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Experimental measurements of pairwise connection probability of pyramidal neurons
together with the distribution of synaptic weights have been used to construct randomly
connected model networks. However, several experimental studies suggest that both
wiring and synaptic weight structure between neurons show statistics that differ from
random networks. Here we study a network containing a subset of neurons which
we call weight-hub neurons, that are characterized by strong inward synapses. We
propose a connectivity structure for excitatory neurons that contain assemblies of densely
connected weight-hub neurons, while the pairwise connection probability and synaptic
weight distribution remain consistent with experimental data. Simulations of such a
network with generalized integrate-and-fire neurons display regular and irregular slow
oscillations akin to experimentally observed up/down state transitions in the activity
of cortical neurons with a broad distribution of pairwise spike correlations. Moreover,
stimulation of a model network in the presence or absence of assembly structure exhibits
responses similar to light-evoked responses of cortical layers in optogenetically modified
animals. We conclude that a high connection probability into and within assemblies of
excitatory weight-hub neurons, as it likely is present in some but not all cortical layers,
changes the dynamics of a layer of cortical microcircuitry significantly.

Keywords: connectivity, hub neuron, neural assembly, spike frequency adaptation, up-state/down-state
oscillation

INTRODUCTION

Is it possible to uniquely constrain a model network of point neurons with experimental
data? First, suppose that we have access to experimental measurements of electrophysiological
properties of single neurons. Indeed, a wealth of single-neuron data exists (Markram et al.,
2004, 2015) and methods have been developed that enable a rapid and reliable extraction
of parameters of generalized integrate-and-fire neuron models from such experimental data
(Jolivet et al., 2006; Pillow et al., 2008; Mensi et al., 2012; Pozzorini et al., 2013, 2015).
Thus, parameters of neuron models, including spread of parameters caused by heterogeneity,
can be completely constrained by experiments. Second, suppose that we have access to
experimental measurements of the distribution of synaptic weights. Indeed, experimental
data suggests a unimodal, possibly log-normal, distribution of EPSP amplitudes (Feldmeyer
et al, 1999, 2002, 2006; Song et al, 2005; Frick et al, 2008; Lefort et al., 2009).
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Thus, we can constrain the distribution of synaptic weights in
a network model with the data collected over many pairs of
neurons. Third, suppose that we know the probability that two
neurons (say, of types A and B located in layers n and m of the
same cortical column) make a short-range connection from A to
B. Again, such data exists (Lefort et al., 2009; Avermann et al.,
2012) and should be used to constrain a network model. But is
data collected on single neurons and pairs of neurons sufficient
to constrain the parameters of a network model?

The answer is negative. There are at least two reasons: (i)
The distribution of synaptic weights does not indicate whether
a single neuron is driven by a random combination of strong
and weak synapses, or whether one neuron receives all the strong
input synapses and another one all the weak ones. Similarly,
(ii) an average connection probability of say, 20 percent, is
consistent with a network of a 1000 neurons where each neuron
receives exactly 200 connections, but also equally consistent
with a network where half the neurons receive 100 inputs and
the other half 300. In this paper, we systematically explore
network variants that implement the variations indicated under
(i) and (ii) while keeping all single-neuron parameters, number of
neurons, as well as pairwise connection probabilities and synaptic
weight distributions fixed. To keep the arguments as transparent,
consistent, and precise as possible, we focus on a single cortical
layer of mouse barrel cortex and use data from a single lab (Lefort
et al., 2009; Avermann et al., 2012).

The hypothetical variations (i) and (ii) make our networks
different from a classical Erd6s-Rényi random network.
Indeed, experimental data from various labs indicate non-
random features in network connectivity (Song et al., 2005;
Yoshimura et al., 2005; Kampa et al., 2006; Perin et al., 2011).
The influence of some of these features on activity patterns
in neuronal networks has already been studied in a set of
modeling papers (Koulakov et al., 2009; Roxin, 2011; Litwin-
Kumar and Doiron, 2012; Hu et al., 2013, 2014; Pernice et al.,
2013; Vasquez et al.,, 2013; Jahnke et al., 2014; Luccioli et al.,
2014; McDonnell and Ward, 2014; Mazzucato et al., 2015, 2016).
We introduce two features of network connectivity which we
call degree-hub and weight-hub. These concern two types of
neurons and are made based on the hypothetical variations (i)
and (ii), respectively. In particular, if a few neurons receive
more synaptic input connections than others (Roxin, 2011;
Pernice et al., 2013; Tomm et al, 2014), we will refer to
these neurons as degree-hubs. On the other hand, even in a
network where there are no degree-hubs, there can still be a
few neurons (which we will call weight-hubs) that receive all the
strong connections while others receive all the weak connections
(Koulakov et al., 2009; Tomm et al., 2014), but chosen such
that the total distribution of synaptic weights across the network
remains consistent with experimental data. More generally,
such non-random features can be described as “correlations”
in the connectivity matrix or synaptic weight distribution. For
example, the input connectivity in a network with weight-hubs
is correlated: It is more likely to find a second strong input
connection in a neuron in which you have already found a strong
synapse than in a neuron for which you have found a weak
synapse.

Several experiments studied the existence of both degree-hub
and weight-hub neurons in different regions of the brain. In the
hippocampus GABAergic neurons that receive more synapses
than average were detected (Bonifazi et al., 2009). Excitatory
neurons which receive many synapses from inhibitory neurons
were found in mouse frontal cortex (Fino and Yuste, 2011).
Recently, Okun et al. (2015) found that neurons that are strongly
correlated to the population-averaged firing rate receive larger
numbers of synapses from their neighbors. Neurons receiving
stronger connections from several other neurons were observed
in experiments (Song et al,, 2005; Perin et al., 2011). Yassin
et al. (2010) and Cossart et al. (2003) investigated neocortical
excitatory neurons that systematically fire more than other
neurons. Such a high firing rate can be due to different intrinsic
neuronal properties or more frequent or stronger excitatory
synapses onto the neurons. In the latter case, the receiving
neurons can be considered as candidates of degree- or weight-
hubs. Even though experimental evidence for the existence of
weight-hubs within pyramidal neurons is not yet convincing, we
explore here signatures of hypothetical weight-hub neurons in
neuronal activity.

Another experiment unravels a related but different
phenomenon in the cortex. Yoshimura et al. (2005) suggest
that excitatory neurons in the cortex can form assemblies and
that neurons inside each assembly share common synaptic input.
Here we explore a hypothetical network where connectivity
between weight-hub neurons is higher than average. We show
that such an elevated connection probability between weight-hub
neurons significantly changes the dynamics of the network. Note
that a subnetwork of densely connected weight-hub neurons can
be interpreted as a neuronal assembly (Hebb, 1949).

We build a neuronal network which models layer 5A (L5)
of a mouse barrel cortex. Neuron numbers, pairwise connection
probabilities, and distribution of synaptic weights are matched
to experimental data (Lefort et al., 2009; Avermann et al,
2012). Parameters of the neuron model such as membrane
time constants, firing threshold and adaptation have been
extracted from experimental data (Mensi et al., 2012). Our model
is able to generate up-state/down-state oscillations (Steriade
et al., 1993; Cowan and Wilson, 1994; Lampl et al., 1999).
We show that in our network of adaptive integrate-and-fire
neurons, the existence of weight-hub neurons is not sufficient
for producing metastable up- and down-states. For oscillations to
appear, weight-hub neurons need to form assemblies with dense
internal connectivity. Another phenomenon that we address
here is the different light-evoked responses of cortical supra-
granular and infra-granular layers. Experiments (Beltramo et al.,
2013) show that optogenetic stimulation in L5 leads to a large
depolarization and a notable number of emitted spikes in non-
stimulated neurons. In contrast after stimulation of a group of
neurons in layer 2/3 (L2/3), non-stimulated neurons do not show
significant responses. We show that such a difference can be
explained by the presence or absence of an assembly of hub
neurons. We hypothesize that in L5 weight-hub neurons are
connected together densely and form assemblies while in L2/3
their connections are sparse. This may explain experimental
observations (Sakata and Harris, 2009; Chauvette et al., 2010;
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Beltramo et al., 2013) which indicate that up-states are initiated
in L5, and that L2/3 largely follows the oscillation passively.

MATERIALS AND METHODS

Neuron Model and Population Parameters
In each simulation we model one cortical layer, either layer 5A
(L5) or layer 2/3 (L2/3) from mouse somatosensory cortex. Based
on experimental data (Lefort et al., 2009), our model of a L5 barrel
column contains 454 excitatory and 90 inhibitory neurons while
L2/3 contains 1691 excitatory and 230 inhibitory neurons. The
two layers are studied separately and are not connected to each
other.

As a neuron model, we use a current-based Generalized
Integrate-and-Fire (GIF) model (Mensi et al., 2012) that features
both an adaptation current and a dynamic threshold for spike-
frequency adaptation. The GIF model parameters that we
use in our simulations have been previously extracted from
experimental data (Mensi et al, 2012). Importantly, the GIF
model has been shown to capture with high accuracy both
the subthreshold dynamics of the membrane potential and the
spiking activity recorded from neurons in mouse barrel cortex
slices during current injection (Mensi et al., 2012; Pozzorini et al.,
2013). In this model, the subthreshold membrane potential V(¢)
is described by the differential equation:

dv n
6% =g (V) —ED) - n(t=5)+1®) )

fi<t

where the parameters C, g, and Ej, define the passive properties
of the neuron (for parameter values see Table 1), I(t) is the input
current and { ?j} are the spike times. Each time a spike is emitted,
an intrinsic current with stereotypical shape 7(¢) is triggered (see
Table 2). Currents triggered by different spikes accumulate and
produce spike-frequency adaptation. Immediately after firing, the
membrane potential is reset to Vieset, integration of Equation
(1) restarts and the neuron goes through an absolute refractory
period of duration f.

