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The lack of a formal link between neural network structure and its emergent function

has hampered our understanding of how the brain processes information. We have now

come closer to describing such a link by taking the direction of synaptic transmission into

account, constructing graphs of a network that reflect the direction of information flow,

and analyzing these directed graphs using algebraic topology. Applying this approach to

a local network of neurons in the neocortex revealed a remarkably intricate and previously

unseen topology of synaptic connectivity. The synaptic network contains an abundance

of cliques of neurons bound into cavities that guide the emergence of correlated activity.

In response to stimuli, correlated activity binds synaptically connected neurons into

functional cliques and cavities that evolve in a stereotypical sequence toward peak

complexity. We propose that the brain processes stimuli by forming increasingly complex

functional cliques and cavities.

Keywords: connectomics, topology, directed networks, structure-function, correlations, Betti numbers

1. INTRODUCTION

How the structure of a network determines its function is not well understood. For neural networks
specifically, we lack a unifying mathematical framework to unambiguously describe the emergent
behavior of the network in terms of its underlying structure (Bassett and Sporns, 2017). While
graph theory has been used to analyze network topology with some success (Bullmore and Sporns,
2009), current methods are usually constrained to analyzing how local connectivity influences local
activity (Pajevic and Plenz, 2012; Chambers and MacLean, 2016) or global network dynamics (Hu
et al., 2014), or how global network properties like connectivity and balance of excitatory and
inhibitory neurons influence network dynamics (Renart et al., 2010; Rosenbaum et al., 2017). One
such global network property is small-worldness. While it has been shown that small-worldness
optimizes information exchange (Latora and Marchiori, 2001), and that adaptive rewiring during
chaotic activity leads to small world networks (Gong and Leeuwen, 2004), the degree of small-
worldness cannot describe most local network properties, such as the different roles of individual
neurons.

Algebraic topology (Munkres, 1984) offers the unique advantage of providing methods to
describe quantitatively both local network properties and the global network properties that
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emerge from local structure, thus unifying both levels. More
recently, algebraic topology has been applied to functional
networks between brain regions using fMRI (Petri et al., 2014)
and between neurons using neural activity (Giusti et al., 2015),
but the underlying synaptic connections (structural network)
were unknown. Furthermore, all formal topological analyses have
overlooked the direction of information flow, since they analyzed
only undirected graphs.

We developed a mathematical framework to analyze both the
structural and the functional topology of the network, integrating
local and global descriptions, enabling us to establish a clear
relationship between them. We represent a network as a directed
graph, with neurons as the vertices and the synaptic connections
directed from pre- to postsynaptic neurons as the edges, which
can be analyzed using elementary tools from algebraic topology
(Munkres, 1984). The structural graph contains all synaptic
connections, while a functional graph is a sub-graph of the
structural graph containing only those connections that are active
within a specific time bin (i.e., in which a postsynaptic neuron
fires within a short time of a presynaptic spike). The response to
a stimulus can then be represented and studied as a time series of
functional graphs.

Networks are often analyzed in terms of groups of nodes
that are all-to-all connected, known as cliques. The number of
neurons in a clique determines its size, or more formally, its
dimension. In directed graphs it is natural to consider directed
cliques, which are cliques containing a single source neuron and a
single sink neuron and reflecting a specific motif of connectivity
(Song et al., 2005; Perin et al., 2011), wherein the flow of
information through a group of neurons has an unambiguous
direction. The manner in which directed cliques bind together
can be represented geometrically. When directed cliques bind
appropriately by sharing neurons, and without forming a larger
clique due to missing connections, they form cavities (“holes,”
“voids”) in this geometric representation, with high-dimensional
cavities forming when high-dimensional (large) cliques bind
together. Directed cliques describe the flow of information in the
network at the local level, while cavities provide a global measure
of information flow in the whole network. Using these naturally
arising structures, we established a direct relationship between
the structural graph and the emergent flow of information in
response to stimuli, as captured through time series of functional
graphs.

We applied this framework to digital reconstructions of rat
neocortical microcircuitry that closely resemble the biological
tissue in terms of the numbers, types, and densities of neurons
and their synaptic connectivity (a “microconnectome” model
for a cortical microcircuit, Figures 1A,B; see Markram et al.,
2015; Reimann et al., 2015). Simulations of the reconstructed
microcircuitry reproduce multiple emergent electrical behaviors
found experimentally in the neocortex (Markram et al.,
2015). The microcircuit, formed by ∼8 million connections
(edges) between ∼31,000 neurons (vertices), was reconstructed
from experimental data, guided by biological principles of
organization, and iteratively refined until validated against
a battery of independent anatomical and physiological data
obtained from experiments. Multiple instantiations of the

reconstruction provide a statistical and biological range of
microcircuits for analysis.

We found a remarkably high number and variety of high-
dimensional directed cliques and cavities, which had not been
seen before in neural networks, either biological or artificial,
and in far greater numbers than those found in various null
models of directed networks. Topological metrics reflecting the
number of directed cliques and cavities not only distinguished
the reconstructions from all null models, they also revealed subtle
differences between reconstructions based on biological datasets
from different animals, suggesting that individual variations in
biological detail of neocortical microcircuits are reflected in the
repertoire of directed cliques and cavities. When we simulated
microcircuit activity in response to sensory stimuli, we observed
that pairwise correlations in neuronal activity increased with the
number and dimension of the directed cliques to which a pair
of neurons belongs, indicating that the hierarchical structure of
the network shapes a hierarchy of correlated activity. In fact, we
found a hierarchy of correlated activity between neurons even
within a single directed clique. During activity, many more high-
dimensional directed cliques formed than would be expected
from the number of active connections, further suggesting that
correlated activity tends to bind neurons into high-dimensional
active cliques.

Following a spatio-temporal stimulus to the network, we
found that during correlated activity, active cliques form
increasingly high-dimensional cavities (i.e., cavities formed by
increasingly larger cliques). Moreover, we discovered that while
different spatio-temporal stimuli applied to the same circuit
and the same stimulus applied to different circuits produced
different activity patterns, they all exhibited the same general
evolution, where functional relationships among increasingly
higher-dimensional cliques form and then disintegrate.

2. RESULTS

2.1. The Case for Directed Simplices
Networks of neurons connected by electrical synapses (gap
junctions) can be represented as undirected graphs, where
information can flow in both directions. Networks with
chemical synapses, which impose a single direction of synaptic
communication from the pre- to the postsynaptic neuron
(Figures 1B2,B3), are more accurately represented as directed
graphs. Sub-sampling networks of neurons experimentally has
revealed small motifs of synaptic connectivity, but not large
cliques of neurons (Song et al., 2005; Perin et al., 2011). Knowing
the complete directed network of neurons, as we do in the case
of the reconstructed microcircuit, enables us to detect all cliques,
directed, and otherwise (Figure 1).

