or

ICA alone in separating these components of the brain’s electrical activity that reflected

both temporal and spatial phases of the brain’s processing of social feedback.

Keywords: adolescent couples, social interaction, dense-array EEG, principal component analysis, event-related

potential, source localization

INTRODUCTION

Adolescence is a critical time for developing significant peer and romantic relationships (Steinberg
and Morris, 2001). Social rejection is a normal developmental challenge, but it may figure
importantly in pathological forms of adolescent anxiety and depression (Masten et al., 2012;
Moor et al., 2012; Silk et al., 2012). Previous functional magnetic resonance imaging (fMRI)
studies found that the dorsal anterior cingulate cortex (dACC) is activated in social rejection
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(Eisenberger et al., 2003). The ventral anterior cingulate
cortex (vACC) and specifically the subgenual region (subACC)
appear sensitive to social feedback, particularly acceptance from
unfamiliar peers (Somerville et al., 2006, 2010; Guyer et al., 2012;
Masten et al., 2012).

In addition to fMRI studies, event-related potential (ERP)
studies have addressed the neural processing of social feedback
in adolescents. The P3 component of the ERP (typically the third
positive wave) is a particularly sensitive measure of the attention
and memory processes related to the cognitive processing of
significant information (Polich, 2007; Volpe et al., 2007). In the
Cyberball laboratory task, subjects experience rejection when it
is their turn to be passed the ball but it is passed to someone
else. Using this task Crowley et al. showed that frontal, slow wave
activity (580–900 ms post-stimulus) among young adults, which
was more negative for participants reporting more distress and
more positive for participants reporting less distress (Crowley
et al., 2009). This finding was replicated in a sample of children
between 8–12 years old, where a similar slow wave was found
associated with a larger P3 component in response to exclusion
(Crowley et al., 2010). Another study (Gutz et al., 2011) using
the Cyberball paradigm found that exclusion influenced both a
fronto-central P3a and a more parietal P3b component. The P3a
was related to later negative mood and the P3b was involved
in processing the intensity of the exclusion itself. A similar
study identified a larger P3b, indicating enhanced attentional
activation to exclusionary events (Themanson et al., 2014). The
P3b activation was associated with self-reported social distress
following prolonged social exclusion.

An important question is whether neural responses in
laboratory tasks with unfamiliar peers can be generalized
to the more emotionally significant responses to acceptance
and rejection from romantic partners. Adolescents’ relative
inexperience with romantic relationships, coupled with the high
likelihood of breakups, creates a highly vulnerable context
(Ha et al., 2012). Not surprisingly, romantic rejection has
been related to problem behavior (Furman et al., 2008) and
depression (Monroe et al., 1999; Ha et al., 2014). To the
best of our knowledge, adolescent romantic relationships have
not been examined before, possibly due to practical challenges
of recruiting young dating couples and creating believable
paradigms that elicit romantic partner acceptance and rejection.

In the present study, we examined dense array EEG
measures associated with events of acceptance and rejection
between both romantic partners and unfamiliar peers as they
engaged in virtual social feedback. Specifically in the Chatroom
Interact Task, the subjects indicted whether they preferred a
given person for a planned chat on a specific topic, such
as movies or sports. Dual 128-channel dEEG systems were
synchronized, so that both romantic partners were recorded
simultaneously. We investigated the dEEG measures for neural
signs of differential attention to acceptance and rejection,
specifically related to responses from the partner versus an
unfamiliar peer. To improve the separating of overlapping
ERP components (such as P3a and P3b), we employed a two-
step temporal principal component analysis (PCA) followed by
a spatial independent component analysis (ICA) to separate

the underlying neural generators of the superimposed scalp
voltage patterns (Dien et al., 2005). Compared to standard
ERP component analysis that provides local information of
amplitude and time courses for brain signals (Cacioppo
et al., 2015), the two-step component analysis approach
provides comprehensive information about reliable and distinct
components that contribute to the dense-array recordings
(Foti et al., 2009). More precisely, the two-step component
analysis approach provides component time courses and near-
dipolar scalp projections, suggesting the component reflects
a coherent neural source (Delorme et al., 2012). To explore
the possible neural sources with realistic physical modeling,
source estimation was conducted for each component with a
linear inverse solution (LORETA; Pascual-Marqui et al., 1994)
and a high-resolution of electrical head models (Li et al.,
2016).

