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Biological and artificial neural networks (ANNs) represent input signals as patterns

of neural activity. In biology, neuromodulators can trigger important reorganizations

of these neural representations. For instance, pairing a stimulus with the release

of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the

responses of neurons to the paired stimulus. The functional roles of ACh and DA in

rearranging representations remain largely unknown. Here, we address this question

using a Hebbian-learning neural network model. Our aim is both to gain a functional

understanding of ACh and DA transmission in shaping biological representations and

to explore neuromodulator-inspired learning rules for ANNs. We model the effects of

ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater

neuromodulator activation are over represented in the network. We then simulate

the physiological release schedules of ACh and DA. We measure the impact of

neuromodulator release on the network’s representation and on its performance on

a classification task. We find that ACh and DA trigger distinct changes in neural

representations that both improve performance. The putative ACh signal redistributes

neural preferences so that more neurons encode stimulus classes that are challenging

for the network. The putative DA signal adapts synaptic weights so that they better match

the classes of the task at hand. Our model thus offers a functional explanation for the

effects of ACh and DA on cortical representations. Additionally, our learning algorithm

yields performances comparable to those of state-of-the-art optimisation methods in

multi-layer perceptrons while requiring weaker supervision signals and interacting with

synaptically-local weight updates.

Keywords: acetylcholine, dopamine, neuromodulator, sensory representations, neural networks, biology-inspired

learning, representation learning

1. INTRODUCTION

Neurons in the cortex represent countless features of sensory signals, from the frequencies of
photons falling on the retina to high-level attributes like quantities and numbers. The particular
form a sensory representation takes is critical to perception. For instance, experienced musicians
display enhanced sensory representations which putatively explain their finer perceptual abilities
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(Elbert et al., 1995; Pantev et al., 1998, 2001). This view is further
supported by the observation that, following discrimination
training, improvements in perceptual sensitivity correlate
with the degree of reorganization in cortical representations
(Recanzone et al., 1992, 1993; Weinberger, 2003; Polley et al.,
2006). On the other hand, perceptual disorders like phantom
limb pain (Ramachandran et al., 1992; Halligan et al., 1993; Flor
et al., 2006) or tinnitus (Eggermont and Roberts, 2004) appear to
be correlates of degenerate sensory representations.

In animals, sensory representations undergo modifications
in various circumstances, for instance following extensive
perceptual training (Weinberger and Bakin, 1998; Harris et al.,
2001; Schoups et al., 2001; Fletcher and Wilson, 2002; Fritz et al.,
2003;Wang et al., 2003; Bao et al., 2004; Yang andMaunsell, 2004;
Polley et al., 2006; Poort et al., 2015), repeated sensory exposure
(Han et al., 2007; Kim and Bao, 2009), cortical stimulation,
(Godde et al., 2002; Dinse et al., 2003; Tegenthoff et al., 2005),
or sensory deprivation (Calford and Tweedale, 1988; Allard
et al., 1991; Gambino and Holtmaat, 2012). Additionally, the
neuromodulators acetylcholine (ACh) and dopamine (DA) bear
potent effects on cortical representations. In particular, repeated
efflux of either ACh (Kilgard and Merzenich, 1998a; Froemke
et al., 2007, 2013; Gu, 2003; Weinberger, 2003) or DA (Bao et al.,
2001; Frankó et al., 2010) coinciding with a stimulus strengthens
the responses of neurons to this stimulus and enlarges its cortical
representation.

ACh and DA are critical to forms of learning which require
modifications of sensory representations. For instance, lesion of
the cholinergic (Butt and Hodge, 1995; Fletcher and Wilson,
2002; Conner et al., 2003; Wilson et al., 2004; Conner et al.,
2010) or dopaminergic (Kudoh and Shibuki, 2006; Molina-Luna
et al., 2009; Hosp et al., 2011; Luft and Schwarz, 2009; Schicknick
et al., 2012) system disrupts perceptual andmotor learning as well
as the associated plasticity in cortical maps. These observations
suggest that the neuromodulators orchestrate plastic changes that
refine cortical representations and give rise to perceptual and
motor learning.

In physiological conditions, ACh transmission appears to
signal attentional effort, a construct reflecting both the relevance
and difficulty of a task (Himmelheber et al., 2000; Arnold
et al., 2002; Kozak et al., 2006; Sarter et al., 2006). DA
carries information relative to reward-prediction errors (RPEs)
(Schultz et al., 1997; Schultz, 2007, 2010). Although their
release properties are relatively well defined, the functional
roles these signals serve in shaping neural representations is
unclear.

Much like the cortex, artificial neural networks (ANNs)
represent input data in the form of neural activation. As
for other machine learning algorithms, the performance of
ANNs critically depends on the representation data take. The
most widely used learning rule for ANNs, the error back-
propagation algorithm (Werbos, 1974; Rumelhart et al., 1985),
learns representations optimised for specific tasks. Although, the
back-propagation algorithm yields remarkable performances, it
is unlikely to be implemented in biological neural structures
and it also bears its own limitations. For instance, in order to
compute the error function, a target output must be specified

for each training example, making training data expensive to
acquire. Additionally, weight updates require information not
available locally at the weights which limits the use of the back-
propagation algorithm in physical devices like neuromorphic
chips.

In the present work we explore the use of signals inspired
from ACh and DA for learning in a neural network model.
This effort serves two aims: first, to shed light on the functional
roles of ACh and DA in shaping cortical representations and,
second, to provide inspiration for novel training methods
for ANNs.

Previous studies examine the roles of ACh and DA in
neural information processing. Weinberger and Bakin (1998)
develop a model of ACh signaling to investigate its function
in classical conditioning. Li and Cleland (2013) present a
detailed biophysical model of ACh neuromodulation in the
olfactory bulb. However, these studies do not see to the
perceptual benefits of long-term plasticity induced by ACh.
Other work tackle the question of DA-modulated plasticity
in neural networks. Roelfsema and colleagues show that a
signal inspired from DAergic signaling allows a network to
learn various classification tasks (Roelfsema and Ooyen, 2005;
Roelfsema et al., 2010; Rombouts et al., 2012). Similarly,
other models make use of DA-like reinforcement signals
to learn stimulus-response associations (e.g., Law and Gold,
2009; Liu et al., 2010). In these cases, however, the models
for the plastic effects of DA were chosen to carry out
reinforcement learning rather than to tally with experimental
observations.

In contrast with previous work, we base our modeling
effort on the well-documented observation that pairing ACh
or DA release with a stimulus boosts neural responses to
the stimulus. We use this model to study the perceptual
benefits of ACh- and DA-induced plasticity under natural
release conditions. In more details, we make use of a Hebbian-
learning neural network and simulate the physiological release
schedules of ACh and DA. In the model, ACh activation
approximates attentional demand while DA activation arises
from RPEs. We find that the neuromodulators trigger distinct
changes in representations that both improve the network’s
classification performance. Specifically, ACh leads to changes
in synaptic weights such that more neurons are dedicated
to stimuli that are challenging for the network. DA adapts
synaptic weights to the reward contingencies of a task, thereby
sharpening neural tuning with respect to the classes of the
task. These results provide a functional explanation for the
roles of cholinergic and dopaminergic signals in refining cortical
representations.

Our learning algorithm offers several advantages from a
practical perspective. First, the network achieves performances
comparable to those of state-of-the-art optimisation methods
used to train multi-layer perceptrons (MLPs) while requiring
weaker supervision signals. Second, learning takes place
even in the absence of environmental feedback. And third,
weight updates are based on synaptically-local information
and on two signals broadcasted identically to all neurons.
These features may make the algorithm interesting for
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functional applications such as learning in neuromorphic
processors.