When the direction of connections is not taken into account,
a great deal of information is lost. For example, in the undirected
case, there is only one possible configuration for a clique of
four fully connected neurons (Figure 2A1, left). However, in the
directed case, there are 36 = 729 possible configurations, as each
of the six connections can be in one of three states (i→ j, j← i,
or i↔ j connection types; Figure 2A1 right).
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FIGURE 1 | (A) Thin (10 µm) slice of in silico reconstructed tissue. Red: A clique formed by five pyramidal cells in layer 5. (B1) Full connection matrix of a

reconstructed microcircuit with 31,146 neurons. Neurons are sorted by cortical layer and morphological type within each layer. Pre-/postsynaptic neurons along the

vertical/horizontal axis. Each grayscale pixel indicates the connections between two groups of 62 neurons each, ranging from white (no connections) to black (≥8%

connected pairs). (B2) Zoom into the connectivity between two groups of 434 neurons each in layer 5, i.e., 7 by 7 pixels in (A), followed by a further zoom into the

clique of 5 neurons shown in (A). Black indicates presence, and white absence of a connection. (B3) Zoom into the somata of the clique in (A) and representation of

their connectivity as a directed graph.

A clique with reciprocal connections contains two or
more cliques consisting only of uni-directional connections
(Figure 2A2). When only uni-directional connections are
considered, there are 26 possible configurations of four fully
connected neurons, which are of two types: those that contain
cycles (40 configurations; Figure 2A3 left; Section 4.1.3) and
those that do not (24 configurations; Figure 2A3 right). Directed
cliques are exactly the acyclic cliques. The net directionality
of information flow through any motif can be defined as the
sum over all neurons of the squares of the differences between
their in-degree and their out-degree (see Equation 2, Figure S1).

Directed cliques have the highest net directionality among all
cliques (Figure S1; Section 4.1.4). A clique that contains cycles
always decomposes into directed cliques with the same number
of neurons or fewer, at the very least any single connection
between two neurons forms a 2-clique. A cyclical clique of three
neurons therefore decomposes into three 2-cliques. Following the
conventions in algebraic topology, we refer to directed cliques of
n neurons as directed simplices of dimension n-1 or directed (n-1)-
simplices (which reflects their natural geometric representation
as (n-1)-dimensional polyhedra) (see Figure S2; Section 4.1.3).
Correspondingly, their sub-cliques are called sub-simplices.
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FIGURE 2 | (A1) A 4-clique in the undirected connectivity graph has one of 729 configurations in the directed graph. (A2) Configurations containing bidirectional

connections are resolved by considering all sub-graphs without bidirectional connections. (A3) Without bidirectional connections, 64 possible configurations remain,

24 of which are acyclic, with a clear sink-source structure (directed simplices, in this case of dimension 3). (B) Number of simplices in each dimension in the Bio-M

reconstruction (shaded area: standard deviation of seven statistical instantiations) and in three types of random control networks. (C) Examples of neurons forming

high-dimensional simplices in the reconstruction. Bottom: Their representation as directed graphs. (D) (Left) Number of directed simplices of various dimensions found

in 55 in vitro patch-clamp experiments sampling groups of pyramidal cells in layer 5. (Right) Number of simplices of various dimensions found in 100,000 in silico
experiments mimicking the patch-clamp procedure of (B).

2.2. An Abundance of Directed Simplices
2.2.1. Reconstructed Neocortical Microcircuitry
We analyzed 42 variants of the reconstructed microconnectome,
grouped into six sets, each comprised of seven statistically
varying instantiations (Markram et al., 2015; Section 4.3). The
first five sets were based on specific heights of the six layers
of the neocortex, cell densities, and distributions of different
cell types experimentally measured in five different rats (Bio1-
5), while the sixth represents the mean of these measurements
(Bio-M). Individual instantiations within a set varied with the
outcome of the stochastic portions of the reconstruction process.
Surprisingly, we found that the reconstructions consistently
contained directed simplices of dimensions up to 6 or 7, with as

many as 80 million directed 3-simplices (Figure 2B; blue). This is
the first indication of the existence of such a vast number of high-
dimensional directed simplices in neocortical microcircuitry, or
in any neural network.

2.2.2. Control Models
To compare these results with null models, we examined how the
numbers of directed simplices in these reconstructions differed
from those of artificial circuits and from circuits in which some
of the biological rules of connectivity were omitted (see Section
4.4). For one control, we generated five Erdős-Rényi random
graphs (ER) of equal size (∼31,000 vertices) and the same average
connection probability as the Bio-M circuit (∼0.8%; ∼8 million
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edges) (Figure 2B; dark green). For another, we constructed a
circuit with the same 3Dmodel neurons as the Bio-M circuit, but
connected the neurons using a random connectivity rule [“Peters’
Rule” (Peters and Feldman, 1976), PR; Figure 2B, red]. For the
last control we connected the neurons in the Bio-M circuit
according to the distance-dependent connection probabilities
between the different morphological types of neurons. Since
this control is similar to deriving connectivity from the average
overlap of neuronal arbors (Shepherd et al., 2005), it retains
the general biological (GB) features of connectivity between
different types of neurons (Reimann et al., 2015), excluding
only explicit pairwise connectivity between individual neurons,
which is determined by the overlap of their specific arbors
(Figure 2B, yellow). In all cases, the number of directed simplices
of dimensions larger than 1 was far smaller than in the Bio-M
circuit. In addition, the relative differences between the Bio-M
and the null models increased markedly with dimension.

2.2.3. In vitro
Simplices of high dimensions (such as those depicted in
Figure 2C) have not yet been observed experimentally, as
doing so would require simultaneous intracellular recording
of large numbers of neurons. To obtain an indication of the
presence of many high-dimensional directed simplices in the
actual neocortical tissue, we performed multi-neuron patch-
clamp experiments with up to 12 neurons at a time in in vitro
slices of the neocortex of the same age and brain region as the
digitally reconstructed tissue (Section 4.5.1). Although limited by
the number of neurons we could simultaneously record from, we
found a substantial number of directed simplices up to dimension
3, and even one 4-dimensional simplex, in just 55 multi-neuron
recording experiments (Figure 2D, left). We then mimicked
these experiments on the reconstructedmicrocircuit by repeating
the same multi-neuron patch-clamp recordings in silico (Section
4.5.2) and found a similar shape of the distribution of 4-, 3-, and
2-simplices, though in lower frequencies than in the actual tissue
(Figure 2D, right). These findings not only confirm that high-
dimensional directed simplices are prevalent in the neocortical
tissue, they also suggest that the degree of organization in the
neocortex is even greater than that in the reconstruction, which
is already highly significant (see Section 3).

2.2.4. C. elegans
To test whether the presence of large numbers of high-
dimensional directed simplices is a general phenomenon of
neural networks rather than a specific phenomenon found in this
part of the brain of this particular animal and at this particular
age, we computed the numbers of directed simplices in the
C. elegans connectome (Varshney et al., 2011) (Section 4.6).
Again, we found many more high-dimensional simplices than
expected from a random circuit with the same number of neurons
(Figure S3).