We hypothesized that the frontal and limbic (anterior
cingulate, insula) neural responses during social rejection
observed in previous laboratory tasks (Crowley et al., 2009,
2010) would generalize to this more naturalistic virtual
social feedback paradigm. Furthermore, we hypothesized
that feedback from a romantic partner would be more
intense and perhaps engage more immediate emotional
and limbic activity than feedback from an unfamiliar peer.
These hypotheses were tested with the two-step PCA/ICA
component analysis, separating the components underlying
the cerebral networks of initial attentional engagement
(P3a) and more extended cognitive evaluation (P3b), and
then statistically analyzing the component responses as a
function of acceptance or rejection by the partner or the
peer.

MATERIALS AND METHODS

Participants
Ninety-nine adolescent couples aged 14 to 18 years participated
in the current study (Ha et al., 2016). The majority of
these couples were heterosexual (N = 91) and 8 were same
sex couples (1 male and 7 female couples). Relationship
length was diverse with 34.2% of adolescents reporting being
in a relationship less than 6 months, 38.4% between 6
and 12 months, and 27.4% for longer than a year. All
participants who had fewer than 10 artifact free trials across
all conditions were excluded from further analyses. Our final
EEG study sample consisted of 75 subjects with normal
or corrected-to-normal vision (51 males and 24 females,
M = 16.44 years, SD = 0.83; range 15–18 years). All
participants reported no history of neurological disorders nor
were they taking medications that are known to affect the
EEG (e.g., anticonvulsants). This study was carried out in
accordance with the recommendations of The Institutional
Review Board of Arizona State University, which approved
the study protocol. Parents provided written informed consent
and adolescents provided written informed assent prior to
participation. Participants each received $40 for the laboratory
session.
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Stimuli and Experimental Design
Adolescent couples participated in a Chatroom Interact Task,
designed to investigate neural reactions to online virtual peer
acceptance and rejection (Guyer et al., 2009; Silk et al., 2012).
We adapted this task to fit a dyadic context where both romantic
partners participated simultaneously to elicit both rejection
and acceptance from a romantic partner and unfamiliar peers
(Figure 1). Participants were told a cover story explaining that
they would be having online video chats with other adolescent
players from three different universities. These video chats would
be based on each participant’s choices to talk with another
participant about a variety of topics (e.g., dating, books, future
plans, and parties). In reality, these video chats would never
occur and we were merely interested in adolescents’ neural
responses to social feedback (acceptance versus rejection) from
peers and their romantic partner. A personalized chat profile
was created, providing information about a player’s first name,
interests, and proposed future career plans along with their
picture.

In the first “selection” block, participants selected their
conversation partners. They viewed 4 other player profiles (2
males and 2 females) and their partners’ profile, each for 7,500ms.
Participants were instructed to choose the person who they would
like to talk to about the topic displayed under the players’ photos.
Two photos were shown and the participant selected with a “left”
or “right” button press that corresponded with the picture. The
selected or “accepted” player was subsequently highlighted with a
green square around their picture. The unselected or “rejected”
player was labeled with a red “X” over their picture for 1,500
ms. The selection block consisted of 45 randomized trials on 15
various topics, each repeating three times in a randomized order.
Of the 45 trials, 30 trials included the participant’s romantic
partner as one of the options to choose from when randomly
paired with one of the other 4 players.

Data for the current study were obtained from the “feedback”
blocks where participants were able to see the other players’
choices including one partner selection round and four peer
selection rounds. During the peer feedback blocks, the profile
picture of the peer player making selections was displayed
in the bottom corner of the screen, along with the topic
and the pictures of the 2 players being selected. The time
it took for the peer player to select was set to a random
iteration between 1,000 and 4,000 ms. Feedback was provided
to participants by presenting them with their photo highlighted
with either a green square (acceptance) or covered by a red
cross (rejection), which lasted 1,500 ms. Overall, the peer
feedback blocks contained a randomized order of 45 trials,
where 30 trials consisted of the participant randomly paired
with one of the four peers and 15 trials including either two
randomly paired peers. A similar set up was used for partner
feedback blocks. However, the only change from the peer
feedback blocks was that the participant would receive feedback
about their romantic partner’s choices. Thus, participants could
be either accepted or rejected by their romantic partner.
This procedure was repeated with different players for a
second round. The order of the partner and peer feedback
blocks was randomized. After the Chatroom Interact Task,

participants have fully debriefed that all feedback was computer
manipulated.