Spikes are produced stochastically according to a point
process with the firing intensity

(2)

A (t) = Ao exp (M)

AV

where X is the stochastic intensity at the firing threshold Vr, AV
is a constant which defines the level of stochasticity and Vr is a
time-dependent firing threshold:

Vr(t) = Vit Yy (t=F) (3)

?]'<t

where V7 is a constant and y (¢) describes the stereotypical time
course of the firing threshold after the emission of an action
potential (see Table 1).

For all neuronal parameters, we use the values given in Table 1
with £15% uniformly distributed variations in all simulations,
except for Figure 3A. For comparison in Figure 3A all neuron

TABLE 1 | The mean of GIF neuron model parameters extracted from Mensi et al.

(2012).

Parameter Excitatory Inhibitory
CF 83.1 46.1

gL (ns) 37 66
EL(mV) —67.0 _712

Tref (MS) 4.0 4.0
Vieset (MV) —36.7 _48.4

0 1 () + no(t) 11 () + na(t)
@ (PA) 56.7¢1/57.8ms 31.8¢—t/11.5ms
n2 (O (PA) —6.9¢—1/218.2ms 1.6e—1/500.1ms
144l 71 + o) y1 (O + ()
1 @ (mV) 11.7¢1/53.8ms 5.60—t/11.5ms
yo () (mV) 1.8¢~1/640.0ms 0.66—1/473.7ms
Xo (kHz) 10 10

AV (mV) 1.4 06

Vi (mv) -39.6 _a12

In all simulation except Figure 3A we use these parameter values with variations of +15%,
which are independently and uniformly distributed. In Figure 3A there is no variation of
parameters.

parameters are as in Table 1 without any variation. The values of
Table 1 are extracted from experimental data from mouse barrel
cortex (Mensi et al., 2012) and no parameter tuning of neuronal
parameters was done for the network simulations reported here.
In the network, the input current I;(¢) in Equation (1) is
generated by synaptic current pulses into a specific neuron i

L= wjy alt—t) = ZWU/O a()S;(t—s)ds (4)
j f j

where tjf is the fth spike of a presynaptic neuron j and §; =
Zf 3(t — ff) is the spike train of neuron j where § denotes the
Dirac 3-function. We choose an exponential shape for post-
synaptic currents (PSC) a with a time constant 7gn: o (1) =
e~ (=8/Tm for t > A. The transmission delay (A) of synaptic
connections in all our simulations is 1 ms. The symbol w;; denotes
the synaptic weight from neuron j to neuron i. The term synaptic
weight is commonly used for either of two different quantities,
either the amplitude of the PSC or the amplitude of the post-
synaptic potential (PSP). In this study we take the first definition,
i.e., w;j denotes the PSC amplitude; see Equation 4. However, the
experimental datasets we used report the synaptic weight based
on the second definition (PSP amplitude). Given the neuronal
parameters, one can easily relate the two quantities. We report
the synaptic weight we used in our simulations according to both
of the definitions in Table 2.

Al network parameters (Table2), e.g, connection
probabilities, the distribution of synaptic weights and number of
neurons are chosen based on previously published data extracted
from mouse barrel cortex (Lefort et al., 2009; Avermann et al.,
2012). At present there is no comparable dataset for L5 inhibitory
neurons. Therefore, for inhibitory neurons, we use neuronal
and network parameters similar to those of L2/3 inhibitory
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TABLE 2 | Network parameters as extracted from mouse barrel cortex (Lefort
et al., 2009; Avermann et al., 2012).

Connection  tgyn(ms) Synaptic weight
Probability
PSP amplitude (mV) wij (pA)
Mean Std Mean Std

exc = exc 19% 16.3 0.66 0.76 7.9 9.1
exc =2 inh 37% 6.9 0.55 0.51 9.9 9.2
inh =>exc 50% 1.3 0.48 0.44 36.5 335
inh =>inh 35% 6.9 0.48 0.49 8.7 8.9

neurons (Avermann et al., 2012). Since, these neurons do not
play a crucial role in initiating the up/down oscillations and
stimulus-evoked responses, the exact choice of their parameters
does not strongly affect the results. Moreover, the study of
Pfeffer et al. (2013) explored some aspects of connectivity
pattern between different subsets of inhibitory neurons
and highlighted more similarities than differences between
L2/3 and L5 inhibitory network. In the model, all neurons
receive external Poisson noise whose properties are described
in Table 3.

In order to reproduce the light-evoked stimulation (Figure 4),
we randomly select 15% of the neurons and inject a step current
with amplitude 100 pA for 300 ms. For simulating the light-
evoked response in L2/3, the connection probability and the
mean synaptic weights inside excitatory population are 16.8%
and 0.37mV, respectively (Avermann et al, 2012). The other
network parameters are the same as L5. For simulating the active
cortical state (Figure 6), during the active period each neuron
receives synaptic input from 70 Poisson process neurons firing
with a rate of 5Hz. The synaptic weights of synapses from
Poisson neurons to assemblies, non-hubs and inhibitory neurons
are 25, 5, and -25 pA, respectively.

All simulations were run using the Brian simulator (Goodman
and Brette, 2008).

Partitioning the Excitatory Population into
Weight-Hubs and Non-hubs

Subpopulations

In order to distinguish between weight-hub and other neurons
(“non-hubs”), and to capture the properties of weight-hub
neuron subpopulations (assemblies), we use two methods
explained in the following. The first method (heterogeneity
approach) maintains the heterogeneity of synaptic weights in
the population. The experimentally obtained probability density
function of synaptic weights p(w) is well-approximated by a
lognormal distribution (Lefort et al., 2009):

_ b w?e?
p(w) = o ﬁe (5)
where u and s are the two parameters of the distribution and wy,
is the median of synaptic weights (Figure 1).

Following Tomm et al. (2014), we first generate a synaptic
weight matrix with local inward weight correlations, as described
in the following. We start by generating an initial random

TABLE 3 | Parameters of the external Poisson noise.

¥ Poisson(H2) Tsyn(ms) Synaptic weight
wij (PA)
Poisson =» assembly1 100 16.3 30
Poisson =» assembly?2 100 16.3 30
Poisson =» assembly3 100 16.3 30
Poisson =2 non-hubs 100 16.3 10
Poisson =2 inhibitory 100 6.9 80

Each neuron receives input from an independent Poisson process with a rate of rpojsson
and a synaptic weight w;.

connectivity matrix (connection probability p = 19%, see
Table 2) with weights drawn from Equation (5). Let W =
(W] NxN be the initial weight matrix, where N is the total number
of excitatory neurons. We continue by generating a vector A =
[ai]lyx1 using another lognormal distribution. Now, we define a
new weight matrix W by

wij = Wij a; (6)

A high value of g; increases the weight of all synapses received by
the i-th neuron. Therefore, a high value of a; tends to convert the
neuron to a weight-hub neuron, because it will have many large
inward weights. Moreover, since multiplication of two lognormal
variables yields a lognormal variable, we can be sure that new
weights w;; are drawn from a lognormal distribution. We choose
the parameters of the two lognormal distributions (© = 0.141,
s = 0924 and w,, = 0.372 mV for the distribution of ﬁ/ij,
and 4 = 14 -107% s = 0.15 and a, = 1 (median) for
the distribution of a;) to set the mean and variance of the final
weights equal to the values found in the experimental data (Lefort
et al., 2009) (u = 0.005, s = 0.936 and w,, = 0.419 mV).
The mean weight is then 0.66 mV and the standard deviation
is 0.76 mV with the above choice of parameters. N, = 95
neurons out of No = 454 excitatory neurons (20.9%) were
labeled as “weight-hubs,” by choosing those with the highest
sum of inward weights (Figure 1A). Note that other values may
have been used for the distribution parameters of #;; and a;, as
long as the distribution of w;; matches the experimental data
(Lefort et al., 2009). We chose the mentioned parameters to
achieve biologically plausible network dynamics (skewed firing
rate distribution and low correlations between neurons). Note
that if we only consider weight matrix W (without multiplying
by a;), then our network does not contain weight-hub neurons.
We used this approach in Figure 4C.

In a second step we rewire the network to increase the number
of connections between weight-hub neurons in the assembly
(such that connection probability between weight-hub neurons
increases from p = 19% to p, = 50%), while keeping the total
number of connections fixed. To do so, we randomly select two
unconnected weight-hub neurons and add a connection between
them. The weight of this new synapse is again drawn from
the lognormal distribution described earlier. Then we randomly
select a connected neuron pair which contains at least one non-
hub neuron and remove the synapse connecting them. This
procedure is repeated until we reach the desired connection

Frontiers in Computational Neuroscience | www.frontiersin.org

June 2017 | Volume 11 | Article 52


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Setareh et al. Cortical Dynamics with Weight-Hubs

A i B
1
140 Z \ : \‘
0l oS0t el =3
1200 < w0 2 w720
2 ¢ / ' % 2
o 1
5100 ' . .
@ . 2
g 80 [ without correlation 3 Poh
. inward correlation 8
8 60 - °
2 o
£ :
Z 40 "
1
20 : Weight-hub neurons
1
9 40 60 80 - 100 120 140 160 Wy, W, Wy

Sum of inward weights (mV) synaptic weight

FIGURE 1 | Networks with weight-hub neurons. (A) Histogram of the sum of inward weights for a random (solid line, network without weight-hubs) and inward
correlated (filed, network with weight-hubs) network topology. While the random topology (without weight-hubs) shows an approximately normal distribution, the
inward-correlated topology has a broader, lognormal-like distribution. Weight-hub neurons form the tail of this distribution. Both networks, without and with
weight-hubs, have the same lognormal distribution of individual weights shown in (B) (red line). Inset: In a heterogeneous network with inward correlations, most
neurons receive many weak (thin arrows) connections (top) whereas weight-hub neurons (bottom) receive many strong connections. (B) Fitting the experimental
distribution (red line) of synaptic weights (EPSP amplitudes) by a two-element “homogeneous” distribution (dashed areas). The lognormal distribution (solid line) was
fitted to experimental data (Lefort et al., 2009) and is used to find the values of weak and strong weights, wy, and wy, respectively. Inset: Splitting the excitatory

population into two subpopulations. Weight-hub neurons receive strong synaptic weights (wp,) and non-hub neurons receive weak synaptic weights (wnh). All
connection probabilities are low (onn; Nh: non-hub) except for the hub-to-hub connections (o).

probability between weight-hubs. An issue here is that, since we
remove a weak weight and add a strong one, the overall average
weight increases slightly. However, the number of replaced
synapses is very small compared to the overall number of
synapses: The number of synapses between weight-hub neurons
before the rewiring is SL“itial = N}Zf = (20.9% - N.)*p and after
that it should be Sﬁ“al = Nﬁph = (20.9% - Ne)?py. Therefore,
the fraction of replaced synapses equals:

Sﬁnal _ Sinitial
Th  Th o (20.9%)2 1) =o0m (7)
Se p

where S¢ = NZp is the total number of synapses between
excitatory neurons. That means the rewiring concerns only 7.1%
of all excitatory synapses, and therefore causes only a small
increase of the average weight (average exc. weight is 0.659 mV
before and is 0.666 mV after rewiring). Note that choosing a
higher fraction of assembly neurons in the network increases the
fraction of replaced synapses. For example, if assembly neurons
form 35% of all excitatory neurons, 20% of all excitatory synapses
will be affected. Clearly, it leads to a significant change in the
average of excitatory weighs (0.659 mV before and 0.701 mV after
rewiring).