2. METHODS

2.1. Hebbian Network Model
For our study, we make use of a Hebbian-learning neural
network model introduced by Keck et al. (2012). The learning
mechanisms implemented in this model achieve approximately
optimal learning in terms of maximum likelihood estimation (see
original publication for a detailed discussion). As a theoretically
well-founded and biologically realistic model, this network is a
natural starting point for our work. In this section, we briefly
present the original model and then describe our simulation of
the neuromodulators ACh and DA.

The network consists of three layers, an input, a
representation, and a classification layer (Figure 1). Input
values activate neurons in the first layer; activity then propagates
through the network in the following steps.

2.1.1. Feedforward Inhibition
In mammals, the responses of sensory neurons are largely
invariant to contrast in sensory stimuli (Sclar et al., 1990; Stopfer
et al., 2003; Mante et al., 2005; Assisi et al., 2007; Olsen and
Wilson, 2008), in part due to rapid feedforward inhibition
(Pouille and Scanziani, 2001; Swadlow, 2003; Mittmann et al.,
2005; Wehr and Zador, 2005; Pouille et al., 2009; Isaacson and
Scanziani, 2011). To emulate this process, neural activations in
the input layer are normalized:

yd = (A− D)
ỹd

∑D
d′=1 ỹd′

+ 1 , (1)

where Ẽy are input data, A is a normalization constant, and D is
the number of input neurons. This form of normalization yields
contrast-invariant responses in representation neurons. For the
dataset used in this work, D = 28 × 28 = 784 input neurons.

FIGURE 1 | Network architecture. The network contains three layers: an input,

a representation, and a classification layer. For the MNIST dataset, the input

and classification layers contain D = 28× 28 = 784 and K = 10 neurons,

respectively. The number of representation neurons is variable; for most results

we use C = 7× 7 = 49 neurons.

For other hyper-parameters, values are determined through grid
search to maximize classification performance (see Table A1 in
Appendix section).

2.1.2. Input Integration
Neurons in the representation layer integrate their input through
a weighted sum:

Ic =

D
∑

d=1

S(Wcd)yd , (2)

where W is the weight matrix between the input and
representation layers and S(·) is a linearised logarithm function
given by:

S(Wcd) =

{

Wcd ifWcd < 1

log(Wcd)+ 1 ifWcd ≥ 1 .
(3)

Taking the logarithm of Wcd guarantees approximate optimal
learning of the weights, with the linearisation ensuring that the
function is never negative forWcd ≥ 0.

2.1.3. Lateral Inhibition
The integrated input is fed through a softmax function that
models global lateral inhibition:

sc =
exp(Ic)

∑

c′ exp(Ic′ )
. (4)

2.1.4. Hebbian Learning
Hebbian learning takes place between the input and
representation neurons:

1Wcd = ǫ · (scyd − scWcd) , (5)

where ǫ is the learning rate.

2.1.5. Classification
We subject the network to a classification task of images of hand-
written digits from the MNIST dataset (LeCun et al., 1998b).
These input images provide stimuli of intermediate complexity
and high-dimensionality akin to natural sensory stimuli, making
them a popular dataset to study neural information processing
(Nessler et al., 2013; Schmuker et al., 2014). These data consist
of gray-scale images with pixel values in the range [0, 255] fed as

input Ẽy to the first layer.
In the classification layer, we use statistical inference to decode

activity in the representation layer. Given an input pattern Ey and
the model parameters 2, we want to infer the class of the input
pattern, that is, to compute the posterior Pr(k | Ey,2). Here, we
approximate the posteriors using the labels of the input images.
We first compute a value Bkc:

Bkc :=
1

Nm

Nm
∑

n=1

Pr(c|Ey(n),W) =
1

Nm

Nm
∑

n=1

s(n)c , (6)

with Nm input patterns Ey(n) bearing a label m = k. The matrix
B can be interpreted as the weights between the representation

Frontiers in Computational Neuroscience | www.frontiersin.org 3 June 2017 | Volume 11 | Article 54

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Holca-Lamarre et al. Neuromodulator-Based Representation Learning

and classification layers. This matrix is updated after every
presentation of 100 images, or roughly 600 times during one
iteration over the dataset. The posteriors are approximated as:

Pr(k | Ey,2) ≈ tk =

C
∑

c=1

Bkcsc
∑K

k′=1 Bk′c
. (7)

As a classification result m̂, we take the unit with the largest value
of approximation to the posterior:

m̂ =
K

argmax
k=1

(tk) . (8)

This hierarchical formulation allows to decode activity in the
representation layer, providing a probabilistic classification of the
input images.

Previous work based on a fully probabilistic description of the
Hebbian-learning network model (Forster et al., 2016; Forster
and Lücke, 2017) shows that local Hebbian learning converges to
the weight matrix B without requiring the non-local summation
over k. This is true also when using a small fraction (≈ 1%) of
labeled training examples. Learning the classification weights can
therefore be achieved while respecting biological constraints. For
this work, we mainly focus on the standard fully labeled setting,
as is customary (Keck et al., 2012; Nessler et al., 2013; Schmuker
et al., 2014; Diehl and Cook, 2015; Neftci et al., 2015), but also
provide results for experiments with very few labels.

2.2. Model of the Neuromodulators
2.2.1. Effects on Plasticity
We extend the network model described above to emulate the
effects of ACh and DA on neural representations. Specifically, we
simulate the impact of the neuromodulators as a modulation of
the network’s learning rate:

acetylcholine: 1Wcd = ǫ · ACh · (scyd − scWcd) , (5a)

dopamine: 1Wcd = ǫ · DA · (scyd − scWcd) , (5b)

where ACh andDA represent the activation of the corresponding
neuromodulatory system. This model is in general agreement
with experimental observations in that both ACh (Bröcher et al.,
1992; Chun et al., 2013) and DA (Blond et al., 2002; Sun et al.,
2005; Matsuda et al., 2006) are reported to promote synaptic
plasticity. This model for the neuromodulators was chosen so as
to reproduce the results of pairing experiments in mammals (see
Results section).

2.2.2. Acetylcholine and Attentional Efforts
ACh release in the mammalian neocortex is tightly linked with
attentional processes. For instance, as rats detect a behaviorally
meaningful sensory cue, a spike in cortical ACh accompanies the
reorientation of their attention towards the cue (Parikh et al.,
2007). Additionally, when rats perform a task requiring sustained
attention, the concentration of ACh in their prefrontal cortices
more than doubles compared to control (Arnold et al., 2002;
Kozak et al., 2006). In the course of such tasks, distractors that
further tax the animals’ attentional systems trigger supplemental

ACh release (Himmelheber et al., 2000; Kozak et al., 2006). These
observations indicate that the cholinergic system responds to
events demanding an animal’s attention such as relevant stimuli
or challenging tasks. In this sense, ACh transmission reflects the
cognitive construct of attentional effort defined as a subject’s
motivated effort to maintain performance under challenging
conditions (Sarter et al., 2006).