EEG Acquisition
Continuous EEG was acquired with dual 128-channel
HydroCel Geodesic Sensor Net (EGI, Eugene, OR, USA;
http://www.egi.com/) using Net Station 4.5 software. EEG
electrodes were distributed across the whole head surface with an
inter-sensor distance of approximately 3 cm (Tucker, 1993). All
electrode impedances were below 70K� before recording was
started (Ferree et al., 2001). Recordings were referenced to the Cz
electrode. The data were digitized with a 24-bit A/D converter at
a 250 Hz sample rate.

EEG Data Analysis
Data Preprocessing
The continuous EEG data were digitally filtered between 0.1
and 30Hz with zero-phase shift finite impulse response (FIR)
filters. Trials with time-locked event responses were extracted
from filtered data. The data were divided into four conditions:
(1) partner acceptance, (2) partner rejection, (3) peer acceptance,
and (4) peer rejection. The time period of a single trial was
from 200 ms before event onset to 800 ms after event onset.
Bad channels (defined as those with EEG max–min >200µV
after smoothing with a moving average of 80 ms long) were
identified and replaced using spherical spline interpolation.
Epochs with artifacts due to eye blinks or ocular movement
were excluded. The remaining epochs for each participant were
then averaged and baseline corrected to the first 200ms period.
The data were then re-referenced to the common average
signal across all electrodes. In order to examine the latent
nature of the N1, P3a and P3b component without the effects
of overlapping ERP, the data were subjected to a two-step
PCA/ICA component analysis (Luu et al., 2014; Lole et al.,
2015).

Principal Component Analysis/Independent

Component Analysis
The average ERP data from each subject were entered into
a spatiotemporal component analysis using the ERP PCA
Toolkit version 2.50 (Dien, 2010, 2012). In this two-step
component analysis, a temporal PCA decomposition using
promax rotation was first conducted on the data with time
point as a variable. The source of variance was accounted
over subjects, conditions, and channels. The number of factors
retained for temporal PCA decomposition can be guided by the
parallel test (Ledesma and Valero-Mora, 2007). Following the
temporal PCA, the spatial ICA decomposition was performed.
ICA with informax method (Delorme and Makeig, 2004) used
the channels as variables and the number of factors retained
for the independent component can also be obtained by the
parallel test. After this two-step component analysis, many
spatiotemporal components were generated (number of temporal
components multiplied by spatial components). The components
to be considered for further analysis begun with elimination
of all components that did not account for at least 0.5%
of total variance (Dien, 2012). This removes the majority of
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FIGURE 1 | Representation of the Chatroom Interact Task. During the participant SELECTION block, both participants viewed 6 player profiles as an introduction to

the task (2 participant profiles; “Emily” and “Zach,” two additional fictive males and females). Then, participants were instructed to choose the person who they would

like to talk to regarding the topic displayed under the players’ photos. In this particular example, we showed the player timeline of Emily (picture shown in the left

corner) who was making selections between 2 players with a “left” or “right” button press. The selected or “accepted” player was subsequently highlighted with a

green square on their picture. The unselected or “rejected” player was labeled with a red “X” over their picture. Following the participant selection block, fictitious

feedback was provided by peers and the romantic partner in the FEEDBACK blocks, indicating whether the participant was accepted or rejected. Feedback was

randomized by the experimenters and believed by the subjects. In the peer FEEDBACK blocks, participants would see their peers making selections. In this particular

example, Emily (participant) viewed that Alexis (peer, displayed in the left corner) chose the participant to talk about movies, which was a peer acceptance trial. Then

Alexis (peer) chose Jessica (peer) over Emily (participant) to talk about relationships, which was a peer rejection trial. This was followed by a filler trial where the

participant, Emily, was not displayed as an option. In the romantic partner FEEDBACK block, participants viewed their romantic partners’ selections. In this case, Emily