2.2.5. Simplicial Architecture of Neocortical

Microcircuitry
To understand the simplicial architecture of the microcircuit, we
began by analyzing the sub-graphs formed only by excitatory

neurons, only by inhibitory neurons, and only in individual
layers by both excitatory and inhibitory neurons. Restricting to
only excitatory neurons barely reduces the number of simplices
in each dimension (Figure 3A1), while simplex counts in
inhibitory sub-graphs are multiple orders of magnitude smaller
(Figure 3A2), consistent with the fact that most neurons in the
microcircuitry are excitatory. Analyzing the sub-graphs of the
layers in isolation shows that layers 5 and 6, where most of
the excitatory neurons reside (Markram et al., 2015), contain
the most simplices and the largest number of high-dimensional
simplices (Figure 3A3).

The large number of simplices relative to the number of
neurons in the microcircuit implies that each neuron belongs
to many directed simplices. Indeed, when we counted the
number of simplices to which each neuron belongs across
dimensions, we observed a long-tailed distribution such that
a neuron belongs on average to thousands of simplices
(Figure 3B). Both the mean maximal dimension and the number
of simplices a neuron belongs to are highest in the deeper
cortical layers (Figure 3C). Neurons in layer 5 belong to the
largest number of simplices, many spanning multiple layers
(Figure 3D), consistent with the abundance of neurons with
the largest morphologies, which are connected to all layers. On
the other hand, layer 6 has the largest number of simplices
that are fully contained in the layer (Figure 3A3), consistent
with the fact that layer 6 contains the most neurons. While the
number of simplices that can form in the microcircuitry depends
essentially on the number of neurons, the number of simplices
to which a single neuron belongs depends fundamentally
on its number of incoming and outgoing connections (its
degree), which in turn depends on its morphological size
(Figure 3E).

2.3. Topology Organizes Spike Correlations
The presence of vast numbers of directed cliques across a
range of dimensions in the neocortex, far more than in
null models, demonstrates that connectivity between these
neurons is highly organized into fundamental building blocks
of increasing complexity. Since the structural topology of the
neural network takes into account the direction of information
flow, we hypothesized that emergent electrical activity of the
microcircuitry mirrors its hierarchical structural organization.
To test this hypothesis, we simulated the electrical activity of
the microcircuit under in vivo-like conditions (Markram et al.,
2015).

Stimuli, configured as nine different spatio-temporal input
patterns (Figure 4A), were injected into the reconstructed
microcircuit through virtual thalamo-cortical fibers in which
spike trains were induced using patterns recorded in vivo (Bale
et al., 2015; Figure S4; Section 4.7). These stimuli differed
primarily in the degree of synchronous input received by the
neurons. As expected, the neurons in the microcircuit responded
to the inputs with various spiking patterns (Figures 4B1,B2,B4).
We then calculated for each connected pair of neurons the
correlation of their spiking activity (Figure 4C) and found a
broad distribution of correlation coefficients, with only ∼12% of
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FIGURE 3 | (A1) Number of simplices in each dimension in the excitatory subgraph (shaded area: standard deviation across seven instantiations). (A2) Same, for the

inhibitory subgraph. (A3) Same, for the subgraphs of individual layers. (B) Distribution across seven instantiations of the Bio-M graph of the number of 3- simplices an

excitatory (red) or inhibitory (blue) neuron belongs to (simplices/neuron). (C) Mean over neurons in individual layers of the highest dimension of a simplex that they

belong to. (D) Simplices/neuron by layer and dimension. (E) Correlation of 3-simplices/neuron and degree in the graph for all neurons.

FIGURE 4 | (A) Patterns of thalamic innervation in the reconstruction. Each circle represents the center of innervation of a thalamic fiber. Each color represents a

unique thalamic spike train assigned to that fiber. (B1) Exemplary directed simplex in a microcircuit. (B2) Connectivity and morphological types of neurons in the

exemplary simplex. (B3) Raster plot and PSTH (1t =10 ms) of spiking response of neurons in (B1,B2) to stimulus S30b. (B4) Correlation coefficients of all pairs of

PSTHs in (B3). (C) Correlation coefficients of PSTHs for all stimuli and all connected pairs of neurons in a microcircuit (1t = 25 ms). (D) Mean correlation coefficients

for connected pairs of neurons against the number of maximal simplices the edge between them belongs to, dimension by dimension. Means of fewer than 1,000

samples omitted. (E) Mean correlation coefficient of pairs of neurons, given their position within a simplex and its dimension.
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connections where either the pre- or postsynaptic neuron failed
to respond during all stimuli.

To avoid redundant sampling when testing the relationship
between simplex dimension and activity, we restricted our
analysis to maximal simplices, i.e., directed simplices that are
not part of any higher-dimensional simplex (Section 4.1.2). A
connection can be part of many higher-dimensional maximal
simplices, unless it is itself a maximal 1-simplex. Despite the
restriction to maximal simplices, we retained all information
about the structure of the microcircuit because the complete
structure is fully determined by its list of maximal simplices
(Section 4.1.2). Correlations were calculated from histograms
of the average spiking response (peri-stimulus time histogram,
PSTH; bin size, 25 ms) to five seconds of thalamo-cortical
input over 30 repetitions of a given input pattern (Figure 4B3).
We then calculated the normalized cross-covariance of the
histograms for all connections (Figure 4C; Section 4.8) and
compared it to the number of maximal simplices associated with
each connection in each dimension (see Figure 4D).

The neurons forming maximal 1-simplices displayed
a significantly lower spiking correlation than the mean
(Figure 4D), an indication of the fragility and lack of integration
of the connection into the network. The mean correlation
initially decreased with the number of maximal 2-simplices a
connection belongs to, and then increased slightly. We observed
that the greater the number of maximal 2-simplices a connection
belongs to, the less likely it is to belong to higher-dimensional
maximal simplices, with the minimum correlation occurring
when the connection belongs to no simplices of dimension
higher than 3. In higher dimensions, the correlation increased
with the number of maximal simplices to which a connection
belongs. While very high mean correlation can be attained for
connections belonging to many maximal 3- or 4-simplices, the
mean correlation of connections belonging to just one maximal
5- or 6-simplex was already considerably greater than the
mean. These findings reveal a strong relationship between the
structure of the network and its emergent activity and specifically
that spike correlations depend on the level of participation of
connections in high-dimensional simplices.

To determine the full extent to which the topological
structure could organize activity of neurons, we examined
spike correlations between pairs of neurons within individual
simplices. These correlations increased with simplex dimension
(Figure 4E, blue), again demonstrating that the degree
of organization in the activity increases with structural
organization. Spike correlation between pairs of neurons is
normally an ambiguous measurement of connection strength
because it is influenced by the local structure, specifically by
indirect connections and/or shared inputs (Palm et al., 1988;
Brody, 1999). However, since in our case the local structure is
known and described in terms of directed simplices, we could
infer how the local structural organization influences spike
correlations. We compared the impact of indirect connections
and of shared inputs on correlated activity by calculating the
average correlation of pairs of neurons at different positions
in a simplex when ordered from source to sink (Figure 4E,
right panel). The number of indirect connections is highest for

the pair consisting of the first (source) and last (sink) neurons
(Figure 4E, purple), while the number of shared inputs is highest
for the last and second-to-last neurons (Figure 4E, red). The
first (source) and second neurons (Figure 4E, green) serve as a
control because they have the smallest numbers of both indirect
connections and shared inputs in the simplex.

