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How the brain reconstitutes consciousness and cognition after a major perturbation

like general anesthesia is an important question with significant neuroscientific and

clinical implications. Recent empirical studies in animals and humans suggest that the

recovery of consciousness after anesthesia is not random but ordered. Emergence

patterns have been classified as progressive and abrupt transitions from anesthesia to

consciousness, with associated differences in duration and electroencephalogram (EEG)

properties. We hypothesized that the progressive and abrupt emergence patterns from

the unconscious state are associated with, respectively, continuous and discontinuous

synchronization transitions in functional brain networks. The discontinuous transition

is explainable with the concept of explosive synchronization, which has been studied

almost exclusively in network science. We used the Kuramato model, a simple oscillatory

network model, to simulate progressive and abrupt transitions in anatomical human brain

networks acquired from diffusion tensor imaging (DTI) of 82 brain regions. To facilitate

explosive synchronization, distinct frequencies for hub nodes with a large frequency

disassortativity (i.e., higher frequency nodes linking with lower frequency nodes, or vice

versa) were applied to the brain network. In this simulation study, we demonstrated that

both progressive and abrupt transitions follow distinct synchronization processes at the

individual node, cluster, and global network levels. The characteristic synchronization

patterns of brain regions that are “progressive and earlier” or “abrupt but delayed”

account for previously reported behavioral responses of gradual and abrupt emergence

from the unconscious state. The characteristic network synchronization processes

observed at different scales provide new insights into how regional brain functions

are reconstituted during progressive and abrupt emergence from the unconscious

state. This theoretical approach also offers a principled explanation of how the

brain reconstitutes consciousness and cognitive functions after physiologic (sleep),

pharmacologic (anesthesia), and pathologic (coma) perturbations.
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INTRODUCTION

How does the brain reconstitute the capacity for consciousness
and cognition after a major perturbation like general anesthesia?
What determines reversibility in some states (e.g., sleep) and
irreversibility in others (e.g., coma)? The underlying mechanism
of the reconstitution of brain function is poorly understood
despite significant neuroscientific and clinical implications.
Anesthesia has been used as a tool to inhibit spontaneous
brain activities and reversibly suppress consciousness but more
recently has been used to investigate the recovery process from
unconsciousness. Recent empirical studies demonstrated that
brain recovery from anesthetic-induced unconsciousness is not
random, but ordered. Hudson et al. found that during the
emergence from anesthesia, brain dynamics pass through an
ordered sequence of states that is different from a random
walk (Hudson et al., 2014). Furthermore, diverse emergence
patterns have been observed from the electroencephalogram
(EEG) of humans. For example, Hight et al. reported two
distinct emergence patterns in general anesthesia (Hight et al.,
2014). One showed progressive spectral changes of EEG
before the response, while the other showed no explicit
change of EEG spectral properties before the abrupt return
of responsiveness. Chander et al. classified the emergence
patterns into four types based on the spectral behaviors of
EEG such as delta (1–4 Hz) and alpha/spindle (8–14 Hz), as
well as different levels of pain (Chander et al., 2014). These
emergence patterns can be qualitatively described as “progressive
and earlier state transition” and “abrupt but delayed state
transition.” However, previous studies examined local field
potentials and frontal EEG rather than global brain activities.
Lee et al. identified network recovery properties in healthy
individuals emerging from anesthesia that followed similar
patterns, suggesting the possibility that differential network
principles account for various behavioral phenotypes (Lee et al.,
2011).

The synchronization process has been studied with cat and
human brain networks investigating the role of hub, modular
structure, and global network structure (Honey and Sporns, 2008;
Breakspear et al., 2010; Gómez-Gardeñes et al., 2010; Cabral
et al., 2011; Villegas et al., 2014; Hellyer et al., 2015; Schmidt
et al., 2015; Váša et al., 2015; Finger et al., 2016). However, these
studies were limited to progressive synchronization and did not
address delayed or abrupt synchronization, which is potentially
applicable to delayed anesthetic emergence. In this study we

compare, for the first time, the distinct synchronization processes

in a human brain network under progressive and abrupt

synchronization conditions. Our main objective is to understand

distinct emergence patterns in terms of network synchronization
rather than model state-specific EEG signatures, per-se. Because
temporal coordination is a necessary condition for information
integration and transmission across brain regions, the recovery
pattern of the brain network synchronization may reflect the
recovery pattern of consciousness.