(participant) watched Zach (romantic partner) selecting Emily to talk about movies, which was a romantic partner acceptance trial. However, Zach chose Jessica (peer)

over Emily (participant) to talk about relationships, which was a romantic partner rejection trial. Note that only the peer and romantic partner FEEDBACK blocks were

analyzed in the current study.

junk factors that reveal noise. Next, we explored components
of interest based on dipole-like scalp maps, spectral peak at
typical frequency range, and identifiable as ERP components
(Delorme et al., 2012). Once the spatiotemporal components
were identified, repeated measure analysis of variance (ANOVA)
without correction for multiple comparisons was tested for
statistical significance (Dien, 2010, 2012) and the substantive
significance (effect size) was also reported (Sullivan and

Feinn, 2012). In this study, P < 0.05 was considered as
significant.

Head Model Construction
The electrical head modeling (forward model) was created to
include accurate brain tissue segmentation, 128-channel sensor
position registration, and specification of conductivity values
for each tissue. In the present study, an atlas head model was
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constructed from whole head MRI and CT images using BrainK
software (Li et al., 2016). BrainK included five major steps:
(1) Tissue segmentation: The MRI and CT images were co-
registered prior to segmentation. Tissue segmentation classified
and identified each image voxel into the following tissue types:
air, eyeball, scalp, skull, cerebral-spinal fluid (CSF), and brain
(gray and white matter). Scalp and skull were identified by CT
image and CSF and brain were identified from MRI data. (2)
Registration of sensor position: 128-channel sensor positions
were registered to the respective scalp surface on the atlas
head model. (3) Cortical surface reconstruction. (4) Dipole
tessellation. (5) Talairach transformation: The MRI and CT
images were then aligned with cortex volume from the MNI305
atlas with Talairach registration (Li et al., 2016). The locations of
the dipoles were derived based on the method (Pascual-Marqui
et al., 1994) by discretizing the graymatter volume of theMNI305
atlas. The tissue volumes were parceled into 7 mm voxels to form
the computational elements; each voxel served as a source dipole
location with three orthogonal orientation vectors (triples). This
resulted in 1,732 dipole locations and 5,196 dipoles for our atlas
head model.

For the complete head model, a lead field matrix (LFM),
which describes the projection of current from each dipole
source position to each EEG sensor position, was computed
using the finite difference method (FDM; Salman et al., 2015).
The following conductivity values (in Siemens/meter) assigned
to each tissue type are based on previously reported literature
values: Eyeball = 1.5, Scalp = 0.44, Skull = 0.018, CSF = 1.8,
Brain= 0.25 (Dannhauer et al., 2012; Salman et al., 2015).

Cortical Source Estimation
Estimation of the cortical source was performed using GeoSource
3.0 software (EGI, Eugene, OR, USA). To estimate the activity on
the cortex, source localization was performed with a constrained
inverse model on each component using the Low Resolution
Tomography (LORETA) method (Pascual-Marqui et al., 1994,
1999). The relationship between scalp and source can be stated
as generalized linear models:

8(t) = KJ(t)+ ε(t), (1)

where 8(t) is the EEG scalp potential measured at Ne = 128
electrodes, K is the lead field matrix, J ∈ RNv are the activities of
the source dipoles at the cortical surface, and ε(t) is generalized
noise with covariance matrix Cε . Since inverse problem is ill-
posed (Ne << Nv), mathematical and physical constraints are
added to obtain unique solution. Many linear inverse methods
can be obtained as the solution of the minimization problem:

Ĵ = argmin
J

{

‖8 − KJ‖2 + λJTWJ
}

, (2)

Ĵ = KT
[

KTK + λW
]−1

8, (3)

where ‖8 − KJ‖2 is the data fidelity term, and λ is the
regularization parameter which controls the influence of the

constrains relative to minimizing the residual of the fit. J is
the vector of source amplitudes (as defined above) and W
defines the inverse technique (e.g., Minimum Norm, LORETA,
sLORETA etc.). The LORETA method (Pascual-Marqui et al.,
1994, 1999) employs regularization based on the 3D discrete
Laplacian operator and LFMnormalization. For LORETA inverse
technique,W = ETDTDE where D is the Laplacian operator and
E is a diagonal matrix corresponding to the LFM normalization.
E=Ẽ⊗ I3 is constant over three orthogonal orientation vectors to
each source dipole and D =D̃⊗ I3 is the matrix for the Laplacian
operator using a 7-point stencil (Hammond et al., 2013).