In the present work, we model ACh activation to approximate
attentional demand. To quantify how demanding a stimulus is
for the network, we use the network’s classification confidence.
Classification confidence is measured as the classifier’s maximal
posterior over the digit classes, κ = maxK

k=1
(tk). Classification

confidence strongly correlates with classification accuracy
(r = 0.89, Figure 2A) indicating that this measure is suitable to
quantify stimulus demand. For each stimulus, the value of the
ACh variable is given by:

ACh =
α

1.0+ exp(β · (κ̄m̂/κ̄ − 1.0))
(10)

where κ̄m̂ is the network’s average classification confidence for
the inferred class of the current stimulus, κ̄ is the average
classification confidence for all stimuli, and α and β are
hyper-parameters of the sigmoid function whose values are
determined through grid search (Figure 2). According to this
formulation, the lower the classification confidence (i.e., the
greater the stimulus difficulty), the larger the ACh activation.
Note that, to compute the average classification confidence over
the digit classes, we use the network’s inferred classification
(m̂) and not the stimulus label. Thus, for a given stimulus,
ACh activation is evaluated without requiring immediate
environmental information. Also note that the classification
confidence for the same stimulus may vary during training as the
network’s weight matricesW and B are updated.

2.2.3. Dopamine and Reward Prediction Errors
DA efflux in animals follows RPEs (Schultz et al., 1997; Satoh
et al., 2003; Tobler et al., 2005; Schultz, 2010). We reproduce
this release schedule in the model as follows. First, we allow
explorative decision making by injecting additive noise in the
activation of representation neurons (Figure 3):

Ic =

D
∑

d=1

S(Wcd)yd + ηc ,

ηc ∼ N (0, υ) ,

where N is a normal distribution with zero mean and variance
υ . This method for exploration approximates the softmax rule
for action selection in reinforcement learning (Sutton and Barto,
1998). Following this rule, actions are selected stochastically with
the probability of selecting an action proportional to its expected
reward. The parameter υ corresponds to the temperature
parameter of the softmax rule: for υ → ∞, all classification
decisions have equal probabilities; for υ → 0+, classification is
purely exploitative. We find the optimal value for υ through grid
search.
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FIGURE 2 | (A) Classification confidence strongly correlates with classification

accuracy. Here, we measure the network’s classification confidence for the

test images of the MNIST dataset, bin the classification confidence (bin size of

0.02%) and calculate the average correct classification for each bin.

(B) Average classification confidence κ̄m̂ for the 10 digit classes, with the

mean confidence over all classes κ̄ indicated as a dashed line. Data are the

mean of 10 runs, error bars indicate the standard deviation across runs.

(C) Parameter exploration for the α and β parameters of the ACh release

function. A star indicates the parameter set yielding maximal accuracy.

(D) ACh activation function (Equation 10) taking as input the relative

confidence κ̄m̂/κ̄. This ratio quantifies the demand of the current stimulus.

We then compute the classification output for each Ey with
and without the addition of noise η. If noise addition results
in a classification decision that is different from the decision
without noise addition, the classification is labeled as explorative;
otherwise it is labeled as exploitative. If the network takes
an exploitative decision it is said to predict a reward (+pred);
if it takes an explorative decision it is said to not predict a
reward (−pred). The network is rewarded for taking correct
classification decisions (+rew) and not rewarded for incorrect
decisions (−rew). The difference between the predicted and
delivered rewards gives rise to a RPE. There are four possible RPE
scenarios. In each of these cases, the DA variable in Equation 5b
takes a distinct value:

DA =



















δ+/+ if + pred and + rew

δ+/− if + pred and − rew

δ−/+ if − pred and + rew

δ−/− if − pred and − rew

(12)

where δ./. are constants whose values are determined through
4-dimensional parameter search to maximize classification
performance.

2.2.4. Critical period
We are interested in changes in sensory representations triggered
by neuromodulators in adult animals. Adult animals possess
stable neural representations of their environment learned in
early life during a brief window of heightened plasticity. During

FIGURE 3 | Noisy neural activation in the representation layer allows

explorative classification decisions. (A) Activations of input neurons (yd ),

weights of a subset of representation neurons with their corresponding

activations prior to noise injection (sc, gray highlights), and activations of

classification neurons (tk ) with the network’s classification output indicated as

a bold colored outline. The example input images are correctly (top) and

incorrectly classified (bottom). (B) Noise addition in the activations of

representation neurons leads to incorrect (top) and correct (bottom) explorative

classification decisions. In these two different outcomes of exploration, the

variable DA in Equation 5b takes a distinct value (δ−/− and δ−/+, respectively).

this so-called critical period, the response properties of neurons
rapidly adjust to the statistical structure of sensory stimuli
(Sengpiel et al., 1999; de Villers-Sidani et al., 2007; Han et al.,
2007; Barkat et al., 2011).

As a model of this critical period, we pre-train the network
solely through Hebbian learning (Equation 5). The network then
learns synaptic weights based on correlations in the activation
of input neurons, with weights that resemble the different digit
classes. The weights in the representation layer are then learned
solely through the statistics of the input images and do not reflect
the task to be performed. As learning progresses, performance
on the classification task increases and eventually saturates. Once
performance reaches a plateau, we allow the release of ACh
or DA. As an additional control condition, we also continue
training the network through Hebbian learning. Omitting the
pre-training results in the same functional performance but,
without it, the optimal DA activation values found through
parameter search differ (see Figure 6).

3. RESULTS

3.1. Pairing Experiment
In animals, coupling a stimulus with the release of either ACh
(Kilgard and Merzenich, 1998a; Weinberger, 2003; Froemke
et al., 2007, 2013) or DA (Bao et al., 2001; Frankó et al.,
2010) triggers long-lasting changes in sensory representations.
Specifically, sensory neurons increase their responses to the
paired stimulus, resulting in more neurons preferring this
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stimulus. To test whether our model of ACh and DA is
in agreement with this observation, we perform a similar
experiment. The experiment consists of coupling all stimuli of a
target class with ACh or DA = ρ in Equations 5a or 5b, where
ρ is a constant > 1 (Figure 4A). Stimuli of all other classes
have ACh and DA = 1. We then examine the distribution of
class preferences in the network. The preferred digit class of
a neuron is determined by taking argmaxK

k=1
(Bkc) which gives

the class to which neuron c maximally responds to. We find
that the pairing protocol increases the responses of individual
neurons to the paired stimulus class and augments the number
of neurons preferring this class, in agreement with experimental
data (Figures 4B–G). Furthermore, the procedure reduces the
number of units tuned to classes close to the paired one (class
closeness is measured as the Euclidean distance between the
averages of all training examples of each class). These findings
are in line with pairing experiments with DA showing that
the cortical representations of frequencies neighboring a paired
tone shrink as a result of the pairing procedure (Figure 4G;
Bao et al., 2001). This observation however contrasts with
pairing experiments with ACh which result in enlargements of
the cortical representations of both the paired frequency and
adjacent ones (Kilgard and Merzenich, 1998a). For this work,
this difference in the effects of ACh and DA is not taken into
account.

3.2. Physiological Release Schedule
3.2.1. Optimal Release Values
With our model in general agreement with the results of
pairing experiments, we can now study the effects of the
natural release schedules of ACh and DA. We first pre-train
the network through Hebbian learning. As training progresses,
performance saturates (Figure 5, inset). After this point, we
allow the release of ACh or DA. We perform parameter search
to identify the optimal values for parameters α and β in
Equation 10 (Figure 2C) and for the δ./. constants in Equation 12
(Figure 6). In the case of the δ./. constants, we find that for
surprising rewards (−pred, +rew) the optimal δ−/+ is positive
while in the absence of an expected reward (+pred, −rew)
the optimal δ+/− is negative. For correctly predicted rewards
(either +pred, +rew or -pred, −rew) the optimal δ+/+ and δ−/−

are close to zero. This optimal activation profile matches that
observed in primates (Schultz et al., 1997; Tobler et al., 2005),
Figures 6B–C).