We found that correlations were significantly higher for the
last two neurons in the simplex, suggesting that shared input
generates more of the pairwise correlation in spiking than
indirect connections in directed simplices (p < 8 · 10−6, all
dimensions except 1D). Moreover, the spiking correlation of the
source and sink neurons was similar to the correlation of the
first and second neurons (Figure 4E, purple and green), further
suggesting that spike correlations tend to increase as shared
input increases. These results hold for a range of histogram
time bin sizes (Figure S5). The specific positions of neurons in
local structures such as directed simplices therefore shape the
emergence of correlated activity in response to stimuli.

2.4. Cliques of Neurons Bound into Cavities
Simplices are the mathematical building blocks of the
microcircuitry. To gain insight into how its global structure
shapes activity, it is necessary to consider how simplices are
bound together. This can be achieved by analyzing the directed
flag complex, which is the set of all directed simplices together
with the set of all sub-simplices for each simplex (Figure
S6, Section 4.1.2). The directed flag complex is a complete
representation of the graph, including in particular the cycles
neglected when examining directed simplices in isolation. The
relationship between any two directed simplices depends on
how they share sub-simplices. Just as any simplex can be realized
as a polyhedron, a directed flag complex can be realized as a
geometric object, built out of these polyhedra. If two simplices
share a sub-simplex, the corresponding polyhedra are glued
together along a common face (Figure 5A). The “shape” (or,
more precisely, the topology) of this geometric object fully
describes the global structure of the network.

To analyze directed flag complexes we computed two
descriptors, the Euler characteristic and Betti numbers (Section
4.1.5). The Euler characteristic of a flag complex is given by the
alternating sum of the number of simplices in each dimension,
from zero through the highest dimension (Figure 5A). The Betti
numbers together provide an indication of the number of cavities
(or more precisely, homology classes) fully enclosed by directed
simplices in the geometric object realizing the directed flag
complex, where the dimension of a cavity is determined by the
dimension of the enclosing simplices. The n-th Betti number,
denoted βn, indicates the number of n-dimensional cavities. For
example, in Figure 5A, there is one 2-dimensional cavity (and
therefore β2 = 1) enclosed by the eight triangles; if an edge were
added between any two non-connected nodes, then the geometric
object realizing the corresponding flag complex would be filled in
with solid tetrahedra, and the cavity would disappear. In the flag
complexes of the reconstructions, it was not possible to compute
more than the zeroth and top nonzero Betti numbers, as lower
dimensions were computationally too expensive (Section 4.2.2).
We could easily compute all Betti numbers for the C. elegans
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FIGURE 5 | (A) Example of the calculation of the Euler characteristic of a directed flag complex as an alternating sum of Betti numbers or simplex counts. (B) Euler

characteristic against the highest non-zero Betti number (β5) for seven instances of reconstructed microcircuits based on five different biological datasets (Bio 1-5).

(C) Top: The transmission-response (TR) graph of the activity of a microcircuit is a subgraph of its structural connectivity containing all nodes, but only a subset of the

edges (connections). Bottom: An edge is contained if its presynaptic neuron spikes in a defined time bin and its postsynaptic neurons spikes within 10 ms of the

presynaptic spike. (D) Fraction of edges active against fraction of high-dimensional simplices active in TR graphs for various time bins of a simulation. Error bars

indicate the standard deviation over 10 repetitions of the simulation. Blue triangles: 4-dimensional simplices, blue squares: 5-dimensional simplices. Red symbols and

dashed lines indicate the results for choosing edges randomly from the structural graph and the number expected for random choice, respectively.

connectome, however, as it has many fewer nodes and edges
(Figure S3).

The Betti number computations showed that there are
cavities of dimension 5 (cavities completely enclosed by 5-
simplices/6-neuron directed cliques) in all seven instances of
each of the reconstructions (Bio1-Bio5, Figure 5B; Bio-M not
shown). In contrast, the ER- and PR-control models have
no cavities of dimension higher than 3, and the GB-model
has no cavities of dimension higher than 4, demonstrating
that there are not only non-random building blocks in
the reconstruction, but also non-random relationships among
them. We found as well that the information encoded in
β5 and the Euler characteristic together captures enough
of the structure of the flag complex of a reconstruction
to reveal subtle differences in their connectivity arising
from the underlying biological data (Figure 5B, different
colors).

2.5. Cliques and Cavities in Active
Sub-Graphs
Thus far we have shown that the structural network guides
the emergence of correlated activity. To determine whether
this correlated activity is sufficiently organized to bind neurons
together to form active cliques and to bind cliques together to
form active cavities out of the structural graph, we represented
the spiking activity during a simulation as a time series of sub-
graphs for which we computed the corresponding directed flag
complexes. Each sub-graph in this series comprises the same
nodes (neurons) as the reconstruction, but only a subset of
the edges (synaptic connections), which are considered active,
i.e., the presynaptic neuron spikes in a time bin of size 1t1
and the postsynaptic neuron spikes within a time 1t2 after the
presynaptic spike (Figure 5C and Figure S7, Section 4.9). By
considering subsequent, non-overlapping time bins of constant
size 1t1, we obtain a time series of transmission-response (TR)
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graphs reflecting correlated activity in the microcircuitry. We
converted the time series of TR graphs in response to the
different patterns of thalamo-cortical inputs (see Figure 4A) into
time series of directed flag complexes. We found significantly
more simplices in the TR graphs (1t1 = 5 ms, 1t2 = 10
ms) than would be expected based on the number of edges
alone (Figure 5D), indicating that correlated activity becomes
preferentially concentrated in directed simplices.

The nine stimuli generated different spatio-temporal
responses and different numbers of active edges (Figure 6A).

The variation in Betti numbers and Euler characteristic over
time indicates that neurons become bound into cliques and
cavities by correlated activity (Figure 6A and Figure S8).
When we plotted the number of cavities of dimension 1
(β1) against the number of those of dimension 3 (β3) (the
highest dimension in which cavities consistently occur), the
trajectory over the course of ∼100 ms (Figure 6B) began
∼50 ms after stimulus onset with the formation of a large
number of 1-dimensional cavities, followed by the emergence
of 2-dimensional (not shown) and 3-dimensional cavities. The

FIGURE 6 | (A) Number of edges, β1, β3, and Euler characteristic of the time series of TR graphs in response to the stimulus patterns shown in Figure 4 (mean and

SEM of 30 repetitions of each stimulus). (B) Trace of the time series of β1 against β3 for three of the stimuli. Shading of colors indicates Gaussian profiles at each time

step with means and standard deviations interpolated from 30 repetitions of each stimulus. (C) Trace for one of the stimuli in B, along with the mean firing activity at

different locations of the microcircuit during time steps of 2 ms. (D) Like (B), but for TR graphs of Bio 1-5, in response to stimulus S15b.
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decrease in β1 began while β3 was still increasing and continued
until β3 reached its peak, indicating that higher-dimensional
relationships between directed simplices continued to be formed
by correlated activity as the lower dimensional relationships
subside.