RESULTS

dEEG Data
Focusing on the results from the participant selection blocks,
we analyzed the number of partner acceptance trials, meaning
the number of times a participant would choose their romantic
partner. Overall, participants chose their partner over an
unfamiliar peer on average 65% of the time, indicating
participants accepted their romantic partner more often than
they rejected them.

The grand average ERP data at Fz and Pz electrode sites from
the feedback blocks for all four conditions is depicted in Figure 2.
Upon visual inspection of the head surface (scalp) waveform,
some typical ERP components, such as the N1 and P3, were
clearly identifiable. At mediofrontal sites (channel Fz), no clear
waveform difference was seen between conditions during 100–
200 ms for the N1, whereas at centroparietal sites (channel Pz),
the amplitude during 300–500 ms for both partner and peer
acceptance conditions was higher than the partner and peer
rejection conditions for the P3.

Principal Component
Analysis/Independent Component Analysis
To decompose the overlapping ERPs, a two-step PCA/ICA was
conducted. First, temporal PCA decomposed the individual ERP
data into distinct temporal factors based on the parallel test. In
this test, a scree plot derived from a fully random dataset was
created and then compared with the scree plot obtained from
the actual dataset. An intersection point of two datasets (random
and actual) in the scree plot indicated the number of factors to
be retained for the temporal decomposition. In our parallel test,
17 temporal factors, accounting for 91% of total variance, were
retained. For the spatial ICA decomposition, eight discrete spatial
factors were suggested to retain (76% of total variance) based on
the parallel test. After this two-step component analysis, a total
of 136 spatiotemporal components were generated. Based on the
rules of component consideration described in PCA/ICAmethod
section, four functionally distinct components were included for
further component identification.

Component 1
The waveforms of the first component (C1) are displayed for all
four conditions at centroparietal sites (Figure 3A) at the location
indicated by a white circle (Channel 79) in the topographymap in
Figure 3B. The topography map of C1 displayed the peak activity
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FIGURE 2 | Original grand-average ERP waveforms at Fz and Pz. Signals were averaged across all subjects for four conditions (1,000 ms epoch). Stimulus onset

was plotted as vertical dashed line. The thickness of the traces reflects the standard error through from subject-by-subject variations.

at 364 ms and had positive peak amplitudes over the parietal
area on the 3D head voltage distribution image in Figure 3C.
This component is similar to late positive component (LPC)
or P3b related component (Dien et al., 2004) in its topography
and time course in the post-stimulus interval. Statistical analysis
was performed on mean amplitudes of C1 (344–384 ms; EGI
channels 62, 78, and 79) over each condition and subject. One-
way ANOVA analysis revealed significant effects between partner
acceptance (M = 4.32µV) and partner rejection (M = 3.40
µV) conditions, F(1, 74) = 3.99, P < 0.05, effect size = 0.32,
and between peer acceptance (M = 4.06 µV) and peer rejection
(M = 2.93µV) conditions, F(1, 74) = 6.82, P < 0.01, effect size
= 0.42, resulting in larger amplitudes for both partner and peer
acceptance conditions.

Cortical source estimation was performed using the LORETA
constraint and a regulation constant of 10−3 on the averaged
component waveform of all 75 subjects. Sources of C1 were
obtained for the time point at 364 ms and displayed primary
activities in the bilateral inferior temporal lobe (BA20), the
bilateral parietal lobe (BA39 and BA7) and the posterior
cingulate cortex (BA23 and BA31), as seen in Figure 3D. The C1
component also included activity in the bilateral visual associated
lobe (BA17) and the bilateral parahippocampal (BA36). The

bilateral inferior temporal lobe was stronger at the right
hemisphere. Figure 3E shows the C1 generation in the PCC area
on the MRI slices.