3.2.2. Effects of ACh
Visual inspection of the weights of the network (Figure 7A)
indicates that ACh alters the number of neurons dedicated
to the different digit classes. For instance, there are more
neurons resembling a “4” and fewer neurons resembling a “1”
after training with ACh. We quantify this redistribution by
determining the preferred class of a representation neuron.
For Hebbian learning, the distribution of preferred classes is
close to uniform but not entirely so (Figure 7B). There is a
positive correlation between the number of neurons dedicated
to a class and the network’s performance on this class (r = 0.22,

FIGURE 4 | Stimulus pairing with ACh or DA enhances the stimulus’

representation. (A) Simulation of the neuromodulator-stimulus pairing protocol.

The ACh or DA variables in Equations 5a or 5b is set to a constant value ρ > 1

for stimuli of the paired class (“2”, in this case) and to 1 for all other classes.

(B) Mean responses of a neuron to the digit classes. Traces are before and

after pairing images labeled as “2” (arrow) with neuromodulator activation

ρ = 20. Classes are ordered with their distance from class “0” (see text for

details). Error bars are a standard deviation. (C) Synaptic tuning curves of a

neuron in the rat primary auditory cortex. Traces are before and after a 2 kHz

tone (arrow) is paired with high-frequency electrical stimulation of the nucleus

basalis triggering ACh release. Error bars are the standard error of the mean.

Reproduced from Froemke et al. (2007), with permission. In the model and in

animals, the pairing procedure boosts responses of individual neurons to the

paired stimulus. (D,F) Histogram of class preferences in the network model

before (D) and after (F) the pairing manipulation. Classes are ordered with their

distance from the paired class. Dashed line is a uniform distribution, data are

the mean of 10 runs, error bars indicate a standard deviation. Inset: weights of

the representation neurons for an example network; highlights indicate

neurons whose preferred classes are “2”. (E,G) Histogram of best frequencies

in the auditory cortices of rats before (E) and after (G) a 9 kHz tone is paired

with stimulation of midbrain dopaminergic neurons. Frequencies are ordered

to their difference from the paired tone. Modified from Bao et al. (2001), with

permission. In the simulation as in biology, the pairing protocol enhances the

representation of the paired stimulus and suppresses that of neighboring ones.

Figure 7D), suggesting that representing a class with more
neurons is beneficial to performance.

Training with ACh redistributes class preferences in the
network, leading to a less uniform distribution. Specifically,
ACh increases the number of neurons dedicated to challenging
classes while easier classes are represented with fewer units.
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FIGURE 5 | Neuromodulator release improves the network’s classification

performances. Left bar plots: error rates on the MNIST test dataset in networks

with 49 representation neurons. All approaches with neuromodulators lead to

significant improvements over Hebbian learning alone. “ACh stim.” is for

stimulus-wise ACh activation, “DA greedy” is for a network without exploration,

“DA post.” is for a network using the classifier’s posteriors as an approximation

to the expected value of the reward (see text for details). DA alone and DA with

ACh yield the best performance. Right bar plots: comparison with other

training methods for MLPs. All results are for networks of the same

architecture, namely a single hidden layer with 300 units. LeCun ‘98 are the

original results from LeCun et al. (1998a) on the MNIST dataset. L-BFGS and

Adam are optimisation methods for MLPs (see Appendix for details). Inset:

progression of the test performance for the networks with 49 neurons. Darker

traces are averages over 20 runs, lighter traces are individual runs. Data for the

bar plots are the mean of 20 runs, error bars indicate a standard deviation.

FIGURE 6 | The model’s optimal DA activation profile matches the one

reported in mammals. (A) We explore different values for the four δ./.

constants through grid search and report the classification performance of the

network (colored axis, data are averages over 10 runs). A star indicates the

best parameter set, dots indicate parameter sets yielding performances not

statistically significantly different from that of the best set (p > 0.01). (B) Firing

of dopaminergic neurons in monkeys in RPE scenarios equivalent to those of

the model (modified from Schultz et al. (1997), with permission). (C) Bar plot of

the best parameter set (dark red) and sets not significantly different from best

(light red). The parameter sets are sorted in decreasing order of their

classification accuracies, from left to right.

Consider for example the classes “1” and “4,” the stimuli
on which the network performs best and worst, respectively
(Figure 7C, top row). ACh release leads to a respective decrease
and increase in the number of neurons preferring these classes

(Figure 7B). The redistribution of neurons elicited by ACh raises
the network’s accuracy on the difficult classes (e.g., “4”) and
lowers performance on the easy classes (e.g., “1,” Figure 7C,
middle row). ACh thus reverses the correlation between neuron
count and performance (r = −0.79, Figure 7D). On average
over all classes, performance rises from 83.5 ± 0.7% with
Hebb’s rule alone to 85.0 ± 0.6% when supplemented with
ACh, corresponding to a relative decrease of 12% in the error
rate.

In addition to ACh activation computed as an average
over the classes m̂, we experiment with stimulus-wise ACh
activation. Here, the value of the ACh variable is determined
for each individual stimulus based on the classifier’s posterior
for this stimulus (specifically, we use the term κ instead
κ̄m̂ in Equation 10). Although this approach also improves
performance, the gains in accuracy are of smaller magnitude than
if ACh activation is computed as an average over the classes
(Figure 5, “ACh stim.”). We explain this outcome as the learning
mechanism attributing a too great representational importance
to demanding but detrimental data, for instance miss-labeled or
outlier data points.

3.2.3. Effects of DA
In contrast with ACh signalling, DA bears little effect on
the number of neurons responsive to the different classes
(Figure 7B). For both Hebbian and DA-based learning, the
distribution of the neurons’ preferred digit class is close to
uniform. The positive correlation between neuron count and
classification performance also remains after training with DA
(Hebbian: r = 0.22, DA: r = 0.20).

Visual inspection of the weights suggests that DA makes
neurons’ weights more selective to specific digit classes. Consider
the example weights shown in Figure 8A. Weights in one column
are for corresponding neurons in aHebbian andDAnetwork (the
networks were initialised with the same random seed). Weights
in the Hebbian model are rather poorly tuned to the digit classes
(e.g., the neuron resembling a “3,” “5,” and “8” in the second
column of Figure 8A). On the other hand, DA-based learning
leads to weights that more closely correspond to specific digits.
This observation can be quantified by measuring the average
responses of neurons to the different classes (first and third
rows in Figure 8A). The measure shown indicates that Hebbian
learning yields neurons exhibiting strong responses to multiple
stimulus classes, i.e., with a broad tuning. Training withDA yields
more sharply tuned weights as units respond almost exclusively
to a single digit category.

On average over all neurons, DA generates a 17%
increase in neurons’ activations to their preferred classes,
accompanied by a 84% reduction to non-preferred classes
(Figure 7E). These modifications amount to neuron
weights being more selective to specific digits, or having a
sharper tuning. We quantify such neural selectivity as the
difference between a neuron’s mean response to stimuli of its
preferred class and its mean response to stimuli of all other
classes:

ζc =
s̄•c − s̄◦c
s̄•c

, (13)
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FIGURE 7 | Network changes following neuromodulator release. (A) Weights of a subset of representation neurons (25 out of 49). (B) Histogram of class preferences.