In this simulation study, we modeled the potential
network mechanisms for these archetypal emergence patterns
(“progressive and earlier” and “abrupt but delayed”) by assessing

synchronization patterns in computational models based
on neuroanatomically-derived human brain networks. We
implemented the Kuramoto model, a simple oscillatory model,
in a human brain network with 82 nodes (including cortical and
subcortical areas) to simulate the dynamic interactions among
brain regions. To facilitate the delayed but abrupt transition, we
applied the principle of explosive synchronization, derived from
network science, as a potential mechanism for the discontinuous
transition from a desynchronized to synchronized state (Gómez-
Gardeñes et al., 2011). High frequency disassortativity (Leyva
et al., 2013b; Zhu et al., 2013; Skardal and Arenas, 2014) was
applied to the human brain network in order to suppress giant
synchronization cluster formation (Zhang et al., 2014, 2015).
This network configuration primarily prohibits hubs from
synchronizing, which leads to a delay in synchronization that
reaches a critical point of abrupt global synchronization.

We furthermore compared distinct synchronization processes
between progressive and abrupt transitions on the scale of
the individual node, clusters, and global network structure.
We demonstrate that the distinctive synchronization processes
are significantly determined by the underlying brain network
structure with a given frequency configuration. This approach
could provide a principled explanation of how brain networks
reconstitute regional activities during progressive and abrupt
emergence at a network level, which could be applied to
recovery from physiologic (sleep), pharmacologic (anesthesia),
and pathologic (coma) states of unconsciousness.

METHODS

Network Model
We used a simple phase oscillator model, the Kuramoto model
(Kuramoto, 1984), in a group-averaged anatomical brain network
to simulate the dynamic behavior of two different types of
emergence patterns.

The Kuramoto model is defined as the following:

θi = ωi + λ
∑N

j=1
Aij sin(θj − θi), i = 1, 2, . . .N (1)

Here, θi is the phase, ωi is the initial angular frequency of ith
oscillator, and λ is the coupling strength between all connected
nodes. N is the total number of nodes and Aij is the adjacency
matrix, which is an anatomical brain network structure. The
anatomical brain network was acquired from group-averaged
diffusion tensor imaging (DTI) with 82 nodes, including cortical
and subcortical areas (Van Den Heuvel and Sporns, 2011).

Network Configuration
Initial phases randomly distributed between (−π , π) and
specific frequency distributions for progressive and abrupt
transition types were assigned to the nodes. In this simulation,
we assume that different initial frequency distributions reflect
different regional brain dynamics. According to explosive
synchronization, the initial frequency distribution within the
network topology may determine the synchronization path from
the desynchronized state. We used a Gaussian distribution
with the mean 10 Hz and variance 0.2 Hz to simulate the
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TABLE 1 | Glossary of terms.

Keywords Descriptions

Node Degree The number of edges/links connected to a node in a network.

Hub In this study, a node that has a high degree is defined as a hub node. Hub structure plays a crucial role in communication and

information transmission in the brain.

First-order phase transition Discrete changes from incoherent to synchronized state or vice versa, as the coupling strength of coupled oscillators increases

or decreases, respectively. A more continuous change is referred to as a “second-order phase transition.”

Explosive (or abrupt) synchronization A phenomenon characterized by first-order phase transition between incoherent and synchronized states in a network of

coupled oscillators. The key mechanism of explosive synchronization is to suppress the formation of a giant synchronization

cluster in a network, mainly inhibiting the hub synchronizations.

Progressive synchronization A phenomenon characterized by a second-order phase transition between incoherent and synchronized states in a network of

coupled oscillators. The hub node dominates the synchronization process by entraining the neighbor nodes.