The rewiring procedure can be modified in order to make
several connected weight-hub assemblies instead of just one. To
this end, we randomly assign weight-hub neurons into several
groups. Then new synapses are added inside the groups and the
same number of existing synapses between the groups or between
a pair of non-hub neurons are removed. Using this procedure,
each group becomes an assembly of densely connected weight-
hub neurons.

As we observed in the previous method, we could choose
different levels of heterogeneity in synaptic weight structure
by choosing different values for the distribution parameters
of w; and a;. However, this heterogeneity does not affect
the main outcome of the model, which is oscillation. We
support this idea by showing that a model with homogenous
weight structure is able to generate oscillations. Here we
explain the second method for building weight-hub neurons in
the excitatory population. This method produces homogenous
synaptic weights within each subpopulation. Hence, we call it
homogenous approach. We use it for the analytical results and
for Figure 3A. The method splits the excitatory population into
two subpopulations. The first one (the assembly of densely
connected weight-hubs) contains Ny, weight-hub neurons, the
second one contains Ny non-hub neurons. Weight-hubs are
those neurons that receive strong synapses from other weight-
hubs and from other excitatory neurons; all input weights
onto weight-hubs have the same value wy. Non-hubs receive
weak synapses, all with identical input weightswyy. Let us
assume that all connection probabilities between and inside
subpopulations are the same (p,,) except for the weight-
hub to weight-hub connection probability (py) which is
larger. Figure 1A summarizes the parameters of this network
structure.

The experimental data (Lefort et al., 2009) do not distinguish
between weight-hubs and non-hubs but reports an overall
synaptic weight distribution (p(w)) and an average connection
probability (p). We adjust the network parameters of the two
homogeneous subpopulations using these data. The average
connection probability (p) should be maintained, despite the split
of the population into weight-hubs and non-hubs. Computing
the average connection probability in this model yields the
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FIGURE 2 | Irregular up- and down-state transitions in a network with three assemblies of densely connected weight-hubs. (A-Top) Membrane potential of sample

non-hub (black, labeled 1-12) and weight-hub (labeled 13-15) and inhibitory neurons (red, without label). Inside each group neurons have been sorted by their firing

rate. Brown bars indicate time intervals which are considered as up-states for bottommost inhibitory neuron. (A-Bottom) Raster plot of several neurons of each
(Continued)
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FIGURE 2 | Continued

down-state (lower triangle).

population (same color). (B) Rate distribution of excitatory neurons. Numbered labels indicate the firing rate of neurons whose membrane potential traces are shown in
(A). Inset: The distribution of firing rates is close to a normal distribution (red curve) on a (semi-) logarithmic scale. (C) Histograms of the up-state duration for each
group of excitatory neurons. The coefficients of variation for the assemblies are 0.06, 0.10, and 0.16, which signifies regular durations. The non-hub neurons (filled
histogram) exhibit a broad distribution of up-state durations with coefficient of variation of 0.42. Inset: The Excitatory population contains three assemblies of
weight-hubs and a large population of non-hubs. (D,E) Distribution of pairwise Pearson correlation coefficients of transition times from down- to up-state (D) and from
up- to down-state (E) inside each subpopulation (solid lines) and over all 145,530 pairs of neurons (dashed lines). Transitions of two neurons are counted as
coincident if they happen in the same time bin of 20 ms. (F) Averaged Pearson correlation coefficients of transitions from down- to up-state (upper triangle) and up- to

equation:

Nﬁph + Nﬁthh + 2N NnhPnh
(Nh + Non)®

p= (8)
We approximate the synaptic weight distribution p(w) obtained
by experiments (Lefort et al, 2009) with a two-element
distribution formed by wy, and wyy, (Figure 1A). The strategy
is simple: a classification boundary (w,) divides the synaptic
weights into two disjoint sets, i.e., synaptic weights lower than
w and synaptic weights higher than w,. All weights lower than
wy are set to wyy, and the others to wy,.

In order to obtain the value of wy, we introduce the fraction of
weak connections f,;, as a parameter:

f erlhpnh + NpNonpnh )
h = —
’ (Nh + Nun)*p

The classification boundary w;. follows from the condition that
the probability mass of weak connections must account for the
fraction of weak connections:

O " (w) dw = fo (10)

Because p(w) is positive there is a unique solution for w;
which we determine numerically. Once the boundary w, is
fixed, averaging w over the respective support yields the synaptic
weights of weight-hubs w}, and non-hubs wyy:

Wnh = L W*p(W) dw (11)
fnh 0
wp = f—h . p (w) dw (12)

where f, = 1 — fyh. A similar procedure may be applied in the
case of several connected weight-hub neurons subpopulations.
Choosing p = 50% and N}, = 95, we obtain the remaining
parameter values: wy, = 1.42 mV, w,, = 0.34 mV for PSP
amplitudes, and p,, = 18%. The PSC amplitudes can be
calculated using the PSP amplitudes: w, = 16.9 pA and wy, =
4.0 pA.

Rate-Current Relations

Consider a population or a subpopulation of neurons. We can
obtain a relation between the average firing rate of all neurons
and the average synaptic input current using two different

approaches. The first approach employs the neurons gain
function, a generalization of the frequency-current (f — I)
curve (the terms firing frequency and firing rate are used
interchangeably here). Injecting a weakly fluctuating current Iy,
into a neuron causes an average firing rate of

r =g ({lyyn). 1) (13)

where g is the gain function and (Isyn> and s; are the
average and standard deviation of synaptic current over time,
respectively. Although there are ways to compute the firing
rate of adaptive integrate-and-fire neuron models in closed-
form (Fourcaud-Trocmé et al., 2003; Hertdg et al., 2014) or by
using a self-consistent numerical approach (La Camera et al,
2004; Richardson, 2007, 2009), we obtain it here by numerical
simulations, using a certain amount of fluctuations in the input:
I(t) = (lyn) +if°°a2 (0)§ (t—0) ds (14)
Y \/q—Z 0
where « (¢) is the shape of an elementary postsynaptic current
(PSC) defined in Equation (4), & (f) is white noise of unit
standard deviation and ¢, = fooo o? (t) dt. If the current is
injected for short episodes of 10 ms or less, we can estimate the
firing rate in the non-adapted state by averaging over several
trials. If it is injected for a longer time, we can divide the time
into intervals of 10 ms and extract the frequency-current relation
in the different, progressively more adapted states.

The second relation between the average firing rate and the
average synaptic current follows from the network activity; see
Amit and Brunel (1997) and Gerstner et al. (2014). Each neuron
i receives the synaptic current produced by the input spike train:

Liggn () =) w; ( /O T e S (t—s) ds>

J

(15)

where S; () is the spike train of j-th neuron, and wj; is the synaptic
weight of this input onto the receiving neuron. By averaging
both sides over time and input neurons we obtain the average
input current (also known as the mean field) (Isyn> = Npgwr,
where N and p are the number of neurons in the population
and the connection probability between them, respectively. Here
q = fooo o (t) dt is the total charge of one PSC pulse, w is the
average synaptic weight and r is the average firing rate of neurons
in this population. Rearranging this equation yields the network
feedback relation:

_ Iym)

~ Npgw (1o
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3
Time (s)

FIGURE 3 | (A) Network of 454 excitatory and 90 inhibitory neurons with identical neuron parameters, organized into homogenous subpopulations with dense
connectivity within each assembly and non-hubs. Membrane potential traces of a non-hub neuron (A1), neurons from each of the three weight-hub assemblies (A2,
A3, A4) and an inhibitory neuron (Inh) (A5). (A6) Raster plot of several neurons of each population (same colors). Oscillations of the assemblies are different in terms of
the up-state and down-state durations. Non-hub and inhibitory neurons receive input from the three oscillating assemblies and exhibit irregular oscillations. Note that
there are 359 non-hub neurons in the network, which is the majority of cells. (B) Heterogeneous network as in Figure 2, but sparse connectivity (p = 20%) inside
assemblies. Membrane potential of non-hub (B1), three weight-hub neurons (B2-B4) and inhibitory neurons (B5) and the raster plot of several neurons of each
population (B6). The Up-state/down-state oscillation vanishes. Weight-hubs (B2-B4) occasionally emit spikes since they receive stronger synapses from Poisson
neurons, while non-hub neurons (B1) do not spike at all. (C) Oscillations in a network with a single assembly of densely connected weight-hubs are more regular than
in Figure 2. Membrane potential of a non-hub (C1), a weight-hub (C2) and an inhibitory neuron (C3). (C4) Raster plot of randomly selected neurons of each
population. While weight-hub neurons (green ticks) exhibit a high firing rate in the up-state, non-hub neurons (black ticks) show only a small number of spikes.
Inhibitory neurons (Inh) are shown in red.
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C Layer 5 (in the absense of
weight-hub neurons)

D Layer 5 (sparse connectivity
inside assemblies)

FIGURE 4 | Simulated response to light-evoked stimulation of non-stimulated
excitatory neurons in cortical L2/3 (A) and in L5 (B). Approximately 15% of all
neurons (weight-hubs, non-hubs and inhibitory) are stimulated in each layer for
a time period of 300 ms (blue bar). Membrane potentials (lines) and spikes
(ticks) of weight-hubs (green) and non-hubs (black). L2/3 neurons (A) show
little depolarization due to sparse connectivity between weight-hubs, while L5
neurons (B) display a long-lasting depolarization and a significant number of
spikes. This effect is due to the dense connectivity between weight-hubs in the
L5 network model, but not in the L2/3 model. (C) Simulation of L5 in case of a
modified assembly model that only has strong internal synaptic weights but is
not innervated as strongly from other neurons as the weight-hub assembly in
(B), see main text for details. In the absence of weight-hub neurons, L5 does
not generate long-lasting depolarization in response to the stimulation. (D)
Simulation of L5 in case of having sparse connectivity (o = 20%) inside
assemblies. The network is unable to produce long-lasting depolarization.

which is a linear relation of (Isyn> and r with slope 1/Npgw. We
refer to the denominator as the network feedback (Cg,) of the
population:

Cw = Npgw (17)

Equations (13, 17) will be used in the “Results” Section to get
insight into the network dynamics.