Dashed line is a uniform distribution. ACh increases the number of neurons preferring the more challenging classes. (C) Performance of the network on the different

classes. Dashed line is average over all classes. (D) Performance on a class as a function of the number of neurons preferring this class. There is a positive correlation

for Hebbian and DA-based learning. The learning mechanism in ACh reverses this correlation. (E) Average responses of neurons to the digit classes, with the classes

ordered by the neurons’ preference. ζ indicates mean neural selectivity (see text). DA sharpens the responses of neurons, enhancing their activations to their preferred

classes and reducing their activations to non-preferred classes. Data are for 20 runs, error bars indicate a standard deviation. Gray overlaid bars in (B,C, and E) are

values for Hebbian learning for comparison.

where s̄•c and s̄◦c are the average responses of neuron c to stimuli
of its preferred and non-preferred classes, respectively. Here,
ζc = [0, 1], where ζc = 0 is a neuron that responds equally
strongly to all stimuli and ζc = 1 is a neuron that responds
exclusively to one digit category. Selectivities of individual
neurons are indicated on Figure 8A; selectivities averaged over
all neurons of a network, ζ , are indicated on Figure 7E. We
can also quantify a neural network’s selectivity for a specific
digit class m as the sum of the selectivity of the neurons whose
preferred stimulus class is m, ζm (see Figure 8-B,C). Training
with DA statistically significantly boosts neural selectivity
(p < 0.001).

DA induces large improvements in classification accuracy
(95.53 ± 0.05% for DA compared to 83.5 ± 0.7% for Hebbian
learning, p < 0.0001), corresponding to a 72.7% reduction in
the error rate. Performance for a class strongly correlates with
neural selectivity for this class, for both the Hebbian and DA
networks (r = 0.996 and r = 0.920, respectively, Figures 8B,C).
These strong correlations suggest that enhanced neural selectivity
explains the rise in correct responses following training with DA.

We can further visualize the outcome of DA learning by
reducing the dimensionality of input images to 2 features (using
t-SNE, Maaten and Hinton, 2008) and train the network on
these data (Figure 9). In Hebbian learning, the neural network
acts as a clustering algorithm and, as the learning mechanism
is agnostic to the labels of the stimuli, the classification
boundaries miss some aspects of the data classes. In particular,
boundaries are poorly defined between close-by clusters such
as “3,” “5,” and “8.” Following DA signalling, weights adjust to

match the boundaries for the conditions for reward delivery of
the task.

In the model for DA activation presented above, reward
predictions are binary, reflecting solely whether a decision is
explorative or not. An alternative approach is to use the classifier’s
posterior for the output class (i.e., its classification confidence)
as an approximation to the expected value of the predicted
reward. This posterior probability strongly correlates with the
empirically-measured reward probability (r = 0.98), validating
the approximation. However, we find that this approach does not
improve the network’s accuracy over binary reward predictions
(Figure 5, “DA post”).

In order to assess the role of exploration in DA-based learning,
we train a network without allowing explorative decisionmaking.
This greedy network achieves a classification score of 92.51 ±
0.07% (Figure 5, “DA greedy”), compared with 95.53 ± 0.05%
with exploration. Exploration thus accounts for a further 18%
relative drop in the error rate.

3.2.4. Learning on Non-uniformly Distributed Data
For the results on the MNIST dataset, ACh yields modest
reductions in error rates relative to DA. This less important
effect may be explained in part by the almost even distribution
of training examples over the classes in the dataset. In more
natural settings, some classes may contain many more examples
than others while a high classification performance is equally
important on all classes. For instance, a gatherer may see
many more examples of “green leaves” than “berries” but
still requires a low error rate for both classes. We test the
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FIGURE 8 | DA enhances class selectivity in neurons. (A) 1st and 3rd rows:

average responses of example neurons to the different integer classes. 2nd

and 4th rows: depictions of the neurons’ weights. The color axis represents

weight strength. While neurons in the Hebbian network respond to stimuli of

multiple classes, those trained with DA respond almost exclusively to a single

class. This observation is quantified as the selectivity ζc of neurons

(Equation 13). (B,C) Difference between rates of true and false positives for

each digit class as a function of a network’s selectivity for this class. (B) Data

are for a single Hebbian neural network. (C) Data are for 20 networks for both

Hebbian- and DA-based learning. DA enhances neural selectivity which

translates to greater classification accuracy.

impact of ACh in a modified version of MNIST in which a
subset of the classes are over-represented. Here, the training
dataset contains the classes “0,” “2,” “3,” “5,” and “8,” and
there are 60 times more “0” and “2” (the “leaves”) than the
other classes (the “berries”). To model equal importance of the
classes, we take the test dataset to be uniformly distributed
over the classes. For Hebbian learning, the network performs
poorly on the under-represented classes as it dedicates only few
neurons to these classes (Figure 10, top row). Neuromodulation
significantly improves accuracy and, on these data, ACh yields
gains comparable in size to those of DA. As with the standard
MNIST dataset, ACh carries its effect by attributing more
neurons to classes on which performance is low (those that
are under-represented). DA only has minimal effects on the
distribution of class preference; increases in performance derive
from boosting neural selectivity.

In addition to training the network with ACh and DA
separately, we combine the two neuromodulators by allowing

FIGURE 9 | 2-dimensional visualization of the outcome of DA learning. The

dimensionality of input images are reduced from 784 to 2 features and a

network is trained on these data. The input stimuli are depicted as colored

dots, the weights of representation neurons as black crosses, and the

classification boundaries as colored outlines. Hebbian learning performs

density estimation: weights represent clusters of data points agnostic to the

points’ labels. For classes that are well separated from others, the network

retrieves close to perfect boundaries (e.g., “1” or “0”). However, for close-by

classes (e.g., “3”, “5”, and “8”, magnified in the bottom row), the boundaries

poorly match the true labels. DA transmission adapts weights so that they

better agree with the class boundaries of the task.

first ACh release and then DA. This procedure leads to a
redistribution of the class preferences (due to ACh) followed
by an enhancement in neural selectivity (due to DA). The
combined activations of ACh and DA result in a further decrease
in error rates compared to either modulator alone, indicating
that the effects of ACh and DA can successfully combine
(Figure 10).

3.2.5. Impact of Code Sparseness
Lateral inhibition sparsifies the network’s neural code so
that inputs activate only one or a few neurons at a time
(Figure 11A). Such a strong sparse code facilitates learning with
neuromodulators as it avoids the credit-assignment problem.
Additionally, the global neuromodulator signals are then
essentially computed for a single neuron at a time. To examine
the extent of the impact of the code’s sparseness on learning, we
introduce a temperature parameter τ to the softmax function
determining the strength of the lateral competition:

sc =
exp(Ic/τ )

∑

c′ exp(Ic′/τ )
. (14)
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FIGURE 10 | On non-uniformly distributed data, ACh and DA yield gains in

accuracy of similar magnitudes. (A) Weights of the networks. (B) Distribution

of the neurons’ preferred digit classes. Dashed line is a uniform distribution.

(C) Rates of correct classification on the test dataset. Dashed line is the mean

over classes. (D) Progression of the test error for Hebbian, ACh, and DA.

Lighter traces are individual runs, darker traces are the mean of 10 runs.

(E) Error rates of the different methods. Data are the mean of 10 runs, error

bars indicate the standard deviation, gray overlaid bars in (B,C) are data for

the Hebbian network for comparison. On non-uniformly distributed data, ACh

and DA bear effects of comparable magnitudes. The refinements in weights

brought by the two modulators can combine to bring further decrease in error

rates.