Different stimuli led to Betti number trajectories of
different amplitudes, where higher degrees of synchrony in
the thalamic input produced higher amplitudes. The trajectories
all followed a similar progression of cavity formation toward
a peak level of functional organization followed by relatively
rapid disintegration. The center of the projection of each
trajectory onto the β1-axis (its β1-center) was approximately
the same. Together, these characteristics of the trajectories
reveal a stereotypical evolution of cliques and cavities in
response to stimuli. These observations are consistent
with experimentally recorded in vivo responses to sensory
stimuli in terms of onset delay, response duration, and the
presence of distinct phases of the response (Luczak et al.,
2015).

To determine the neurons involved in this robust evolution of
functional organization, we recorded the mean levels of spiking
activity at different spatial locations within the microcircuit
for one exemplary stimulus (Figure 6C). The activity started at
depths that correspond to the locations of the thalamo-cortical
input (Meyer et al., 2010; Markram et al., 2015), increasing
in layer 4 and at the top of layer 6, before propagating
downwards, reaching the top of layer 5 and the center of
layer 6 as β1 peaks, consistent with the finding that most
directed simplices are in these layers. The transition from
increasing β1 to increasing β3 coincided with the spread of
the upper activity zone deeper into layer 5 and the top of
layer 6, consistent with the presence of the highest dimensional
directed simplices in these layers. The bottom activity zone
also continued moving deeper, until it eventually subsided.
As the top activity zone reached the bottom of layer 5, β3

attained its peak. The zones of activity at the peaks of β1

and β3 are highly complementary: zones active at the peak of
β1 were generally inactive at the peak of β3 and vice versa.
The activity zone then remained in layer 5 until the cavities
collapsed.

Finally, we applied the same stimulus to the reconstructions
based on variations in the underlying biological data (see
Figure 5B, Bio-1 to 5) and found similar Betti number
trajectories, indicating that the general sequence of cavity
formation toward peak functional organization followed by
disintegration is preserved across individuals. On the other
hand, we observed markedly different amplitudes, indicating that
biological variability leads to variation in the number of high-
dimensional cavities formed by correlated activity (Figure 6D).
We also found that, unlike the case of different stimuli
applied to the same microcircuit (Figure 6B), trajectories arising
from different biological variations have different β1-centers.
In some cases, we observed reverberant trajectories that also
followed a similar sequence of cavity formation, though smaller
in amplitude. The general sequence of cavity formation and
disintegration, however, appears to be stereotypic across stimuli
and individuals.

3. DISCUSSION

This study provides a simple, powerful, parameter-free, and
unambiguous mathematical framework for relating the activity
of a neural network to its underlying structure, both locally (in
terms of simplices) and globally (in terms of cavities formed
by these simplices). Using this framework revealed an intricate
topology of synaptic connectivity containing an abundance of
cliques of neurons and of cavities binding the cliques together.
The study also provides novel insight into how correlated activity
emerges in the network and how the network responds to
stimuli.

Such a vast number and variety of directed cliques and
cavities had not been observed before in any neural network.
The numbers of high-dimensional cliques and cavities found
in the reconstruction are also far higher than in null models,
even in those closely resembling the biology-based reconstructed
microcircuit, but with some of the biological constraints
released. We verified the existence of high-dimensional directed
simplices in actual neocortical tissue. We further found
similar structures in a nervous system as phylogenetically
different as that of the worm C. elegans (Varshney et al.,
2011), suggesting that the presence of high-dimensional
topological structures is a general phenomenon across nervous
systems.

We showed that the spike correlation of a pair of neurons
strongly increases with the number and dimension of the cliques
they belong to and that it even depends on their specific position
in a directed clique. In particular, spike correlation increases with
proximity of the pair of neurons to the sink of a directed clique, as
the degree of shared input increases. These observations indicate
that the emergence of correlated activity mirrors the topological
complexity of the network. While previous studies have found
a similar link for motifs built from 2-dimensional simplices
(Pajevic and Plenz, 2012; Chambers and MacLean, 2016), we
generalize this to higher dimensions. The fact that each neuron
belongs to many directed cliques of various dimensions explains
in vivo observations that neurons can “flexibly join multiple
ensembles” (Miller et al., 2014). Braids of directed simplices
connected along their appropriate faces could possibly act as
synfire chains (Abeles, 1982), with a superposition of chains
(Bienenstock, 1995) supported by the high number of cliques
each neuron belongs to.

Topological metrics reflecting relationships among the
cliques revealed biological differences in the connectivity of
reconstructed microcircuits. The same topological metrics
applied to time-series of transmission-response sub-graphs
revealed a sequence of cavity formation and disintegration
in response to stimuli, consistent across different stimuli
and individual microcircuits. The size of the trajectory was
determined by the degree of synchronous input and the
biological parameters of the microcircuit, while its location
depended mainly on the biological parameters. Neuronal activity
is therefore organized not only within and by directed cliques, but
also by highly structured relationships between directed cliques,
consistent with a recent hypothesis concerning the relationship
between structure and function (Luczak et al., 2015).
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The higher degree of topological complexity of the
reconstruction compared to any of the null models was found
to depend on the morphological detail of neurons, suggesting
that the local statistics of branching of the dendrites and axons
is a crucial factor in forming directed cliques and cavities,
though the exact mechanism by which this occurs remains to
be determined (but see Stepanyants and Chklovskii, 2005). The
number of directed 2-, 3-, and 4-simplices found per 12-patch
in vitro recording was higher than in the digital reconstruction,
suggesting that the level of structural organization we found
is a conservative estimate of the actual complexity. Since the
reconstructions are stochastic instantiations at a specific age of
the neocortex, they do not take into account rewiring driven by
plasticity during development and learning. Rewiring is readily
triggered by stimuli as well as spontaneous activity (Le Be and
Markram, 2006), which leads to a higher degree of organization
(Chklovskii et al., 2004; Holtmaat and Svoboda, 2009) that is
likely to increase the number of cliques. The difference may
also partly be due to incomplete axonal reconstructions that
would lead to lower connectivity, but such an effect would be
minor because the connection rate between the specific neurons
recorded for this comparison is reasonably well constrained
(Reimann et al., 2015).

The digital reconstruction does not take into account
intracortical connections beyond the microcircuit. The increase
in correlations between neurons with the number of cliques to
which they belong should be unaffected when these connections
are taken into account because the overall correlation between
neurons saturates already for amicrocircuit of the size considered
in this study, as we have previously shown (Markram et al., 2015).
However, the time course of responses to stimuli and hence the
specific shape of trajectories may be affected by the neighboring
tissue.

In conclusion, this study suggests that neocortical
microcircuits process information through a stereotypical
progression of clique and cavity formation and disintegration,
consistent with a recent hypothesis of common strategies
for information processing across the neocortex (Harris and
Shepherd, 2015). We conjecture that a stimulus may be
processed by binding neurons into cliques of increasingly higher
dimension, as a specific class of cell assemblies, possibly to
represent features of the stimulus (Hebb, 1949; Braitenberg,
1978), and by binding these cliques into cavities of increasing
complexity, possibly to represent the associations between
the features (Willshaw et al., 1969; Engel and Singer, 2001;
Knoblauch et al., 2009).