K-Means Clustering Method

K-means is a machine learning method for assigning data
samples of a dataset to K clusters. In this method, each data
sample is represented by a vector of numbers.

The algorithm works as follows. It initializes the center vectors
of the K clusters randomly. Then, K clusters are created by
assigning each data sample to the nearest center vector (using
Euclidean distance). Afterward, the new center of each cluster
is calculated by averaging over all data samples to the cluster.
The algorithm repeats the assignment and averaging steps until
it converges (i.e., until no change happens to the clusters by
repeating these steps).

An important issue is how to determine the number of clusters
(K) to begin with. This has generally to be done with the task
in mind. Here we use the algorithm for two tasks. The first one
is distinguishing weight-hubs from non-hubs. Clearly, in this
task K = 2, because we are looking for two different classes of
neurons. The second task is assigning weight-hubs to different
clusters. Here, we use the so-called elbow method for choosing
the value of K: We run the algorithm for different values of K (2, 3,
...). Generally, the error of clustering (sum of squared distances
between each data sample and the center of its cluster) decreases
with increasing K. However, we choose the K at which the error
decreases abruptly and a greater K does not decrease the error
that much. This method leads us to K = 3 for the second task.

RESULTS

Layer 5-Model Network Produces Irregular

Oscillations

Both during anesthesia and slow-wave sleep cortical neurons
show slow oscillations (~1 Hz) between two states (Steriade et al.,
1993; Cowan and Wilson, 1994; Lampl et al., 1999; Sanchez-
Vives and McCormick, 2000; Sanchez-Vives et al., 2000; Petersen
et al., 2003), the active up-state and the quiescent down-state.
The underlying mechanism of this phenomenon is not fully
understood, but several neuronal network models have been
suggested, mostly based on short-term plasticity (Holcman and
Tsodyks, 2006; Melamed et al., 2008; Ghorbani et al., 2012).

Here we model cortical L5 with neuron model parameters and
network parameters extracted from experimental data of a single
column of somatosensory cortex in mice (see Section Materials
and Methods and Tables 1, 2). An important feature of our model
is that its excitatory population (which consists of 454 neurons)
contains three assemblies of densely (p = 50%) connected
weight-hubs which consist of 45, 30, and 20 weight-hub neurons,
respectively. A weight-hub neuron, or simply weight-hub, is
defined here as a neuron receiving many strong synapses so that
the sum of incoming synaptic weights across all connections from
other neurons in the network is large compared to that of other
neurons (Figure 1A).

Figure 2A shows the membrane potential and spike raster of
several sample neurons. Simulations show that the model exhibits
irregular up/down state transitions reminiscent of irregular slow

Frontiers in Computational Neuroscience | www.frontiersin.org

June 2017 | Volume 11 | Article 52


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Setareh et al.

Cortical Dynamics with Weight-Hubs

oscillations in anesthetized cortex (Stern et al., 1997; Lampl et al.,
1999). In order to compare the up-state durations in the model
with experimental data (Stern et al., 1997; Cossart et al., 2003),
we quantify the variability of the duration T of the up-state by
the coeflicient of variation, defined as std('T)/mean(T), where the
up-state duration T is measured as the duration for which the
membrane potential of a neuron stays at least 10 mV above the
resting potential (Er). To this end, the membrane potential is
smoothed by filtering with a Gaussian filter kernel (of width
20ms) in order to remove rapid fluctuations. The coefficient
of variation of this presumed up-state duration, averaged over
all neurons that have not been classified as weight-hub, is 0.42,
which shows that their up-state duration is rather irregular
(Figure 2C). Similarly, if we repeatedly select 10 excitatory
neurons (choosing randomly from both weight-hubs and other
neurons) and measure the average coefficient of variation of the
up-state duration, we find a coefficient of variation of 0.40 % 0.06.

The L5-network model produces a skewed and long tailed
distribution of firing rates in the whole population (Figure 2B)
that is approximately lognormal (Figure 2B, inset). Weight-
hub neurons have a high firing rate and form the tail of the
distribution, whereas non-hubs have a low firing rate. The
overall shape of the firing rate distribution is consistent with
observations in in-vivo experiments (Hromddka et al., 2008;
Vijayan et al., 2010).

We investigated the correlations of transition times from
down- to up-state and vice versa (Figures 2D-F). Transitions
inside subpopulations are highly correlated. The mean
correlation coefficient for transition from down- to up-
state is 0.84, 0.82, 0.69 for neurons within assemblies 1, 2, and
3, respectively, 0.77 for non-hub neurons and 0.78 for inhibitory
neurons (Student’s t-test for difference in mean: all p-values are
smaller than 10719). The mean cross-correlation for all pairs of
neurons is 0.58, indicating a high correlation between randomly
chosen pairs of neurons. The corresponding values for transition
from up- to down-state are 0.68, 0.64, 0.56 for assemblies
1, 2, and 3, respectively, 0.83 for non-hub neurons, 0.84 for
inhibitory neurons and 0.60 for all pairs of neurons (Student’s
t-test for difference in mean: all p-values are smaller than
10719). These results indicate that an overall synchrony between
neurons in the up-/down state oscillations is maintained,
consistent with recordings from multiple extracellular electrodes
(Petersen et al., 2003; Fucke et al., 2011). Note that assemblies
oscillate out of phase, but not in anti-phase, because they
do not strongly compete with each other, as opposed to a
network in a winner-takes-all mode. Therefore, occasionally
more than one assembly is active at a time (see raster plot in
Figure 2A). Competitive neurons with anti-phase oscillations
would instead lead to reduced correlation of up/down state
transitions, averaged across all neuron pairs in the network. High
correlations inside each subpopulation also increase the overall
correlation. The peak of the overall correlation distribution
mostly belongs to correlations of pairs inside subpopulations
(Figure 2B). Another noteworthy point is that since the size of
assembly 3 is small (20 neurons), its properties differ from other
assemblies. In particular, the firing rate of assembly 3 neurons
is less than that of the two other assemblies, and even less than

several non-hub neurons (Figure 2B). Also, the correlation of
up/down transitions is less than other assemblies and non-hub
neurons.

To investigate whether the network structure, the broad
distribution of synaptic weights, and the variation of neural
parameters values are important for these dynamics, we built
a similar model in which all synaptic weights inside a given
subpopulation (i.e., weight-hubs, non-hubs, and inhibitory)
are identical (See Section Materials and Methods) and values
of neural parameters inside each subpopulation are identical
(Table 1). The model still produces the irregular up/down state
oscillations (Figure 3A).

On the other hand, the reduction of the connection probability
inside the assemblies of weight-hub neurons from 50 to 20%
(while maintaining the overall connection probability such
that it agrees with experimental data) causes the dynamics
to change significantly, and the irregular oscillations vanish
(Figure 3B) even though network and neuronal parameters are
heterogeneous. Thus, the connection probability inside weight-
hub neurons assemblies plays an important role in the model
dynamics. This is consistent with the model of Litwin-Kumar
and Doiron (2012), in which clusters of neurons were predefined.
Also in their study, decreasing the connection probability inside
the neuronal clusters causes the transitions of clusters between
active and inactive states to cease. In a related model (Mazzucato
et al, 2015), in which inter- and intra-cluster connection
probabilities are equal, decreasing the synaptic weights inside the
clusters leads to a loss of oscillations.

Finally, we also simulate a network with a single assembly of
densely connected weight-hubs (Figure 3C). While transitions
between up and down states occur, the oscillations in non-hub
neurons (and therefore the majority of neurons) are much more
regular than in the full model of Figure2 (the coefficient of
variation of up-state duration for non-hub neurons in Figure 3C
is 0.08, while it is 0.42 for Figure 2).

Simulation of Optogenetic Stimulation

Here, we explore the light-evoked response of our model
of barrel cortex networks. Mimicking a recent experiment
(Beltramo et al., 2013), a small subset of model neurons is
stimulated to fire. Then, the activity of several non-stimulated
neurons is recorded to investigate the relation and effect of
the stimulated subset on the other neurons in the network. In
our framework, an increased connection probability between
weight-hub neurons can potentially explain the observation
of the experiment: Optogenetic stimulation of a group of L5
neurons causes a long-lasting depolarization in non-stimulated
L5 excitatory neurons, while the same experiment shows different
results in L2/3 (Beltramo et al., 2013). Non-stimulated neurons
in L2/3 show little depolarization and a smaller number of
emitted spikes upon optogenetic stimulation of L2/3. These
results imply that the L5 excitatory population is able to spread
the optically induced activation more than the L2/3 one. In
principle, this difference could be due to neuron parameters,
neuronal morphology or the structure of neuronal networks.
Here we argue that the presence or absence of densely connected
weight-hubs assemblies, which is a property of the network
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structure, can explain the difference in the spread of activation
within each layer. We propose that weight-hubs may be densely
connected in L5, but their connectivity may be sparse in L2/3.
This difference can be considered as one of several possible
ways for interpretation of different light-evoked response in
L2/3 and L5. Another noteworthy point is that although both
connection probability and average synaptic weights in L2/3
are lower than L5 (see Section Materials and Methods), the
number of neurons in L2/3 is much larger than L5 in our
framework (1691 vs. 454). Therefore, the number and total
strength of inward synapses into L2/3 neurons are not lower than
L5 neurons.