For τ → 0+, the softmax function gives rise to a winner-
take-all competition with a single active neuron; for τ → ∞,
neural responses are uniformly distributed. We train networks
with different τ values on the non-uniform MNIST dataset (we
use the non-uniform dataset to better discern the effects on

FIGURE 11 | Neuromodulator-based learning improves performance also for

low code sparseness. (A) Impact of the temperature parameter τ of the

softmax function (Equation 14) on the sparseness of the neural code. The

neuron indices are ordered from highest to lowest neural responses; the five

most active neurons are shown. (B) Rate of correct classification for different τ

values. Performance is on the non-uniform MNIST dataset. Data are mean of 3

runs, error bars are the standard deviation. Although performances drop with

weaker competition, neuromodulators boost accuracy even for low code

sparseness.

FIGURE 12 | Comparison of label reliance for ACh and DA. Network

performance as a function of the percentage of training labels used. For “DA

full reinforcement” we use the indicated portion of labels to train the classifier

but use all labels to provide the reward feedback. The size of the gains deriving

from ACh are not statistically different from each others for any label fractions

(p > 0.01). Data are the mean of 3 runs, error bars indicate the standard

deviation.

ACh-based learning). We find that the networks’ performance
drops as code sparseness decreases (Figure 11B). However, the
neuromodulators give rise to large and statistically significant
improvements even for low code sparseness, indicating that
strong competition is not required for effective neuromodulator-
based learning.

3.2.6. Impact of Label Availability
We examine the impact of label availability on learning
by training networks with a varying fraction of labels,
from 100% down to 0.1%. The accuracies of the networks
decrease with label scarcity, both for learning with Hebb’s
rule and with neuromodulators (Figure 12). For the Hebbian
network, labels only affect the classification layer; the decay in
performance therefore derives exclusively from lower classifier
accuracy.

For the neuromodulators, while label scarcity affects them
both, the consequences aremore substantial for DA. In particular,
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when less than 1% of labels is used, the benefits of DA drop
below those of ACh, this for both versions of the MNIST dataset.
In error-based learning, labels are necessary to determine the
correctness of an output. Reducing the ratio of labeled data
consequently substantially hinders DA learning. On the other
hand, the ACh signal yields gains in performance that are not
statistically significantly different for all label fractions (p > 0.01).
The constant improvements over declining label availability
suggest that ACh learning relies effectively only minimally on
labels, making ACh signaling beneficial even for scarcely labeled
data.

DA-based learning does not require labels per se but only
indications of whether outputs are right or wrong. We train
an additional network using a fraction of the labels for the
classifier but all labels for the reward feedback. The results show
that performance remains high even for small label fractions,
indicating that DA performs well in scenarios where true labels
are in short supply but reinforcement feedback is available.

3.2.7. Performance Benchmark
In order to benchmark the functional performance of our
algorithm, we compare it to MLPs trained with error back-
propagation. We use the same architecture for our network and
the MLPs (in this case, 784 input, 300 hidden, and 10 output
neurons) and report the test error rate on the MNIST data. We
train the MLPs using two state-of-the-art optimisation methods,
the L-BFGS (Zhu et al., 1997) and Adam algorithms (Kingma
and Ba, 2014) (see Appendix). In the original publication of
benchmark results on the MNIST dataset, LeCun et al. (1998a)
report a test error of 4.7% for an MLP of the architecture
described above. Our biology-inspired algorithm yields a mean
error rate of 2.88 ± 0.05%, outperforming this original result.
The MLPs with the L-BFGS and Adam optimisers yield an error
rate of 2.15± 0.04% and 1.88± 0.02%, respectively (Figure 5). In
comparison, spiking neural networks intended for neuromorphic
systems reach error rates of 5.0% (6,400 hidden spiking neurons,
Diehl and Cook, 2015) and 4.4% (500 hidden spiking neurons,
Neftci et al., 2015).

4. DISCUSSION

4.1. Learning Mechanisms
We study the effects of two modulatory signals on the
representation and classification performance of a neural
network. In our model, both signals act identically on synaptic
plasticity but follow different release schedules, putatively those
of ACh and DA. We find that these two signals give rise
to distinct modifications in neural representations that both
improve classification performance. Our model allows us to
formulate hypotheses regarding the functional roles of ACh
and DA in cortical representation learning. These roles can be
explained as follows.

Consider the input Ey(n) and the weights EWc as vectors in
a high-dimensional space. The activation of a neuron sc is
computed as the dot product between an input and the weight
vectors. Lateral inhibition introduces a soft winner-take-all
competition resulting in a few neurons having strong responses

and other neurons being silent. Hebbian learning then induces
weight modifications E1Wc = ǫ · sc(Ey − EWc) (Equation 5). We
note that, for each weight, E1Wc points from the weight towards
the current input. Both the variables ACh and DA modulate the
magnitude of E1Wc, ‖ E1Wc‖ (Equations 5a and 5b).

Hebbian learning in the network performs density estimation:
the distribution of the weights is determined by the density of
data points in the input space. Modulating the learning rate of
the network is similar to modifying data point density in that
presenting a training image twice is comparable to presenting this
image once but with a twice larger learning rate. For ACh-based
learning, input images that are more challenging will trigger
greater ACh activation, or have a larger learning rate. A cluster
of data points associated with greater ACh activation is thus
similar to having more data points in this cluster, inducing more
neurons to represent the cluster. Or in other words, data points
with ACh > 1 will have ‖ E1Wc‖ of a greater magnitude, thereby
exerting an increased “pull” on the weights.

For DA-based learning, the variable DA takes a value
δ./. specified by the current RPE scenario. According to the
parameter search, for correct reward predictions (+pred,+rew or
−pred,−rew), the optimal δ+/+ and δ−/− are of approximatively

zero. In both cases, ‖ E1Wc‖ ≈ 0; all the network’s weights
remain unchanged. When the network takes an exploitative
decision that turns out to be wrong (+pred, −rew), the optimal
δ+/− is inferior to zero. The vector E1Wc is negated so that
it points away from the current input (Figure 13A). Active
neurons will have their weights move away from the current
input and are then less likely to win the softmax competition at
future presentations of this input. When the network takes an
explorative decision that is surprisingly correct (-pred, +rew),
the optimal δ−/+ is positive. The weights of active neurons
move towards the input (Figure 13B). The explorative decision
(expected incorrect) turned out to be right; this decision should
be taken again on future presentation of the same stimulus. DA-
based learning can be understood as reinforcement learning at
the level of sensory representations.

These learning mechanisms are related to several known
machine learning algorithms. In the purely Hebbian case, the
network is akin to a Kohonen map (Kohonen, 1982) in that
learning proceeds iteratively through neural competition and
weight adaptation (without however the cooperation aspect
which confers the topological organization to Kohonen maps).
The ACh learning mechanism is reminiscent of boosting
methods, for instance AdaBoost (Freund et al., 1999), which
attribute greater weights to misclassified training examples.
The DA learning mechanism is closely related to algorithms
such as REINFORCE (Williams, 1992) which make use of a
reinforcement signal acting on the learning rate of a neural
network’s weight update rule. It is interesting to note that,
despite this close correspondence, the decision to model DA as a
modulation of the network’s learning rate was made not to match
those rules but rather to mirror biology. Indeed, our model of
DA (and ACh) emulates the observation that stimuli coinciding
with release of the neuromodulators are over-represented in
animal sensory cortices (Figure 4). The close similarity between
our model of DA and REINFORCE’s learning rule can thus
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FIGURE 13 | Cartoon explanation of DA-based learning. The plots depict a

toy example of a two-dimensional input space with dots as training examples

and crosses as neuron weights, the colors of which indicate classes. The

highlighted blue training example is the current input to the network. The black

arrow depicts the weight change vector E1W. The red arrow depicts the same

vector E1W after modification by the DA variable. As a scalar multiplier, DA only

affects the magnitude (and sign) of E1W and leaves its direction unchanged.