Frequency disassortativity A tendency for nodes oscillating at higher frequencies to connect with nodes at lower frequencies, or vice versa. Large

frequency disassortativity contributes to generating the network conditions for explosive synchronization.

alpha bandwidth of human EEG activity (Moon et al., 2015).
Here, we considered only the alpha frequency band (9 to 11
Hz), because the alpha frequency band shows significant and
consistent global connectivity changes along with state changes
induced by diverse anesthetics (Lee H. et al., 2013; Blain-Moraes
et al., 2014; Kim et al., 2016). We generated 100 frequency
configurations of Gaussian distribution to observe canonical
behaviors of progressive transition. To simulate the abrupt
transition, we first selected 15 nodes (18% of all nodes) with
high degrees (i.e., high number of connections) as hub nodes
on the basis of rich club organization using degree k = 21
(Van Den Heuvel and Sporns, 2011). These hub nodes include
thalamus, hippocampus, putamen, superior frontal, superior
parietal, precuneus, and insula of both hemispheres, which are
potentially related to consciousness (Bogen, 1995; Martuzzi et al.,
2010; Ku et al., 2011; Spoormaker et al., 2012) and important
for inter-modular synchronization in human brain networks
(Schmidt et al., 2015). We used different frequency distributions
for the hub nodes (Gaussian distribution with mean 10.3 Hz
and variance 0.05 Hz for 6 nodes; Gaussian distribution with
mean 9.7 Hz and variance 0.05 Hz for 9 nodes), which can be
one way to suppress the formation of a giant synchronization
cluster in the system by inducing large frequency mismatches
between high degree nodes (Zhu et al., 2013). In particular, we
assigned the relationship between node degree and frequency
a V-shape, which is similar to a previous study of explosive
synchronization (Leyva et al., 2013b). We also calculated the
frequency disassortativity (ρf), defined as a Pearson correlation
between node frequency and the average frequency of neighbor
nodes, in order to achieve a more robust occurrence of abrupt
transitions (Li et al., 2013). Large frequency disassortativity
enhances the frequency mismatches between neighbor nodes
and makes it possible to overcome the homogeneity of the
network structure itself (Boccaletti et al., 2016). We generated
100 frequency configurations with large values of frequency
disassortativity (ρf < −0.3) to analyze the characteristics of
abrupt transition. Gaussian distribution with mean 10 Hz and
variance 0.2 Hz with large frequency disassortativity (ρf < −0.3)
and various frequency configurations with diverse frequency
disassortativity values were also simulated for a comparison of

the robustness (Figure S1). See Table 1 for an explanation of
network terminology.

Synchronization Measures and
Computation
Wenumerically solved the differential equations of the Kuramoto
model using the 4th order Runge-Kutta method with 1,000
discretization steps. The first half of the time series was discarded
and the last 15 of 30 s were used for each simulation. The
sampling rate was 1,000 Hz and the coupling strength λ increases
from 0 to 0.4 with δλ = 0.002. In order to observe the dynamics
of the functional network of each λ, we calculated the average
pairwise synchrony between node i and j, Dij, defined as

Dij = Aij
1

1t

∣

∣

∣

∣

∑τ+1t

τ
ei[θi(t)−θj(t)]

∣

∣

∣

∣

(2)

which is a symmetric phase synchronization matrix. Using the
Dij, we can obtain an order parameter to estimate the level of
global synchronization, rlink,

rlink =
1

2Nl

∑

i,j
Dij (3)

where Nl is the total number of links. We also examined
the synchronization level of each node, with the local order
parameter represented as,

ri =
1

2ni

∑

j ∈ nni
Dij (4)

where ni is the number of links connected with node i. We
used median values for global and local order parameters of 100
configurations for the analysis in order to avoid the confound of
outliers. With ri, we compared synchronization processes of two
transitions at the individual node level.

Synchronization Cluster Analysis
After exploring the behaviors of synchronization processes at the
individual node level, we next investigated the synchronization
process at the cluster level. One of the significant differences
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between progressive and abrupt transitions is the process
of cluster merging. Therefore, we examined the process of
synchronization cluster formation in the two transition types.We
constructed the binary synchronization matrix Sij defined as

{

Sij = 1, if Dij > 0.95
Sij = 0, otherwise

(5)

We considered two nodes i and j as synchronized if Dij is larger
than 0.95 (Zhang et al., 2014). The synchronization threshold
of 0.95 between connected links in the human brain network
demonstrated distinctive changes in terms of the number of
clusters and the size of a giant cluster for both transition patterns,
and revealed the critical states for each transition pattern. With
the matrix Sij for each coupling strength λ, we calculated the
number of synchronization clusters, NC, and the size of a giant
synchronization cluster, GC, which is the largest synchronization
cluster among all clusters. We then took the median of 100
configurations for each transition.