We examined whether the experiments in L2/3 and L5 can
be explained by our cortical network model. Figures 4A,B,
respectively, show the responses of L2/3 and L5 excitatory
population models to a transient direct current stimulus, which
we used to model optogenetic stimulation (Beltramo et al., 2013).
The stimulus is received by a random subset (15%) of excitatory
neurons, to account for the fact that about 15% of experimentally
observed neurons express the light-sensitive ion channel. In the
L2/3 population model, the connections within the weight-hubs
assembly are sparse, whereas in the L5 model they are dense.
Non-stimulated model neurons in L2/3 show little depolarization
while L5 ones show a high depolarization and a substantial
number of spikes, in agreement with experiments in mouse
visual cortex (Beltramo et al., 2013). Therefore, we conclude
that dense connectivity between weight-hub neurons in L5 and
sparse weight-hub connectivity in L2/3 can generate biologically
plausible light-evoked responses.

In the simulations of Figures 2, 3, we observed that densely
connected weight-hubs produce up-state/down-state oscillations
while sparsely connected ones do not. In the simulation of
Figure 4, we set up L5 to contain densely connected weight-
hubs and L2/3 to contain sparsely connected ones. Therefore, in
this model L5 is the main source of the up/down oscillations in
the cortex, while L2/3 is subsidiary. Other experimental studies
(Sakata and Harris, 2009; Chauvette et al., 2010; Beltramo et al.,
2013) provide further support of this conclusion.

To assess whether the concept of weight-hubs is necessary to
explain the light-evoked responses, we modified the structure
of L5 network and repeated the simulation. In the new
structure, we did not use weight-hub neurons (neurons that
receive strong synaptic weights from all other neurons) but
we instead implemented an assembly with high connection
probability and strong synaptic weights internally. In other
words, in the new structure the neurons of the assembly
receive strong synaptic weights from each other while they
receive normal weights (broadly distributed weak and strong
weights, as shown in Figure 1B) from the neurons outside the
assembly. Our simulation shows that this structure is unable
to produce a long-lasting depolarization and a notable number
of spikes (Figure 4C), indicating that the weight-hub property
is important to explain the light-evoked response of L5. We
also simulated light-evoked response of another variant of L5
model (Figure 4D). We showed that L5 in presence of sparsely
connected weight-hub neurons cannot generate long-lasting
depolarization.

Correlations

A characteristic of weight-hub assemblies in the model (Figure 2)
is that the activity of hub neurons is strongly correlated. We
quantified correlations by computing the correlation coefficients
of pairs of neurons, both of the subthreshold membrane
potentials and the spike trains, binned into a 10ms time
window (Figure 5A). In the heterogeneous network of Figure 2
the subthreshold membrane potentials of neurons inside each
subpopulation are strongly correlated (Figures 5B,D; mean
correlation coeflicient 0.80, 0.79, 0.75 for assemblies 1, 2, and 3,
respectively, and 0.94 for inhibitory neurons) and significantly
smaller (Student’s ¢-test for difference in mean: all p-values are
smaller than 10719) for non-hubs (mean correlation coefficient
0.65). In contrast, correlations between neurons of different
weight-hub assemblies are small, because their oscillations are
not synchronized (Figure 5D). The correlation analysis of the
spikes generated in the heterogenous network of Figure 2 also
shows correlated behavior inside subpopulations except for non-
hubs (Figures 5C,D). The mean correlation coeflicients for the
spike trains of the non-hubs is 0.06, smaller (Student’s t-test for
difference in mean: all p-values are smaller than 107'0) than
that of other subpopulations (mean correlation coefhicient 0.79,
0.65, 0.42 for assemblies and 0.52 for inhibitory neurons). If we
randomly select two neurons in the network, we find a broad
distribution of pairwise spike correlations (Figure 5C, dashed
line) with a peak close to zero, consistent with experimental
data (Reich et al., 2001) and previous model of metastable
dynamics (Mazzucato et al., 2016). Heterogeneous (Figure 5D)
and homogeneous (Figure 5E) variants of the model show very
similar correlation structure, but in the network with sparsely
connected weight-hub neurons (Figure 5F), the correlations
disappear, because assemblies are mainly driven by external noise
and do not show any joint transitions to the up-state (Figure 3B).

Active Cortical State

Our network model can switch from the oscillatory state (which
resembles slow-wave sleep or anesthesia) to an active state
and vice versa without any change of network properties. In
particular, the assemblies of weight-hub neurons, which are
responsible for producing the up-down state oscillations, are
always embedded in the network. In the active state, cortical
neurons receive sensory input predominantly from layer 4 and
layer 6 neurons which relay the sensory signals between thalamus
and other cortical layers (Binzegger et al., 2004; Poulet et al,,
2012). Here we simulate the active state by injecting an external
stimulus (homogenous Poisson process to generate excitatory
spike trains) to all neurons of the model. Figure 6A shows that
the network stops oscillating immediately after receiving the
stimulus, and switches back to the up-down state oscillations
when the stimulation stops.

The effect of the external input can be explained as follows.
When there is no strong external input, the network is driven
by the dynamics of the weight-hub assemblies. Since they show
self-sustained oscillations, the whole network is affected by the
oscillations and follows them. In case the external input is
present, however, the network is driven mainly by the input (even
if the input is stationary, as in the case driving our stimulus
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FIGURE 5 | Cross-correlations of neuronal activity. (A) Two pairs of subthreshold membrane potentials (spikes have been removed) with low (A1) and high (A2)
correlation and a pair of spike trains (A3). Spikes are counted as coincident if they fall within the same bin of 10 ms. (B,C) Distribution of Pearson correlation
coefficients of subthreshold membrane potentials (B) and spike trains (C) of pairs of neurons inside each subpopulation (solid lines) and over all 145,530 pairs of
neurons (dashed lines). (D-F) Averaged Pearson correlation coefficients between the membrane potentials (upper triangle) and the spike trains (lower triangle).
Correlations are computed for pairs of neurons in the respective subpopulations of (A-D) the heterogeneous network of Figure 2, (E) the homogeneous network of
Figure 3A and (F) the sparsely connected weight-hubs network of Figure 3B. Because inhibitory neurons do not fire any spikes in the sparsely connected
weight-hubs network (F), the spike train correlations of them are not defined (white area).

Frontiers in Computational Neuroscience | www.frontiersin.org 12 June 2017 | Volume 11 | Article 52


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Setareh et al.

Cortical Dynamics with Weight-Hubs

with a homogenous Poisson process) and not the assembly
dynamics. Therefore, all neurons, including the weight-hub
neuron assemblies, are governed by the input and stop oscillating.
During the input-driven active state, the firing rate distribution
is narrow (Figure 6B) and the correlation between neurons
is very low (Figure 6C). The average correlation coefficients
for the active state (0.15, 0.14, 0.12 for assemblies 1, 2, and
3, respectively, and 0.25 for inhibitory neurons) are smaller
than in the oscillatory state (Figure5C; Student’s t-test for
difference in mean: all p-values are smaller than 107'9). The
very low average correlations between (over all neuron pairs,
0.04 + 0.05, Figure 6C, dashed line) and inside excitatory
neurons (Figure 6C, black line) are consistent with recent
experimental observations (Ecker et al., 2010). Therefore, the
network preserves important aspects of biologically plausibility
(such as skewed firing rate distribution and low value of pairwise
correlations) also in the active cortical state.

The Role of the Weight-Hub Neurons

Assembly in the Slow Oscillations

In order to understand why the assembly of densely connected
weight-hub neurons generates oscillations, we use methods from
network analysis (Amit and Brunel, 1997; Laing and Chow, 2002;
Giugliano et al., 2004, 2008; Moreno-Bote et al., 2007; Shpiro
et al., 2009; Gerstner et al., 2014; Mazzucato et al., 2015). We
relate the mean firing rate of neurons of the assembly to the
mean synaptic current received by them. The first relation is
given by the neuronal gain function (Equation 13, curve in
Figure 7A), i.e., the firing rate that each neuron produces when
it is driven by a certain input current. The second relation is
given by the feedback of the network (Equation 16, lines in
Figure 7A), i.e., how much synaptic current is produced by the
activity of the neurons. In the absence of adaptation, intersection
points between the two curves form candidates of fixed points
of network activity. We define the “network feedback” (Cy,,
Equation 17) as the strength of synaptic feedback within the
assembly. This quantity is the inverse of the slope of the feedback
line (lines in Figure 7A). A high (low) value of Cg, leads to a
strong (weak) response of the assembly to synaptic currents.

In the framework of up- and down-state oscillations, an
assembly (or any subpopulation of neurons) with low value of
Cp, is not able to oscillate and remains in a low firing rate fixed
point. This can be explained as follows: A low value of Cg, implies
that the feedback line has a large slope (solid line in Figure 7A).
Therefore, the two curves have only one intersection point whose
rate is close to zero. We refer to this fixed point as “low-point.”
In the case of a high value of Cy,, the slope of the feedback line
is low (dashed lines in Figure 7A) and there are two additional
fixed points of the system. The middle fixed point is unstable and
is called the “switch point,” and the upper one is typically stable
(neglecting adaptation and oscillatory instabilities; Brunel, 2000;
Gerstner, 2000) and is called the “high point.” Let us refer to their
positions with symbols (I, rs) and (I, r,) with indices s and h
for “switch” and “high,” respectively. Is acts as a threshold for
the behavior of the assembly. In case of driving neurons with a
current lower than I, the assembly converges to the low-point

and remains quiescent. In contrast, currents higher than Is bring
the assembly to the high-point and force it to exhibit a high
firing rate. In our framework external Poisson noise occasionally
provides a transient synaptic current larger than the current of
the switch point. The mechanism described above is the reason
that the assembly switches from the low-point to high-point.
Switching back from the high-point to the low-point is due to
spike-frequency adaptation and will be discussed further below.