Component 2
The mean component waveforms and scalp topography of C2
are illustrated in Figures 4A,B. Mean waveforms are displayed at
mediofrontal sites indicated by a white circle in the topography
map for all conditions. This component had a positive deflection
in the mediofrontal and a negative deflection in the occipital lobe
shown in Figure 4C. It was most prominent at approximately
288 ms post-stimulus and resembled a P3a related component
(Dien et al., 2004). The mean amplitudes for C2 (268–308 ms;
EGI channels 6, 7, and 106) were extracted over each condition
and subject. One-way ANOVA demonstrated that the waveforms
differed significantly between partner acceptance (M = 2.05µV)
and partner rejection (M = 1.37 µV) conditions, F(1, 74) = 4.18,
P < 0.05, effect size = 0.33. No significant effects were found
between peer acceptance (M = 1.71µV) and peer rejection (M =

1.80µV) conditions, F(1, 74) = 0.11, P < 0.89, effect size= 0.05.
Source estimation of C2 showed primary activations in the

bilateral parietal lobe (BA39 and BA7), the bilateral frontal lobe
(BA8 and BA6) and the anterior cingulate cortex (BA32), as seen
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FIGURE 3 | C1 component properties. (A) Component mean waveforms were at parietal sites at electrode E79 for all conditions. (B) Topography map of C1 was

showing voltage distribution at 364 ms for partner acceptance condition. The white circle highlighted the location of channel E79 and block dots indicated all the 129

channels. Orientation was top looking down with nose at the top. (C) Scalp voltage distribution was on the atlas head model. (D) Source intensity on the vertical axis

was shown in standardized units for component C1. (E) Source data was displayed and projected onto MRI slices. The area within the green border represented the

posterior cingulate cortex.

in Figure 4D. The bilateral inferior temporal lobe (BA20) and
the bilateral occipital lobe (BA19) were also activated in the C2
component. Additionally, Figure 4E depicts the C2 generation in
the ACC area on the MRI slices.

Component 3 and 4
The C3 component was prominent at 164 ms, displayed in
Figure 5A. The topography map had a positive deflection over
the frontal lobe and a negative deflection in the occipital lobe,
shown in Figures 5B,C. A typical N1 component is observed
by its topography and time course in the post-stimulus interval
(Poolman et al., 2008). The mean amplitudes of C3 (144–184 ms;
EGI channels 70, 75, and 83) were extracted over each condition
and subject for the statistical analysis. No significant effects were
seen between partner acceptance (M = −3.34µV) and partner
rejection (M = −3.24 µV) conditions, F(1, 74) = 0.05, P < 0.82,

effect size = 0.04. Additionally, no significant differences were
shown when comparing peer acceptance (M = −3.32 µV) and
peer rejection (M = −3.35µV) conditions, F(1, 74) = 0.01, P <

0.94, effect size = 0.01. Source results displayed activities in the
bilateral visual associated and primary visual lobes (BA18 and
17), the bilateral occipital lobe (BA19) and the posterior cingulate
cortex (BA31 and BA23), seen in Figure 5D. The C3 component
also included activities in the right fusiform area (BA37) and
the bilateral inferior temporal lobe (BA20). The visual lobe
activity was bilateral but stronger at the right hemisphere. Lastly,
Figure 5E depicts the C3 generation in the visual cortex area on
the MRI slices.

The properties of the C4 component are similar to the
C3 component based on its topography map (similar to
Figure 5B) and time information (C4 prominent at 124 ms).
The mean amplitudes of C4 (104–144 ms; EGI channels 70,
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FIGURE 4 | C2 component properties. (A) Component mean waveforms were at midfrontal sites at electrode FCz (E6) for all conditions. (B) Topography map of C2

was showing voltage distribution at 288 ms for partner acceptance condition. The white circle highlighted the location of channel E6. (C) Scalp voltage distribution

was on the atlas head model. (D) Source estimation of C2 using LORETA was showed on brain cortex. (E) Source data was displayed and projected onto MRI slices.

The area within the green border represented the anterior cingulate cortex.

75, and 83) were extracted over each condition and subject. No
significant differences were found between partner acceptance
(M = −1.37µV) and partner rejection (M = −1.04 µV)
conditions, F (1, 74)= 0.5, P< 0.48, effect size= 0.12. No change
was obtained between peer acceptance (M = −1.36µV) and
peer rejection (M = −1.15µV) conditions, F(1, 74) = 0.19, P <

0.67, effect size = 0.07. Experimental effects for each component
and condition are displayed in Figure 6. Source results indicated
activations were in the bilateral visual associated and primary
visual lobe (BA18 and BA17), the bilateral occipital lobe (BA19),
the bilateral parietal lobe (BA39 and BA7), and the PCC (BA31
and BA23).