4. MATERIALS AND METHODS

4.1. The Topological Toolbox
Specializing basic concepts of algebraic topology, we have
formulated precise definitions of cliques (simplices) and cavities
(as counted by Betti numbers) associated to directed networks.
What follows is a short introduction to directed graphs, simplicial
complexes associated to directed graphs, and homology, as well
as to the notion of directionality in directed graphs used in
this study. We define, among others, the following terms and
concepts.

Term Description Section

Directed graph Network where each edge has a
source and a target

4.1.1

Simplex Clique of all-to-all connected nodes 4.1.2
Directed simplex Simplex in a directed graph, with a

source and a sink
4.1.3

Source (of simplex) The node that is only a source of
edges in a directed simplex

4.1.3

Sink (of simplex) The node that is only a target of
edges in a directed simplex

4.1.3

Face (of simplex) Obtained by leaving out one or more
nodes of a simplex

4.1.2

Simplicial complex A collection of simplices “glued”
together along common faces

4.1.2

Maximal simplex Not a face of any larger simplex 4.1.2
Directionality Formalized, intuitive measure of

directionality in a graph
4.1.4

Betti numbers Description of a graph in terms of
the number of cavities

4.1.5.1

Euler characteristic Alternating sum of number of
simplices

4.1.5.2

4.1.1. Directed Graphs
A directed graph G consists of a pair of finite sets (V ,E) and a
function τ = (τ1, τ2) : E → V × V . The elements of the set V
are the vertices of G, the elements of E are the edges of G, and the
function τ associates with each edge an ordered pair of vertices.
The direction of an edge e with τ (e) = (v1, v2) is taken to be
from τ1(e) = v1, the source vertex, to τ2(v) = v2, the target
vertex. The function τ is required to satisfy the following two
conditions.

1. There are no (self-) loops in the graph (i.e., for each e ∈ E, if
τ (e) = (v1, v2), then v1 6= v2).

2. For any pair of vertices (v1, v2), there is at most one edge
directed from v1 to v2 (i.e., the function τ is injective).

Notice that a directed graph may contain pairs of vertices that
are reciprocally connected, i.e., there may exist edges e, e′ ∈ E
such that τ (e) = (v1, v2) and τ (e′) = (v2, v1) (Figure S6A1ii).

A vertex v ∈ G is said to be a sink if there exists no
e ∈ E such that v = τ1(e), but there is at least one edge
e′ ∈ E such that τ2(e

′) = v. Similarly v is said to be a
source is if there exists no e ∈ E such that v = τ2(e),
but there is at least one e′ ∈ E such that τ1(e

′) = v
(Figures S6A1i,iii). A path in a directed graph G consists of
a sequence of edges (e1, ..., en) such that for all 1 ≤ k <

n, the target of ek is the source of ek+1, i.e., τ2(ek) =
τ1(ek+1) (Figure S6A1iii). The length of the path (e1, ..., en) is
n. If, in addition, the target of en is the source of e1, i.e.,
τ2(en) = τ1(e1), then (e1, ..., en) is an oriented cycle. A graph
that contains no oriented cycles is said to be acyclic (Figure
S6A1i).

A directed graph is said to be fully connected if for every pair
of distinct vertices, there exists an edge from one to the other, in
at least one direction.
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4.1.2. Simplices, Simplicial Complexes, and Flag

Complexes
An abstract directed simplicial complex is a collection S of finite,
ordered sets with the property that if σ ∈ S , then every subset τ

of σ , with the natural ordering inherited from σ , is also amember
of S . A subcomplex of an abstract directed simplicial complex is a
sub-collection S ′ ⊆ S that is itself an abstract directed simplicial
complex. Abstract directed simplicial complexes are a variation
on the more common ordinary abstract simplicial complexes,
where the sets forming the collection S are not assumed to be
ordered. To be able to study directed graphs, we use this slightly
more subtle concept. Henceforth, we always refer to abstract
directed simplicial complexes as simplicial complexes.

The elements σ of a simplicial complex S are called its
simplices. We define the dimension of σ (denoted dim(σ )) to
be the cardinality of the set σ minus one. If σ is a simplex of
dimension n, then we refer to σ as an n-simplex of S . The set of all
n-simplices of S is denoted Sn. A simplex τ is said to be a face of σ
if τ is a subset of σ of a strictly smaller cardinality. The front face
of an n-simplex σ = (v0, ..., vn) is a face τ = (v0, ..., vm) for some
m < n. Similarly, the back face of σ is a face τ ′ = (vi, . . . , vn)
for some 0 < i < n. If σ = (v0, . . . , vn) ∈ Sn then, for each
0 ≤ i ≤ n, the ith face of σ is the (n − 1)-simplex σ i obtained
from σ by removing the vertex vn−i. A simplex that is not a face
of any other simplex is said to bemaximal. The set of all maximal
simplices of a simplicial complex determines the entire simplicial
complex, since every simplex is either maximal itself or a face of
a maximal simplex.

A simplicial complex gives rise to a topological space by
geometric realization. A 0-simplex is realized by a single point,
a 1-simplex by a line segment, a 2-simplex by a (filled in) triangle,
and so on for higher dimensions. (see Munkres, 1984, Section
1). To form the geometric realization of the simplicial complex,
one then glues the geometrically realized simplices together along
common faces. The intersection of two simplices in S , neither of
which is a face of the other, is a proper subset, and hence a face,
of both of them. In the geometric realization this means that the
geometric simplices that realize the abstract simplices intersect
on common faces, and hence give rise to a well-defined geometric
object.

If S is a simplicial complex, then the union S(n) = Sn ∪ · · · ∪

S0, called the n-skeleton of S , is a subcomplex of S . We say that S
is n-dimensional if S = S(n), and n is minimal with this property.
If S is n-dimensional, and k ≤ n, then the collection Sk∪ . . .∪Sn
is not a subcomplex of S because it is not closed under taking
subsets. However, if one adds to that collection all the faces of all
simplices in Sk ∪ . . . ∪ Sn, one obtains a subcomplex of S called
the k-coskeleton of S , which we will denote by S(k). Coskeleta are
important for computing homology (see Section 4.2.2).

4.1.3. Simplicial Complexes of Directed Graphs
Directed graphs give rise to directed simplicial complexes in
a natural way. The directed simplicial complex associated to
a directed graph G is called the directed flag complex of G

(Figure S6A2). This concept is a variation on the more common
construction of a flag complex associated with an undirected
graph (Aharoni et al., 2005). If G = (V ,E, τ ) is a directed graph,

then the directed flag complex associated to G is the abstract
directed simplicial complex S = S(G), with S0 = V and whose
directed n-simplices Sn for n ≥ 1 are (n + 1)-tuples (v0, . . . , vn),
of vertices such that for each 0 ≤ i < j ≤ n, there is an edge in
G directed from vi to vj. The vertex v0 is called the source of the
simplex (v0, . . . , vn), as there is an edge directed from v0 to vi for
all 0 < i ≤ n. Conversely, the vertex vn is called the sink of the
simplex (v0, . . . , vn), as there is an edge directed from vi to vn for
all 0 ≤ i < n.