As discussed, a sufficiently large value of Cg, gives rise to two
stable fixed points of the network activity, the low-point and the
high-point. Since the assembly of connected weight-hub neurons
exhibits high average synaptic weights (w},) and high connection
probability (py,), the value of Cg, o« wypy, for this subpopulation
is high (see Section Materials and Methods, Equation 17). But is
such an assembly of weight-hub neurons necessary for producing
the oscillations? Or can any highly connected group of neurons
(not necessarily weight-hub neurons) generate the oscillation?
Or even a group of neurons with very strong synaptic weights
but sparse connectivity (similar to Mazzucato et al, 2015)?
The relevant parameters for the configuration of fixed points
is the value of Cg,, which can in principle be increased by
an increase of either wy or py, or both. However, we found
some of these possibilities to be not consistent with the existing
experimental data. In particular, fixing p,, and increasing wy
by a large factor yields a set of very strong synapses out of
the range of reported experimental PSP values (Lefort et al,
2009). On the other hand, by fixing wy, we require a very high
pn (close to full connectivity, p, = 1) which does not look
biologically plausible for cortical networks (for more details of
relation between connection probability and other population
parameters see (Klinshov et al., 2014)). For example, in the case of
the smallest assembly (containing 20 neurons), choosing sparse
connectivity p, = 0.2 yields to very high synaptic weight value
wp, = 3.55mV, similarly choosing synaptic weight wy, = 0.71 mV
(average synaptic weight in L5 excitatory population is 0.66 mV)
leads to full connectivity (py, = 1). Our solution was to increase
both wy, and py, by a moderate factor, so that both remain realistic
and still lead to a sufficiently high value of Cg,.

We would like to highlight another characteristic of Cg,.
Increasing its value increases the firing rate r, in the high
fixed point, and lowers the minimal value of the switching
current I (Figure 7A, inset). Consequently, a high value of Cg,
implies that only a small amount of transient external current is
required to bring the population above the switch point. In our
model, different assemblies have different numbers of neurons,
therefore different values of Cg,, and different switching points.
The different feedback coefficients of weight-hubs assemblies and
non-hub neurons also explain the skewed distribution of firing
rates (Figure 2B) in the model. Larger assemblies of weight-hub
neurons switch more often to the high-point and produce higher
firing rates than smaller assemblies. Hence, weight-hub neurons
from different assemblies form the tail of firing rate distribution.
Non-hub neurons do not switch to the high-point and are not
able to produce high firing rate. Therefore, they form the peak of
the firing rate distribution at low rates.

Let us now focus on the return of the assembly from the high-
point to the low-point. At the high-point neurons exhibit a high
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FIGURE 6 | Transition from up-down-state oscillations to “active” state. (A1-A6) Network of Figure 2 receiving external Poisson process stimulus from t = 3 s to

t = 5 s (blue bar). Neurons show up-down state oscillation before and after the stimulus, while they exhibit higher firing rate (20.9 Hz for inhibitory neurons and 12.4 Hz
for excitatory neurons, split into 37.4, 33.6, 33.0, 6.4 Hz for assemblies 1, 2, 3 and non-hubs neurons respectively) during the stimulation period. (B) Distribution of
firing rates across neurons in the network during stimulation interval (blue bar in A). (C) Distribution of Pearson pairwise correlation coefficients (bin size = 10 ms) of
spike trains of pairs of neurons inside each subpopulation (solid lines) and over all pairs of neurons (dashed lines) during stimulation interval.

firing rate but spike-frequency adaptation continuously decreases
the probability of spike emission. Therefore, the neurons’ gain
function changes gradually (dashed curves in Figure 7B). The
system eventually makes the transition to a new configuration
where the low-point is the only fixed point. When the system is
at the low-point, both adaptation current and dynamic threshold
decay, and eventually the dynamics of the subpopulation go back
to the initial configuration in which both high- and low-point
exist. In other words, the neurons recover from adaptation while
they are in the low-point. Stochastic spike arrivals from other
areas, described as Poisson neurons with constant firing rate here,
provide the excitation necessary to make the assembly switch

to the high-point. The resulting process of repetitive switching
between the low-point and the high-point forms the oscillation
in the system. The high point, corresponding to high firing rates
of the weight-hub neurons in our model, can be interpreted as
the up-state of a cortical network, and similarly the low-point
corresponding to low firing rates of the down-state. Previous
studies (Giugliano et al., 2004, 2008) addressed these dynamics
for a simpler adaptive integrate-and-fire neuron model with
similar analytical approaches.

Because spike-frequency adaptation in our model is
responsible for progressively changing the gain function
during the up-state, and eventually for its termination, we
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measured during the initial 10ms after switching on a synaptic current of mean (lsyn) (see Section Materials and Methods, Equation 14). The green lines (solid, dashed,
and dash-dotted) show the relation of firing rate and synaptic current caused by network feedback (see Section Materials and Methods, Equation 16) for increasing
Ctp. The slope of the green lines has an inverse relation with the effective coefficient Cy, of the population. Intersections of the red curve with one of the green lines
indicate potential stationary states (fixed points) of a network of non-adapting neurons. Populations with a high Cy, (dashed and dash-dotted green lines) have three
fixed points, stable low point, high point and unstable switch point. If the population described by a network feedback given by the dashed lines is driven by a mean
current higher than /s, it rapidly converges to the high point. On the other hand, a population with a low Cy, (solid green line) has only one intersection at the low point.
Inset: Increasing Cs, causes an increase in the high firing rate ry, (magenta curve, left vertical scale) and a decrease of the switch current /s (blue curve, right vertical
scale). (B) The noisy gain function of adaptive neurons is different during the first 10 ms after stimulus onset (solid red curve) than later (dashed red curves) (C) The
duration of up- and down-states as a function of the time constant of the excitatory neuron firing threshold kernel y(s). Only the time constant of y»(s) (the exponential
with the longer time constant) was manipulated, while y1(s) remained as reported in Table 1. The black stars indicate the experimentally extracted value of the time
constant, which was used in the other figures. (D) Same as C, except that here we manipulated the amplitude of y4(s) (the exponential with the larger amplitude). The

error bars show the standard deviation of up/down state durations over 10 simulation trials of 10's duration each.

investigate the effects of the adaptation parameters on the
duration of the up- and down states. Each time a neuron emits
a spike, several adaptation processes are added to its firing
threshold and spike-triggered current (denoted as “kernels”
y(t) and n(t) in Table 1). Each kernel has an exponential form
of be'/T, where b and t are amplitude and time constant of
the kernel, respectively, and t is the time elapsed since the
emission of the spike. By modifying the time constant ¢ of the
firing-threshold kernel y,(t) (which has a longer time constant
than y;(t)) for the excitatory neurons, we are able to change
the down-state duration strongly without affecting the up-state
duration (Figure 7C). A longer time constant implies that
neurons need more time to recover from adaptation, which
leads to a longer duration of the down-state. On the other
hand, manipulation of the kernel amplitude affects both up- and
down-state durations, as shown by changing the amplitude of
the exponential term of the kernel y;(t) (Figure 7D). Longer
values of the amplitude cause shorter up- and down-states. Note
that because the switch from the down-state to the up-state in

our model is caused by stochastic Poisson inputs, the down-state
durations have a greater variability compared to the up-state
durations (see error bars in Figures 7C,D). In general one could
manipulate amplitudes and time constants of all exponential
kernels in y(t) and 5(t) as well as other neuronal parameters.
However, since all neural parameters of our model (including the
adaptation parameters) are extracted from experiments (Mensi
et al., 2012), we did not investigate manipulating them any
further.

In order to examine whether the above network feedback
mechanism is indeed causing the up-down state transitions, we
simplified the model of L5 such that it contains a single assembly
of densely connected weight-hubs (see Section Materials and
Methods) embedded in a network of non-hubs with weak
random connections. Figure 3C shows the dynamics of the
network. Note that in this model the assembly acts as the driving
force of the system and generates an oscillation by switching
between its two stable fixed points. The non-hub neurons are
enslaved by this oscillation and show only the passive behavior
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of followers. However, while embedding only one assembly in
the excitatory population makes the system oscillate, the duration
of up-states is short and has a narrow distribution (regular
duration). In contrast, a combination of several assemblies, as
in Figures 2, 3A, results in several oscillations with different
frequencies, each of which is generated by one assembly. Non-
hub and inhibitory neurons receive these excitatory input signals
and superimpose them. The result of the superposition are
rather irregular up-states with a longer duration (Figures 2, 3A).
The role of inhibitory neurons in the model is to regulate the
firing rate of the assemblies in the up-state. This regulation
is necessary because an excessively high firing rate in each
assembly would cause rapid spike-frequency adaptation, and
would therefore substantially reduce the duration of the up-states
in that assembly. Consequently, the superimposed oscillations
would also show short up-state durations.

We can also explain the light-evoked response of L5 and
L2/3 (Figure 4) by the dynamics of the assemblies of weight-
hub neurons. In order to understand the differences between
the layers, let us suppose that most of the neurons that express
the light-sensitive ion channel generate one or several spikes in
response to the stimulus. Assuming a uniform spatial distribution
of weight-hubs in the excitatory population, we estimate that
~15% of both weight-hub and non-hub neurons are stimulated.
Since synaptic weights among non-hubs are weak, non-hub
neurons do not strongly excite neighboring non-hub neurons.
However, since they send strong synapses to weight-hubs
(according to our definition of weight-hubs), they contribute to
the initial activation of weight-hub neurons. Recall that a densely
connected assembly needs only little initial activation (to reach
the switch point) to generate a high firing rate via self-excitation.
Therefore, a densely connected assembly switches to the high
point more easily so that each weight-hub neuron fires several
spikes.