DISCUSSION

C1 and C2 Components
After the two-step PCA/ICA analysis, C1 and C2 are statically
separated from overlapping activity, making their quantification
more accurate and improving the statistical analysis. C1 has
positive peak amplitude at 364 ms post-stimulus over the parietal

area on the head surface (Figure 3B), while component C2 peaks
at 288 ms post-stimulus and elicits a stronger frontocentral
positive going wave (Figure 4B). The patterns of these results
indicate that C1 and C2 can be identified respectively, as P3b
and P3a related components with different scalp distributions
and underlying cortical networks. The P3a has more of an
anterior distribution compared to the P3b. A number of
findings suggest that the P3a reflects a stimulus driven attention
shift or social reward, while the P3b reflects task relevant
information processing (Polich, 2007). P3a may be generated
from frontal if sufficient attention is involved with task stimuli
and P3b appears when information updating activations promote
memory operations in the temporal-parietal junction brain area
(Brazdil et al., 2001, 2003).

As the adolescents evaluated the response of romantic
partners and unfamiliar peers in the Chatroom Interact
Task, the initial electrophysiological response (P3a), maximal
over frontomedial regions, was enhanced for acceptance (vs.
rejection) responses of partners, but not for responses of
peers. The implication may be that with strong expectations
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FIGURE 5 | C3 component properties. (A) Component mean waveforms were at occipital sites at electrode E90 for all conditions. (B) Topography map of C3 was

showing voltage distribution at 164 ms for partner acceptance condition. (C) Scalp voltage distribution was on the atlas head model. (D) Source estimation of C3 was

showed on the brain cortex. (E) Source data was displayed and projected onto MRI slices. The area within the green border represented the visual cortex.

for the partner’s evaluation the initial orienting of attention
indexed by the P3a was differentially modulated by the
partner’s feedback. In contrast, the somewhat later (364 ms)
P3b component showed a greater response for acceptance
than rejection for both the partner and peer. This suggests
that the more extended cognitive evaluation indexed by the
P3b is adequately engaged in interpreting the acceptance
feedback even from peers. Higher P3a and P3b amplitudes
to acceptance are an extension to previous studies (Gunther
Moor et al., 2010; van der Veen et al., 2014), implicating initial
attention is paid to partner acceptance, whereas later processing
is more oriented toward general social acceptance. Overall,
these findings support the notion that adolescents’ desires for
affiliation are high, which are particularly focused on partner
acceptance.

In the traditional ERP literature (Polich, 2007), the
differentiation between P3a and P3b is made on the basis of
their differential latency. However, because they are overlapping,
statistical characterization of these components is improved
through the statistical decomposition from methods like PCA

and ICA. In the present research, the two-step temporal PCA
then spatial ICA analysis provided superior separation of these
components than either component analysis alone, adding
further evidence to the robustness of this analytic method (Dien,
2010, 2012).

Comparison of Cortical Activation of
C1/C2 Components with fMRI
Source estimation of the ERP components can be improved
by whole head spatial sampling (including sensors over both
the superior and inferior head surface) and a high resolution
electrical conductivity head model (Song et al., 2015). In addition
to its more frontal head surface distribution, source analysis
suggests the P3a is generated in frontal, parietal, and anterior
cingulate areas in the control of attention. Source analysis of the
P3b suggested it is localized in parietal, temporal, and posterior
cingulate areas that are engaged in information evaluation.
Together, P3a and P3b reveal a widely distributed network
pathway engaging both frontal and temporal-parietal areas
(Polich, 2003). These source patterns associated with P3a and
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FIGURE 6 | Experimental effects for each component and condition. Amplitude from each subject and condition was plotted as a gray dot and the mean amplitude

was indicated as a whit line. The standard error (SEM, 95% confidence interval) and standard deviation (SD) were sub-plotted with white lines as boxes. One-way

ANOVA was used to test statistical significant (*P < 0.05) between conditions.