Notice that because of the assumptions on τ , an n-simplex
in S is characterized by the (ordered) sequence (v0, . . . , vn), but
not by the underlying set of vertices. For instance (v1, v2, v3) and
(v2, v1, v3) are distinct 2-simplices with the same set of vertices.

4.1.4. Directionality of Directed Graphs
We give a mathematical definition of the notion of directionality
in directed graphs, and prove that directed simplices are fully
connected directed graphs with maximal directionality. Let G =
(V ,E, τ ) be a directed graph. For each vertex v ∈ G, define the
signed degree of v to be

sd(v) = Indeg(v)−Outdeg(v). (1)

Note that for any finite graph G,
∑

v∈G sd(v) = 0. We define the
directionality of G, denoted Dr(G), to be the sum over all vertices
of the square of their signed degrees (Figure S1),

Dr(G) =
∑

v∈V

sd(v)2. (2)

Let Gn denote a directed n-simplex, i.e., a fully connected directed
graph on n + 1 vertices such that every complete subgraph has a
unique source and a unique sink. Note that a directed n-simplex
has no reciprocal connections. If G is any directed graph on
n + 1 vertices, then Dr(G) ≤ Dr(Gn). If additionally G is a
fully connected directed graph without reciprocal connections,
then equality holds if and only if G is isomorphic to Gn as a
directed graph. A full proof of these statements is given in the
Supplementary Methods.

4.1.5. Homology
Betti numbers and Euler characteristic are numerical quantities
associated to simplicial complexes that arise from an important
and very useful algebraic object one can associate with any
simplicial complex, called homology. Homology serves to
measure the “topological complexity” of simplicial complexes,
leading us to refer to Betti numbers and Euler characteristic as
topological metrics. In this study we use only mod 2 simplicial
homology, computationally the simplest variant of homology,
which is why it is very commonly used in applications (Bauer
et al., 2017). What follows is an elementary description of
homology and its basic properties.

4.1.5.1. Betti numbers

Let F2 denote the field of two elements. Let S be a simplicial
complex. Define the chain complex C∗(S ,F2) to be the sequence
{Cn = Cn(S ,F2)}n≥0, such that Cn is the F2-vector space whose
basis elements are the n-simplices σ ∈ Sn, for each n ≥ 0. In
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other words, the elements of Cn are formal sums of n-simplices
in S .

For each n ≥ 1, there is a linear transformation called a
differential

∂n : Cn → Cn−1 (3)

specified by ∂n(σ ) = σ 0 + σ 1 + · · · + σ n for every n-simplex σ ,
where σ i is the i-th face of σ , as defined above. Having defined
∂n on the basis, one then extends it linearly to the entire vector
space Cn. The n-th Betti number βn(S) of a simplicial complex
S is the F2-vector space dimension of its n-th mod 2 homology
group, which is defined by

Hn(S ,F2) = Ker(∂n)/Im(∂n+1) (4)

for n ≥ 1 and

H0(S ,F2) = C0/Im(∂1). (5)

For all n ≥ 1, there is an inclusion of vector subspaces
Im(∂n+1) ⊆ Ker(∂n) ⊆ Cn, and thus the definition of homology
makes sense.

Computing the Betti numbers of a simplicial complex is
conceptually very easy. Let |Sn| denote the number of n-simplices
in the simplicial complex S . If one encodes the differential ∂n as
a

(

|Sn−1| × |Sn|
)

-matrix Dn with entries in F2, then one can
easily compute its nullity, null(∂n), and its rank, rk(∂n), which
are the F2-dimensions of the null-space and the column space
ofDn, respectively. The Betti numbers of S are then a sequence of
natural numbers defined by

β0(S) = dimF2 (C0)− rk(∂1), and

βn(S) = null(∂n)− rk(∂n+1). (6)

Since Im(∂n+1) ⊆ Ker(∂n) for all n ≥ 1, the Betti numbers
are always non-negative. The n-th Betti number βn gives an
indication of the number of “n-dimensional cavities” in the
geometric realization of S .

4.1.5.2. Euler characteristic

If S is a simplicial complex, and |Sn| denotes the cardinality of
the set of n-simplices in S , then the Euler characteristic of S is
defined to be

χ(S) =
∑

n≥0

(−1)n|Sn|. (7)

There is a well-known, close relationship between Euler
characterstic and Betti numbers (Munkres, 1984, Theorem 22.2),
which is expressed as follows. If

{

βn(S)
}

n≥0
is the sequence of

Betti numbers for S , then

χ(S) =
∑

n≥0

(−1)nβn(S). (8)

4.2. Computation of Simplices and
Homology
4.2.1. Generating Directed Flag Complexes with

Hasse Diagrams
To obtain the simplices, Betti numbers and Euler characteristic
of a directed graph, we first generate the directed flag complex
associated to the graph. Our algorithm encodes a directed
graph and its flag complex as a Hasse diagram. The Hasse
diagram then gives immediate access to all simplices and simplex
counts. The algorithm to generate the Hasse diagrams is fully
described in the Supplementary Methods Section 2.2, and the
C++ implementation of the code is publicly available at http://
neurotop.gforge.inria.fr/.

4.2.2. Homology Computations
Betti numbers and Euler characteristic are computed from the
directed flag complexes. All homology computations carried out
for this paper were made with F2 coefficients, using the boundary
matrix reduced by an algorithm from the PHAT library (Bauer
et al., 2017).

The complexity of computing the n-th Betti numbers scales
with the number of simplices in dimensions n − 1, n, and
n + 1. In particular, it requires the computation of rank and
nullity of matrices with shapes (n − 1) × n and n × (n + 1).
Due to the millions of simplices in dimensions 2 and 3 in the
reconstructed microcircuits (see Results), the calculation of Betti
numbers above 0 or below 5 was computationally not viable,
while the computation of the 5th Betti number was possible using
the 5-coskeleton for each of the complexes. Nevertheless, our
Euler characteristic computations imply that at least one of β2

or β4 must be nonzero, and it is highly likely the βk is nonzero
for all k ≤ 5.

4.3. Model of Neocortical Microcircuitry
Analyses of connectivity and simulations of electrical activity
are based on a previously published model of neocortical
microcircuitry and related methods (Markram et al., 2015).
We analyzed microcircuits that were reconstructed with layer
height and cell density data from five different animals (Bio-1-
5), with seven microcircuits per animal forming a mesocircuit
(35 microcircuits in total). In addition, we analyzed microcircuits
that were reconstructed using average data (Bio-M, seven
microcircuits). Simulations were run on one microcircuit each of
Bio-1-5 and Bio-M. Each microcircuit contains∼31,000 neurons
and ∼8 million connections. Data about the microcircuit and
the neuron models used in the simulations, as well as the
connection matrices, are available on https://bbp.epfl.ch/nmc-
portal/ (Ramaswamy et al., 2015).