(A) The network makes an incorrect exploitative decision: the blue input

activates the yellow cross. The network expected a reward but none is

delivered. In this case, DA < 0, negating E1W and moving the weight away

from the training example (red arrow). (B) The networks makes a correct

explorative decision: the exploitative scenario would have activated the yellow

weight near the current input but noise injection in the activation of neurons led

to another (blue) neuron being more active. This decision is surprisingly correct

and the network is rewarded. In this case, the value of DA is positive, moving

the weight towards the current input (red arrow).

be taken as further support for the biological realism of the
latter.

4.2. Acetylcholine
Activation of the cholinergic system in mammals appears to
follow attentional efforts. Sarter et al. (2006) review evidence
suggesting that deteriorating performances, as indicated by a
rise in error rates and a decline in reward rates, trigger effortful
cognitive control to prevent erroneous behavior. Attentional
efforts are paralleled by a heightened activation of cholinergic
neurons in the basal forebrain (Himmelheber et al., 2000; Passetti
et al., 2000; Dalley et al., 2001; Arnold et al., 2002; McGaughy
et al., 2002; Kozak et al., 2006) which in turn broadcast this signal
to the cortical mantle (Hasselmo and Sarter, 2011). For instance,
engaging in a demanding motor (Conner et al., 2010) or tactile
(Butt et al., 1997) task enhances ACh release in the motor and
somatosensory cortices, respectively.

There is broad evidence that ACh acts as a permissive
plasticity agent at its projection sites (Buchanan et al., 2010;
Giessel and Sabatini, 2010), for instance promoting alterations
of neural representations in sensory cortices (Greuel et al., 1988;
Bröcher et al., 1992; Kilgard and Merzenich, 1998a,b; Ji et al.,
2001; Ma and Suga, 2005; Suga, 2012; Chun et al., 2013). The
scientific literature contains several hypotheses regarding the
functional role of the modifications elicited by ACh. Froemke
et al. (2007) suggest that shifts in neural tunings toward a
stimulus paired with ACh activation serves as a long-term
enhancement of attention to this stimulus. Others postulate that
this modification stores the behavioral relevance of the stimulus
(Kilgard and Merzenich, 1998a; Weinberger, 2003) or generally
improves signal processing (Gu, 2003; Froemke et al., 2013).

Here, we show that a signal modulating synaptic plasticity as
a function of task difficulty improves the quality of a neural
representation with respect to a classification task. The gains in
performance result from assigning more neurons to challenging
stimulus classes. Our model suggests that ACh serves this role in
mammalian cortices.

Experimental evidence offer support for this hypothesis.
For instance, motor skill acquisition and the accompanying
enlargement of relevant representations in the motor cortex
require ACh activation (Conner et al., 2003, 2010). Conversely,
discrimination abilities rise for a tone whose representation is
expanded as a result of repeated pairing with ACh activation
(Reed et al., 2011). More generally, ACh antagonists or lesion
of the cholinergic system impairs perceptual (Butt and Hodge,
1995; Fletcher and Wilson, 2002; Wilson et al., 2004; Leach
et al., 2013) and motor skill learning (Conner et al., 2003). These
results indicate that the cholinergic system is crucial for forms
of learning involving modifications in sensory maps, especially
those affecting the relative extent of cortical representations, as
suggested in this work.

Our model of ACh is in line with a previous simulation study
by Weinberger and Bakin (1998). The authors make use of a
modified version of Hebb’s rule and simulate the action of ACh as
an amplification in the post-synaptic activation of target neurons.
An in vivo micro-stimulation study validates this model. For
the Hebbian rule used in this work, the two models of ACh are
mathematically equivalent; this previous work thus offers support
to the simulation employed here.

4.3. Dopamine
Dopaminergic neurons of the midbrain encode various features
of rewards (Satoh et al., 2003; Tobler et al., 2005) and, in
particular, strongly respond to the difference between predicted
and received rewards (Schultz et al., 1997; Schultz, 2010).
Midbrain neurons project to the entire cortex (Haber and
Knutson, 2010) and the reward signals they carry modulate
neural activity in most cortical areas (Vickery et al., 2011)
including primary sensory cortices (Pleger et al., 2009; Brosch
et al., 2011; Arsenault et al., 2013).

DA affects plasticity at the sites where it is released, as
measured both at the level of synapses (Otani et al., 1998;
Centonze et al., 1999; Blond et al., 2002; Bissière et al., 2003;
Li et al., 2003; Sun et al., 2005; Matsuda et al., 2006; Calabresi
et al., 2007; Navakkode et al., 2007) and behaviorally (Brembs
et al., 2002; Wise, 2004; Graybiel, 2005; Kudoh and Shibuki,
2006; Klein et al., 2007; Luft and Schwarz, 2009; Molina-Luna
et al., 2009; Hosp et al., 2011; Schicknick et al., 2012; Ott et al.,
2014). In sensory cortices, DA efflux, triggered either by electric
stimulation of the midbrain or by reward delivery, elicits plastic
changes in the responses of primary sensory neurons (Bao et al.,
2001, 2003; Beitel et al., 2003; Frankó et al., 2010; Poort et al.,
2015).

The role of the plastic modifications induced by DA are
usually understood in terms of reinforcement learning, for
instance to learn the appetitive value of stimuli (Brembs et al.,
2002; Wise, 2004; Frankó et al., 2010) or to learn reward-directed
behaviors (Watkins and Dayan, 1992; Dayan and Balleine,
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2002; Wise, 2004; Schicknick et al., 2012; Ott et al., 2014).
In sensory representations, the changes brought forth by DA
were previously hypothesized to enhance the saliency of stimuli
predictive of rewards (Bao et al., 2001) and to adapt cortical
representations to task requirements (Brosch et al., 2011).

Here, we show that a signal modulating plasticity as a function
of RPEs adapts synaptic weights to the reward contingencies of
a task, thereby improving performance on the task. Specifically,
in our model, the responses of neurons become matched to
the boundaries in conditions for reward delivery. In the digit
classification task, this results in neurons being better tuned to
the distinct digit classes, in this way improving classification
performance. We suggest that, in mammals, dopamine carries
this role of adapting sensory representations to the reward
contingencies of a task.

After training monkeys on a visual discrimination task,
neural responses become matched to the stimulus features
that discriminate between the reward conditions of the task
(Sigala and Logothetis, 2002). This process is comparable
to the effect of DA in our model. We thus postulate that
DA orchestrates these changes and predict that lesioning the
dopaminergic system would prevent this form of learning.
Animal experiments show that interfering with DA signaling
impairs sensory discrimination learning (Kudoh and Shibuki,
2006; Schicknick et al., 2012), supporting this prediction.

The optimal values of the δ./. constants we find through
parameter exploration are in close qualitative agreement with
the release properties of DA observed in primates (Schultz
et al., 1997; Tobler et al., 2005) (Figure 6). Both in animals
and in the present model, unpredicted rewards lead to a rise in
dopaminergic activation while the absence of predicted rewards
lead to a reduction in activation. Correctly predicted rewards
leave dopaminergic activation essentially unchanged. The release
values in the model were selected to maximize performance on
a discrimination task. It is conceivable that the dopaminergic
activation schedule in animals was similarly selected through
evolutionary pressures to maximize perceptual abilities.