P3b generation are in line with other EEG studies (Volpe et al.,
2007; Li et al., 2015; Lole et al., 2015), which have been carried out
with different experimental designs and paradigms. Particularly,
these sources are consistent with other reports (Mulert et al.,
2004a,b; Volpe et al., 2007) that used the LORETA inverse
solution. Furthermore, our source findings are also confirmed
by the patterns of fMRI hemodynamic responses in the frontal,
temporal, and parietal activations for distractor stimulus (P3a)
and target stimulus (P3b) processing (Bledowski et al., 2004a,b).

C3 and C4 Components
In the present study, two more spatiotemporal components were
extracted. C3 peaks at 164 ms post-stimulus and displays a
positive deflection in the frontal lobe and a negative deflection
in the occipital lobe (Figure 5B). Additionally, C4 peaks at 124
ms post-stimulus and presents a similar scalp distribution as C3.
The main difference between C3 and C4 is their temporal course
(164 vs. 124 ms), which is separated by PCA decomposition. The
C3 and C4 can be considered as typical N1 related components,
based on their topography maps and time course (Mangun et al.,
1994; Senholzi and Ito, 2012). The apparent network patterns
of the C3 and C4, including the visual, occipital and PCC
areas, are consistent with the major locations of the N1 (Im
et al., 2007; Poolman et al., 2008). Interestingly, the differing
cortical networks for these similar visual components appear
to reflect sources in right fusiform for C3 and bilateral parietal

lobe for C4. N1 is elicited by the Chatroom Interact Task in
response to visual stimulus change. Nonetheless, no significant
differences were observed between partner and unfamiliar peer
groups, nor between acceptance and rejection conditions. The
absence of condition differences implies that adolescents do not
track differences in feedback during this early stage of visual
processing.

Limitations and Future Research
Although source analysis provided some suggestions of
widespread frontal and posterior networks engaged in attentional
orienting and cognitive evaluation, further understanding of
the specific anatomy of these networks would require closer
comparisons with imaging methods such as fMRI. Furthermore,
the averaging of multiple trials in the ERP methodology may
limit the understanding of time dynamics of individual trials,
such as oscillatory EEG changes. In contrast to conventional
ERP and PCA/ICA component analyses, EEG spectral analyses
have revealed that EEG oscillations in particular frequency bands
are functionally related to cognitive processing and behavior
(Pfurtscheller and Lopes da Silva, 1999; Kuo et al., 2014). For
example, our motor study has shown that the most robust effects
were the beta-band (14–30 Hz) event-related desynchronizations
(ERD, power decreases), appearing in all individuals, consistently
localized to the hand region of the primary motor cortex, and
consistently aligned with fMRI localizations (Kuo et al., 2014).

Frontiers in Computational Neuroscience | www.frontiersin.org 10 May 2017 | Volume 11 | Article 46

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kuo et al. Brain Networks to Social Feedback

In another study, the task-induced alpha oscillation has specific
functional rules where low alpha ERD (8–10 Hz) is linked to
attention and high alpha ERD (10–12 Hz) is associated with
memory (Klimesch et al., 2003; Schack et al., 2005). Further
research using spectral analysis may be useful for determining
oscillatory dynamics in the process of understanding social
feedback. In addition, the functional connectivity network
analysis examines the patterns of coherence or correlations
among cerebral networks, which is another approach integrated
to EEG-based neuroimaging techniques. In the present study, the
temporal-spatial analysis of the ERP separated the major cortical
networks, but did not characterize their dynamic interaction. In
future research, understanding the connection, communication,
and causality among these source areas will be important for
understanding social feedback, considering the brain-to-brain
resonance in both partner and peer communications (Dumas
et al., 2012; Yun et al., 2012; Hassan et al., 2015; Chennu et al.,
2016).

CONCLUSION

The present study suggests that PCA/ICA component analysis
can separate functionally distinct components effectively with
different time courses and underlying cortical networks that
contribute to the perceived social feedback from romantic
partners and unfamiliar peers. Adolescents exhibited more
attention to partner acceptance early in their processing of the
neural communication (P3a) and similar cognitive processing
for both partner and peer acceptance in the next stage (P3b) of
cognitive evaluation. Our study provides a potentially influential

methodological foundation for the development of future
research, clinical treatment, and interventions.
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