4.4. Control Networks
Additional control models of connectivity were constructed
by removing different biological constraints on connectivity.
We created three types of random matrices of sizes and
connection probabilities identical to the connectivity matrices of
the reconstructed microcircuits.
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4.4.1. ER-Model (Random-Independent Graph)
An empty square connection matrix of the same size as the
connection matrix of the reconstruction was instantiated and
then randomly selected off-diagonal entries were activated.
Specifically, entries were randomly selected with equal
probabilities until the same number of entries as in the
reconstruction were active. The directed graph corresponding to
such a matrix is the directed analog of an Erdős-Rényi random
graph (Erdos and Rényi, 1960).

4.4.2. PR-Model (Morphology-Only, “Peters’ Rule”)
A square connectionmatrix was generated based on the existence
of spatial appositions between neurons in the reconstruction, i.e.,
instances where the axon of one neuron is within 1 µm of a
dendrite of the other neuron. Appositions were then randomly
removed from the matrix with equal probabilities until the same
number of connections as in the reconstruction remained.

4.4.3. GB-Model (Shuffled, Preserving Distance

Dependance)
The connection matrix of a reconstructed microcircuit was split
into 552 submatrices based on the morphological types of pre-
and postsynaptic neurons. Each submatrix was then randomized
by shuffling its connections as follows. Connections in a sub-
matrix were first grouped into bins according to the distance
between the somata of their pre- and postsynaptic cells. Next,
for each connection a new postsynaptic target was randomly
selected from the same distance bin. We selected a distance bin
size of 75µm, which was the largest bin size that preserved the
distribution of soma-distances of connected pairs of neurons in
all sub-matrices (no statistically significant difference; p > 0.05,
KL-test).

4.5. Patch Clamp Experiments
4.5.1. In vitro
Connectivity between layer 5 thick-tufted pyramidal cells was
analyzed usingmultiple somatic whole-cell recordings (6–12 cells
simultaneously) on 300 µm slices of primary somatosensory
cortex of 14- to 16-day-old rats. Monosynaptic, direct excitatory
connections were identified by stimulation of a presynaptic cell
with a 20-70 Hz train of 5-15 strong and brief current pulses
(1–2 nA, 2–4 ms). Experiments were carried out according to
the Swiss national and institutional guidelines. Further details are
explained in the Supplementary Methods.

4.5.2. In silico
In order to obtain in silico cell groups comparable to their patched
in vitro counterparts, we designed a cell selection procedure
approximating several of the experimental constraints of the in
vitro patch-clamp setup used in this study and explained above.
In brief, layer 5 thick-tufted pyramidal cells were selected from a
volume with dimensions of 200 × 200 × 20µm. The size of the
volume was chosen to match the field of view usually available in
the in vitro patch-clamp setup and to account for the tendency
to patch nearby cells, which increases the probability of finding
connected cells. The total number of cells was then reduced
by randomly discarding a fraction of them, approximating the

limited number of patching pipettes available in vitro (12) and
the failure rate of the patching. This filtering step was optimized
to match the in silico and in vitro cluster size distributions.

4.6. C. elegans Connectome
We analyzed part of the C. elegans connectome (Varshney et al.,
2011), consisting of 6,393 directed chemical synapses, obtained
from www.wormatlas.org/neuronalwiring.html.

4.7. Simulation of Electrical Activity
We performed simulations of neuronal electrical activity during
stimulation with spatio-temporal patterns of thalamic input
at the in vivo-like state (as in Markram et al., 2015), in the
central microcircuit of Bio-M. Additionally, we repeated the
same simulations in the central microcircuits of the Bio-1-
5 reconstructions. We ran simulations using nine different
organizations of thalamic input spike trains (see below).

4.7.1. Thalamic Stimulation
We used spike trains of 42 VPM neurons extracted from
extracellular recordings of the response to texture-induced
whisker motion in anesthetized rats, with up to nine cells in the
same barreloid recorded simultaneously (Bale et al., 2015). Each
reconstructed microcircuit is innervated by 310 virtual thalamo-
cortical fibers (Markram et al., 2015). To generate sets of stimuli
with different degrees of synchronous input, we assigned to
each fiber one of 5 (SS5), 15 (SS15), or 30 (SS30) spike trains,
recorded from distinct VPM neurons. In addition, we used k-
means clustering to form clusters of fibers of size 1 (SSa), 5 (SSb),
and 10 (SSc) (scikit-learn, sklearn.cluster.KMeans, Pedregosa
et al., 2011) that were assigned the same spike train. This
leads to different spatial arrangements of the identical thalamic
inputs, and therefore to different degrees of synchronous input
to individual neurons in the microcircuit.

4.8. Spike Train Correlations
We constructed postsynaptic time histograms (PSTHs) for each
neuron for each stimulus, using the mean response to 30 trials of
5 s of thalamic stimulation (with bin size of 25 ms; for additional
control, bin sizes of 10, 50, 100, 250, and 500 ms were also
used). We then computed the normalized covariance matrix of
the PSTHs of all neurons

Rij =
Cij

√

CiiCjj
, (9)

where Cij is the covariance of the PSTHs of neurons i and
j. PSTHs of simulations with different thalamic stimuli were
concatenated for each neuron to yield an average correlation
coefficient for all stimuli. In total, correlations are based on the
response of all neurons during 30 trials of nine stimuli for 5 s of
activity (22.5 min).

4.9. Transmission-Response Matrices
The temporal sequence of transmission-response matrices
associated to a simulation of neuronal activity of duration T is
defined as

TR(1t1,1t2) := {A(n) = A(n,1t1,1t2)}
N
n=1, (10)
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where the n-th matrix, A(n), is a binary matrix describing spiking
activity in the time interval [n·1t1, (n+1)·1t1+1t2], and where
N = T/1t1. The (j, k)-coefficient of A(n) corresponding to the
n-th time bin is 1 if and only if the following three conditions are

satisfied, where s
j
i denotes the time of the i-th spike of neuron j.

(1) The (j, k)-coefficient of the structural matrix is 1, i.e., there
is a structural connection from neuron j to neuron k, so that
they form a pre-post synaptic pair.

(2) There is some i such that n1t1 ≤ s
j
i < (n+1)1t1, i.e., neuron

j spikes in the n-th time bin.

(3) There is some l such that 0 < sk
l
− s

j
i < 1t2, i.e., neuron k

spikes after neuron j, within a 1t2 interval.

In other words, a non-zero entry in a transmission-response
matrix denotes a presynaptic spike, closely followed by a
postsynaptic spike, maximizing the possibility of a causal
relationship between the spikes. Based on firing data from
spontaneous activity in the reconstructed microcircuit, we
optimized 1ti such that the resulting transmission-response
matrices best reflect the actual sucessful transmission of signals
between the neurons in the microcircuit (see Supplementary
Methods). Unless noted otherwise, 1t1 = 5 and 1t2 = 10 ms
were used throughout the study.

4.10. Data Analysis and Statistical Tests
Analysis of the model and simulations was performed on a Linux
computing-cluster using Python 2.7, including the numpy and
scipy libraries (Jones et al., 2001), and custom Python scripts. We
calculated p-values using Welch’s t-test (scipy.stats), unless noted
otherwise.
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