In contrast, since the connections from weight-hub neurons
to non-hub neurons are weak, the stimulation does not generate
a high overall firing rate in the network (non-hub neurons
depolarize but do not show a high firing rate). After the
weight-hub neurons have fired several spikes, spike-frequency
adaptation changes the neuronal gain function. This switches the
mean-field dynamics of the weight-hub assembly from a three-
fixed-point to a one-fixed-point regime and brings the assembly
to the low-point (Figure 7B), as discussed above. Consequently,
both firing in weight-hubs and depolarization in non-hubs cease.
In contrast, in the case of sparse connectivity between weight-
hub neurons, due to a low value of the Cg,, this subpopulation is
unlikely to transition to the high-point. Either such a fixed point
does not exists because the system has only one fixed point (the
low-point), or the value of the switch current () is very high
and stimulated neurons cannot provide sufficient input current
to reach it. Therefore, the absence of a densely connected weight-
hub assembly leads to weak spreading of the induced activation
in the population (Figure 4B). For the case of Figure 4C, since
synaptic weight from non-hub neurons onto assembly neurons
are weakened, assembly neurons do not receive enough synaptic
current to cross the switch current. Consequently, they cannot
produce notable number of spikes.

DISCUSSION

In this paper, we suggest cortical microcircuits with a
particular non-random network feature called assembly of
densely connected weight-hub neurons, to explain two different
experimental observations: Firstly, spontaneous slow oscillations
(irregular up- and down-state) and, secondly, stimulus-evoked
responses of cortical layers.

We argue that in our framework the existence of weight-
hub neurons in a cortical network alone is not enough to cause
significant changes in network dynamics. Since, we want the
values of network parameters (synaptic weights and connection
probabilities) to remain in the experimentally observed range,
we may not increase the synaptic weight of connections on
weight-hub neurons by a huge factor. Therefore, the value
of network feedback cannot become high enough to produce
oscillations by only modifying the weights. But if the connection
probability between weight-hubs is also high (at least twice the
connection probability between two arbitrary non-hub neurons),
the emerging assembly of densely connected weight-hubs shapes
the dynamics and the activity of the cortical layer. We have shown
both qualitatively and quantitatively that a small but sufficient
amount of initial activation brings the assembly of model neurons
to a transient high-rate state that resembles cortical up-states.

A single assembly of weight-hub neurons together with a
small amount of external noise (which here is provided by
constant rate Poisson inputs) forms a slow oscillator. The reason
is that this assembly switches between a high-rate state and a
low-rate state repetitively. Fluctuations caused by external noise
bring the assembly to the high-rate state, and spike-frequency
adaptation brings it back to the near-zero, low-rate state. Several
experimental studies (Sanchez-Vives and McCormick, 2000;
Sakata and Harris, 2009; Chauvette et al., 2010; Beltramo et al.,
2013) indicate that the cortical oscillations originate in infra-
granular layers (mainly L5), and that supra-granular layers (L2/3)
are subsidiary, i.e., the up-state is initiated in L5 and rises from
the depth to L2/3. We suggest that the connectivity of weight-
hub neurons in L5 is dense, while it is sparse in L2/3. Thus, L2/3
follows oscillations generated in L5, but is not able to sustain
oscillations on its own.

In slice cultures slow oscillations are rather regular (Sanchez-
Vives and McCormick, 2000), whereas experiments done in the
anesthetized animals (Stern et al., 1997; Lampl et al., 1999) show
irregular up-down state transitions. In order to reproduce this
irregularity, we embedded several densely connected weight-hub
assemblies in the excitatory population. Non-hubs, the majority
of excitatory cells, and inhibitory neurons receive synaptic input
from these oscillations and superimpose them. Consequently a
large fraction of model neurons show an irregular oscillation with
a broad distribution of up-state durations.

The presence of one or several assemblies of weight-
hub neurons may also explain layer-dependent differences of
stimulus-evoked responses (Beltramo et al.,, 2013). While L2/3
exhibits weak depolarization in response to stimulation of a small
fraction of it, in L5 the same stimulus induces a strong and
long-lasting depolarization and a substantial number of spikes.
Since the assembly of weight-hub neurons needs just a small
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amount of activation to switch to a high firing rate, and may
propagate it within the network, we suggest that the connectivity
of weight-hub neurons underlies the long-lasting response of L5.
Conversely, we would hypothesize that weight-hub neurons in
L2/3 are not strongly connected to each other.

While our multi-assembly architecture produces long tailed
distribution of firing rates, there is at least one other way to
produce such a skewed distribution. In a balanced network
in the asynchronous state (Roxin et al., 2011) showed that a
Gaussian input distribution can lead to a lognormal firing rate
distribution via an exponential non-linearity of the current-
frequency relation. In our network model, however, neurons
are not in the balanced stationary regime but participate in
synchronous transitions between up and down states. Similarly,
in the study of Mazzucato et al. (2015) the long tailed distribution
of firing rates results from metastable activity not from the
balanced stationary state.

Definition of Hub Neuron

The term hub can have two meanings: Firstly, degree-hub, i.e., a
neuron that receives more synaptic connections than an average
neuron, and secondly, weight-hub, i.e., a neuron that receives
stronger synapses than average. The second definition was used
in the current work. The common definition of a hub (degree-
hub) as a neuron that receives more synapses (Bullmore and
Sporns, 2009; Feldt et al., 2011; Prettejohn et al.,, 2011) does
not take into account the strength of synapses, called synaptic
weights here. This topological definition of hubs is common in
computer sciences, where the issue of degree and connections
between nodes is more important than the weight structure.
However, in neuronal microcircuit modeling, synaptic weights
are as important as degree and connectivity. Surprisingly, the
amount of previous modeling work done on degree manipulation
and connectivity structure (Roxin, 2011; Hu et al., 2013, 2014;
Pernice et al., 2013; Vasquez et al., 2013; Jahnke et al., 2014;
Potjans and Diesmann, 2014; Rudolph-Lilith and Muller, 2014)
by far exceeds work on non-homogeneous weight structure
(Koulakov et al., 2009; Iyer et al., 2013; Tomm et al., 2014).

Here we adopted the less-common definition of a hub
in terms of synaptic weights, to shed light on this less-well
understood aspect of non-random neuronal network features.
While manipulation of the degree distribution in the network
and creating degree-hubs has the same effect as creating weight-
hubs in producing a skewed firing rate distribution (Roxin,
2011), the two are not always interchangeable. Tomm et al.
(2014) showed that for reproducing light-evoked responses in
mouse barrel cortex slices, manipulation of both degree and
weight distributions are needed under the simulated network
conditions of this study. In our case, it would be possible to
keep the connectivity random (without rewiring) and manipulate
the weights more strongly to produce the oscillations. However,
this would entail very strong synaptic weights outside of the
experimentally observed range (Lefort et al., 2009), and thus
would reduce the biological plausibility of the model. Our
combined approach of introducing weight-hubs with dense
connectivity overcomes this problem with minimal changes to
both weight and degree distribution.

Several electrophysiological experiments indicate that the
distribution of synaptic weights (EPSP amplitudes) has a
lognormal shape (Lefort et al., 2009; Ko et al., 2011; Avermann
et al, 2012; Chapeton et al, 2012). Therefore, we used
a lognormal distribution for modeling synaptic weights in
neuronal populations. Using random (Erdds-Rényi) networks
to define whether a synaptic connection is present or not,
together with a lognormal distribution for the synaptic weight
of the connection, entails that the sum of inward synaptic
weights is similar for all neurons (Figure 1B). However, by
modifying the topology of the excitatory network to have local
inward correlation in synaptic weights (see Section Materials and
Methods), we could produce a more broadly distributed sum of
inward synaptic weights (Figure 1B). Therefore, a few excitatory
neurons receive larger total synaptic weights, while others receive
smaller values. For the sake of concreteness, we have defined a
classification boundary such that the 20% of neurons that receive
the strongest inputs are called weight-hubs (see Figure 1B). The
model is robust against varying this fraction, and shows similar
dynamics for 15 and 25% of neurons (data not shown).

Throughout this article, only excitatory to excitatory
connections were manipulated and all other connections
(inhibitory to inhibitory, inhibitory to excitatory and excitatory
to inhibitory) remained unchanged. However, evidence of
hubs in inhibitory populations has been found in experiments
(Bonifazi et al., 2009). Therefore, the effects of hubs in inhibitory
networks remain to be investigated. Since in our model
excitatory hubs suffice to explain the aforementioned aspects
of cortical dynamics, we neglected inhibitory hubs here in
favor of model simplicity. Another reason for not exploring the
structure of inhibitory connections is the lack of experimental
datasets for inhibitory connectivity in L5. In this work, we use
the inhibitory connection properties of L2/3 as a substitute
for L5 (see Section Materials and Methods). Therefore, any
investigation on inhibitory connectivity of L5 would be based on
this unconfirmed hypothesis.

Identifying Weight-Hub Neurons from Data

A network structure with densely connected weight-hubs is
hypothetical. In this section, we propose a method using machine
learning tools which can help experimentalists to label neurons
as weight-hub or non-hub using a set of recorded membrane
potential. In order to perform such a classification, we need
to consider distinct properties of weight-hub neurons. First,
weight-hub neurons in our model receive a larger amount of
excitation than non-hubs and therefore exhibit a higher firing
rate. Therefore, we might label neurons with relatively higher
firing rate as weight-hubs. However, this property alone does
not yield a robust way of identification, because besides the
synaptic input, the firing rate of a neuron also depends on its
electrophysiological parameters, such as its firing threshold. A
non-hub neuron may therefore occasionally exhibit a higher
firing rate than a weight-hub (Figure 2B). A second property of
weight-hub neurons predicted in the context of our model is the
regularity of transitions between up- and down-states. According
to our model, regular up-state durations indicate that the neuron
is a weight-hub.
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Here we use a combined approach for identifying
subpopulations of weight-hub and non-hub neurons. In
the first step, we characterize each neuron by a vector of two
elements: the overall firing rate and the CV of up-state durations
of the neuron. We pass these vectors to a K-means clustering
algorithm (see Section Materials and Methods), which clusters
neurons into weight-hubs and non-hubs with 100% accuracy
(Figure 8A). We identify the group with the lower coefficient
of variation of up-state duration as the weight-hubs and other
group as the non-hubs. In order to distinguish the assembly
that each identified weight-hub neuron belongs to, we perform
a second step and run the algorithm again on the weight-hub
neurons found in the previous step. Here we define the feature
vector of each neuron by the mean and the CV of up-state
durations. The algorithm assigns the correct assembly to 89
out of 95 weight-hub neurons. Accordingly the accuracy of the
second step is 93.7% (Figure 8B).