We tested the effect of explorative decision-making while
training with DA and found that exploration yields an additional
relative reduction of 18% in error rates. Studies show that human
subjects actively engage in exploratory behavior when making
decisions (Daw et al., 2006). Explorative decision-making is
usually understood as a method to sample available choices with
the prospect of discovering an option richer than the current
optimum. Our model suggests that, in perceptual decision
making, such explorative behavior may additionally serve the
purpose of refining cortical sensory representations.

4.4. Comparing Acetylcholine and
Dopamine
On the non-uniform dataset, ACh gives rise to improvements
comparable in size to those of DA. This result highlights the
relevance of ACh in scenarios where training examples are
largely non-uniformly distributed over the classes, as is often the
case in natural conditions. Furthermore, in contrast to DA, the
ACh signal yields gains in accuracy of constant magnitude over

decreasing label availability. This finding points to a particularly
beneficial role for ACh when environmental feedback is scarce.

On the non-uniform dataset, the combined effects of the two
neuromodulators are greater than either one separately. This
result indicates that the weight modifications brought by ACh
and DA are distinct and complimentary, and that they can
successfully combine.

4.5. Functional Performances and Outlook
The learning mechanisms presented in this work yield error
rates close to that of state-of-the-art optimisation methods
used to train MLPs for comparable network architectures.
Since evolutionary pressures must have favored well performing
learning mechanisms in the brain, any candidate model of
cortical learning must offer strong functional performances. Our
model meets this criteria, making it a suitable model for learning
in biological neural structures.

In line with recent studies of biologically-plausible learning
(Keck et al., 2012; Nessler et al., 2013; Schmuker et al., 2014; Diehl
and Cook, 2015; Neftci et al., 2015), we used correct classification
as a measure of performance. This measure facilitates the
study of the functional roles of neuromodulators and the
comparison with previous work. Our neuromodulator-based
learning method can be extended to tasks beyond classification,
for instance by generaliz ing the softmax competition to k-
winner-take-all (O’reilly, 2001) or soft-k-winner-take-all (Lücke,
2009) competition.

Even in the sole context of classification, however, our
approach offers several interesting advantages. For instance,
compared to the traditional approach of gradient descent on
a classification error, neuromodulator-based learning requires
a weaker supervision signal, making use of binary rewards
instead of explicit labels. Additionally, our model learns even
in the absence of environmental feedback through Hebbian
learning. Finally, weight modifications are based on synaptically-
local information and on two signals broadcasted identically
to all neurons, which matches capabilities of biological neural
networks.

On the functional side, learning with DA and ACh has been
shown to decisively improve classification performance in our
model system. Although it was not the main focus of this study,
we note that very high classification performances even for
relatively small networks (compare sizes in Diehl and Cook, 2015;
Neftci et al., 2015) could be achieved using neuromodulation.
The use of neuromodulation in spiking neural systems for
neuromorphic chips (Diehl and Cook, 2015; Neftci et al., 2015)
is therefore likely to result in performance gains. Similarly,
neuromodulation is expected to further improve performance of
novel hierarchical networks with Hebbian learning (Forster et al.,
2016) which have a functional focus on learning from data with
very few labels.

It is interesting to note that, since the initial publication
of the MNIST dataset, advances in gradient-based learning
resulted in continuous and substantial decreases in error rates.
The biologically-inspired method presented in this work is at a
relatively early stage and we may expect similar improvements
from future research.
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A. APPENDIX

A.1. Code and data
Themodel was written in the Python programming language and
was run on a computer cluster. The code for the neural network
is available at https://github.com/raphaelholca/hebbianRL. The
original MNIST dataset is available at http://yann.lecun.com/
exdb/mnist/. The dataset is randomly split into training and
testing sets; the network’s performance is reported on the testing
images not seen during training. The network with 300 hidden
units used for performance comparison with other work was
trained with the full (unbalanced) dataset. For all other results,
the datasets were balanced so that they contain the same number
of examples for each digit class. This balancing has negligible
effects on the results.

A.2. Weight initialisation
We pre-compute the activation of input neurons Ey through
Equation 1 for the whole training dataset. Learning proceeds
through full iterations over the dataset during which Ey are
presented in a random order to the network. Weights of
representation neurons are initialised using the statistics of the
input images. Specifically, we initialise the weights with the mean
activation of input neurons taken over the whole dataset, with the
addition of noise to break symmetry:

Wcd = µ(yd)− σ 2(yd) · ηinit , (A1)

where µ(·) and σ 2(·) are the mean and variance taken over all
training images N, respectively, and ηinit is noise drawn from
a uniform distribution in the interval [0,0, 2.0). Activations
propagate through the network as a succession of Equations 2, 4,
5. Values for all hyper-parameters were found through grid search
(see Table A1).

A.3. Batch learning
To speed up computation, we train the network using mini-
batches; weight updates are computed over batches of 50
training examples. Using mini-batches only negligibly affects
representation learning and the network’s performance.

In the case of DA-based learning, negative learning rates (for
absent expected rewards, +pred −rew) could potentially result
in negative weights. For biological realism and computational
stability, we prevent this by excluding weight updates for a
representation neuron c if any weight Wcd would become
negative after the weight update. For the parameter set presented
in Table A1 in Supplementary Methods, this rule only rarely
prevents learning (∼ 0.1% of all batch updates). However,

TABLE A1 | Hyper-parameters used in training the network. Values were

determined through parameter exploration.

Parameter Description Value

α Amplitude of the sigmoid function for ACh release 2.0

β Slope of the sigmoid function for ACh release 20.0

δ+/+ DA activation for correctly predicted reward 0.01

δ+/− DA activation for incorrectly predicted reward −1.0

δ−/+ DA activation for unexpected reward 4.0

δ−/− DA activation for correctly predicted absence of reward −0.25

A Normalization constant for feedforward inhibition 1.0×103

ǫ Learning rate 5.0×10−3

υ Variance of the normal distribution of noise η 0.3

TABLE A2 | Hyper-parameters for the benchmarking algorithms, as implemented

in the Scikit-learn module.

Parameter Description Value

hidden_layer_sizes Number of neurons in the hidden layer 300

activation Activation function for the hidden layer ‘relu’

algorithm Algorithm for weight optimisation ‘adam’ or

‘l-bfgs’

alpha Regularisation term (L2 penalty) 1e-06

batch_size Size of mini-batches for stochastic optimisation 200

learning_rate_init Initial learning rate (Adam) 0.001

beta_1 Exp. decay for estimates of 1st moment (Adam) 0.8

beta_2 Exp. decay for estimates of 2nd moment (Adam) 0.9

epsilon Value for numerical stability (Adam) 1e-08

when performing parameter exploration of the δ./. variables,
some parameter sets lead to rapid decay to negative weight
values, and this rule is then necessary to ensure computational
stability.

A.4. Comparison benchmarks
The MLP algorithm was obtained from the Scikit-learn module
Pedregosa et al., 2011) (version 18.dev0, downloaded on
04/29/16). We used 3-fold cross-validation and grid search to
determine the values of the hyper-parameters (see Table A2).
The two optimisation methods used to train the MLP were
the Adam and L-BFGS algorithms. Adam is a first-order
stochastic optimisation method that uses individual adaptive
learning rates for the different parameters. L-BFGS (Limited-
memory Broyden-Fletcher-Goldfarb-Shanno) is a quasi-Newton
method.
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