Although our approach works for identifying of weight-hub
neurons in our simulations, finding these neurons in the cortex
using intracellular recording will be more challenging. This is
mainly due to the fact that weight-hub neurons are likely to
form only a small portion of all excitatory neurons. In our
simulations of L5 of a single column in the barrel cortex ~20%
of all excitatory neurons are weight-hubs. However, we can scale
our model system up keeping the number of weight-hub neurons
fixed, without a change to the overall dynamics. Because weight-
hub neurons are generators of the oscillations and non-hub and
inhibitory neurons follow them. We can increase the number
of followers with the same number of weight-hub neurons. For
example a similar model of L5 which contains both Layer 5A and
Layer 5B (containing ~1,000 excitatory neurons) needs the same
number of weight-hubs to display up-down state oscillations.
Therefore, in this example, the fraction of weight-hubs reduces
to 10%. Analogously, in case of modeling an entire barrel column
(containing ~5,700 excitatory neurons), this number falls to
about 1.7%. Therefore, we expect that weight-hub neurons are
rarely recorded with present-day single-cell electrophysiological
techniques.

Different Models for Reproducing

Up/Down Oscillations

Several models have been suggested to reproduce up-down state
oscillations. The studies of Ghorbani et al. (2012) and Holcman
and Tsodyks (2006) used mean-field analysis to show that short-
term depression can give rise to the up/down state oscillation.
Other works focused on numerical simulations on the neuronal
level: Applying short-term facilitation on excitatory to inhibitory
connections also produces oscillations (Melamed et al., 2008), as
well as adding a non-linear term to the leaky integrate-and-fire
model such that each neuron is bistable (Parga and Abbott, 2007).
Giugliano et al. (2004) used a homogenous network of adaptive
neurons to produce oscillations using a similar mechanism as
in our model. However, in their model all the neurons switch
between the high- and low-rate points. Hence they all have
a high firing rate, and the distribution of firing rates is less
skewed. On the other hand, if we used the average connection

probability and synaptic weights obtained by the experiments
(Lefort et al., 2009) for building a homogeneous network with
plausible size, the value of the network feedback would not
be high enough to make the network oscillate. Therefore, we
consider the proposed network with embedded weight-hub
neuron assemblies to be the most plausible model with respect to
these data.

Switching between up- and down-states. In slowly oscillating
cortical microcircuits, the reason for the switch from the down-
state to the up-state is a matter of debate (Chauvette et al., 2010).
One possible reason could be the coincidence of spontaneous
activity of several neurons (Timofeev et al., 2000; Bazhenov
et al., 2002). Such a coincidence may provide enough input
to several other neurons to make them fire. This phenomenon
then repeats and propagates the activity to a notable number
of neurons, and so the system may switch to the up-state.
Another possibility is that a few neurons are active more than
others on average, and show firing even in the down-state. One
hypothesis about such neurons is that they receive a persistent
sodium current which causes bursts of firing (Hill and Tononi,
2005; Bon-Jego and Yuste, 2007). Another hypothesis is that
electrophysiological properties of these neurons make them fire
more than others, e.g., they can have lower firing threshold
(Compte et al., 2003). Therefore, these neurons play the role
of pacemakers, or drivers of oscillations. Here we show that in
order to make such an oscillator it is unnecessary to change the
neuron model or introduce any persistent currents. In our model,
we build the oscillation merely by increasing the connection
probability between weight-hubs (to about 50%), while keeping
the overall connection probability fixed at the value measured in
experiments (Lefort et al., 2009).

The return of the cortex from the up-state to the down-state
could have several reasons. In one approach, the accumulation
or increase of inhibition shuts down the up-state: When
the system goes to the up-state, the excitatory population
receives excitation from itself and inhibition from an inhibitory
population. The system remains in the up-state as long as the
excitation dominates the inhibition. However, at some point
the inhibition becomes dominant and brings the system back
to the down-state (Parga and Abbott, 2007; Melamed et al.,
2008). Instead of inhibition, synaptic short-term depression may
weaken the excitatory to excitatory synapses during the up-
state and cause a reduction of self-excitation received by the
excitatory population, by which it can oscillate on its own
(Holcman and Tsodyks, 2006). In Compte et al. (2003) and
Giugliano et al. (2004) spike-frequency adaptation is responsible
for bringing the system back to the down-state. In the up-
state, Na+ -activated K+ channels reduce the firing rate of
excitatory neurons gradually and the excitatory population loses
the amount of self-excitation that is necessary for remaining
in the up-state. Consequently it falls back to the down-state.
Our model also uses adaptation for switching to the down-state.
We have previously built a similar model which uses short-
term depression instead of adaptation (Setareh et al., 2014).
As shown here in a network of neurons that exhibit spike-
frequency adaptation with parameters fitted from experiments,
synaptic depression is not necessary, but we do not exclude that
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FIGURE 8 | K-means clustering identifies weight-hub neuron assemblies. Each dot represents one neuron and its color denotes the corresponding subpopulation in
the simulation shown in Figure 2. (A) Clustering of all neurons into two clusters. The first stage of the classification algorithm successfully identifies weight-hubs and
non-hubs, but does not distinguish between different assemblies of weight-hubs. The red circles show the center of the clusters and the dashed line displays the
classification boundary. (B) Clustering of weight-hub neurons (identified in A) into different assemblies. The K-means algorithm with three clusters identifies the

synaptic depression plays a role in cortical up-/down-states as
well.

Competition Based Network Models

An important point which distinguishes our work from several
previous models (Shpiro et al, 2009; Krishnamurthy et al,
2012) is that there is no competition between the assemblies
of weight-hub neurons in our model. In classic competition
based models there are two or more populations of excitatory
neurons, each trying to become active and suppress the other
ones using either direct inhibition or indirectly by exciting an
inhibitory population of neurons. The dominant population
keeps inhibiting others until it loses its activation by a
negative feedback mechanism like short-term depression or
spike-frequency adaptation, or until one of the suppressed
populations becomes the dominant one by receiving a high
amount of noise sufficient to overcome the inhibition. In
contrast, in our model assemblies do not compete to win
the activation. In contrast to inhibition-dominated networks,
in our network, the active assembly helps other assemblies
(and non-hubs) to become active by sending excitation more
than indirect inhibition. As a consequence of our network
parameters, several assemblies can be active simultaneously.
Depending on the adaptation state of the assemblies at the time
of receiving excitation, the number and order of transitions to
the up-state are different. Such different patterns of activations
cause different up-state duration in the non-hub and inhibitory
neurons.

Models for Producing Multistable Activity

While our model is not based on competition of assemblies,
and several assemblies can be active at the same time, it is
also different from clustered network models suggested for

producing multistable activity states (Deco et al., 2011; Litwin-
Kumar and Doiron, 2012; Mazzucato et al., 2015, 2016). In
such models several clusters of neurons are embedded into the
population of excitatory neurons. The connection probabilities
inside clusters are increased (in Litwin-Kumar and Doiron, 2012
both connection probabilities and synaptic weights are increased)
compared to those between clusters. Therefore, each cluster
acts as an attractor similar to the assemblies of weight-hub
neurons in our model. Clusters receive noisy input and one or
several of them become active at a time. The shared inhibitory
population sends inhibition to all clusters and limits the number
of active clusters. Once one of the quiescent clusters, which also
receives noisy input, becomes active, due to shared inhibition,
it deactivates one or several clusters which were previously
active. This procedure repeats and consequently, each cluster
switches between active and inactive states. In this architecture,
coincidence of noisy inputs causes a cluster to switch to the active
state and shared inhibition switches it back to the inactive state.
Therefore, there is no need for a negative feedback mechanism
like spike-frequency adaptation. Although the activity of this
model looks similar to ours, the functionality is different. In
these models, at least one cluster is active at each time during
ongoing activity. In fact, a cluster deactivates because another
one becomes active—the clusters pass on the activity amongst
themselves. Therefore, after a first activation there is at least
one active cluster which produces spikes and depolarizes other
neurons including non-cluster excitatory neurons (the situation
that all clusters become inactive at the same time rarely occurs).
In contrast, in the down-state all neurons are silent and have
a low membrane potential. Moreover, in the clustered network
transitions into and out of the active state are anti-correlated
between different assemblies: If one cluster activates, another one
typically deactivates, i.e., the number of active clusters is constant
most of the times, although we may rarely observe several active
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assemblies at the same time. In our model, transitions times to
up- and down-states are correlated across the network. Moreover,
each assembly is able to transition back to the inactive state (the
low-point) on its own without need for inhibition or activation
of other assemblies. The self-termination ability results from
spike-frequency adaptation (see Section Materials and Methods).
Therefore, there are time intervals in which all assemblies are
inactive and the whole network is silent. In summary, although
the clustered architecture successfully reproduces the multistable
states during ongoing and evoked activity, it is not suitable to
produce up-state/down-state oscillations.

To conclude we would like to highlight the predictive aspects
of our study. First, central components of our model are the
weight-hub neurons, i.e., those with strong synaptic inputs.
Although, there is no direct experimental evidence for the
existence of weight-hub neurons, we introduce this concept here
as a prediction. Yet, our demonstrations that model networks
using weight-hubs display biologically plausible dynamics, and
explain cortical phenomena, may be considered as an indication

of weight-hub existence. Second, on top of that, we predict
that weight-hub neurons in L5 form an assembly of strongly
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