Relationship between Structure and
Dynamics
We examined the global relationship between structure
and dynamics during both transitions to grasp the detailed
synchronization process within the network topology. We first
calculated the Spearman correlation between degree and median
local order parameter over 100 configurations of each λ. We then
divided the brain network into 5 subgroups with degree order; (1)
4 ≤ k < 11, (2) 11 ≤ k < 14, (3) 14 ≤ k < 18, (4) 18 ≤ k < 22,
(5) 22 ≤ k < 32 to understand the dynamics of hub and
peripheral nodes within the network structure. Each subgroup
has at least 15 nodes. In one configuration, the synchronization
level of each subgroup (rs) was acquired by taking the average of
ri within a subgroup. We then took the median of the average
values over the repeated 100 configurations. We compared
the synchronization level and rank among subgroups to reveal
further details of the synchronization process for every λ

associated with topology.

Reconstitution Order of Brain Region
We calculated the difference between first coupling strength
values λri>0.2 and λri>0.8 satisfying ri ≥ 0.2 and ri ≥

0.8 to investigate the reconstitution order of brain regions.
The difference between the coupling strengths of each node
was deemed to be the integration duration τ from a low
synchronization level in an unconscious state to a high
synchronization level in a conscious state. The given thresholds
are empirically observed synchronization levels (Kim et al.,
2016).

τi = λri>0.8 − λri>0.2 (6)

We then ranked the 82 regions in terms of τi and repeated
it over 100 network configurations. Within each transition,
we compared the reconstitution orders among 82 regions and
among 10 sub-regions (Table S1). We performed the Kruskal-
Wallis test with multiple comparisons considering p < 0.05
as a significant difference among the regions with Bonferroni

corrections. For the comparison of reconstitution orders of each
region between two transitions, we used Wilcoxon rank sum test
and defined the nodes with p < 0.05 as the brain regions with
significantly different reconstitution orders between progressive
and abrupt transitions. From this analysis, we could predict the
regional recovery process in a transition as well as the differences
of the global network recovery process between progressive and
abrupt emergence patterns.

RESULTS

Network Configurations Define
Progressive and Abrupt Transitions
Figure 1A presents two exemplary cases of progressive and
abrupt transitions in a brain network as coupling strength
increases. The distinctive patterns, progressive (blue), and abrupt
(red), of global order parameters, rlink, for both transitions
are clear. The rlink of the progressive transition continuously
increases from an unsynchronized to synchronized state, but
the rlink of the abrupt transition jumps discontinuously at
λ = 0.148, which is suggestive of a process involving
explosive synchronization. Figures 1B–E shows the different
initial network configurations for the progressive and abrupt
transitions. The relationships between initial frequencies and
degrees for 82 nodes are shown in Figures 1B,C. For the abrupt
transition, we assigned a V-shape to the relationship between
frequency and node degree, in accordance with a previous study
(Leyva et al., 2013b). The V-shape relationship yields large
frequency mismatches between high degree nodes, which inhibit
the formation of giant synchronization clusters. The relationships
between frequencies and the average neighbor frequencies are
illustrated in Figures 1D,E. The frequency disassortativities are
−0.098 and −0.430 for progressive and abrupt transitions. The
large frequency disassortativity (ρf < −0.3) generates a tendency
for a higher frequency node to have lower frequency neighbor
nodes. These frequency mismatches applied to the nodes are
more likely to produce abrupt synchronization in a network (Li
et al., 2013).

Global and Local Synchronization
Processes for Progressive and Abrupt
Transitions
We took the median of rlink for 100 frequency configurations
to observe the canonical behaviors for each transition type. The
median rlink as a function of λ is shown in Figure 2A. Under
the progressive transition condition (blue), the rlink increases
gradually in all steps of λ. In the abrupt transition (red), the
global synchronization is relatively delayed for a long period
before a major change, followed by the steep increase of median
rlink within a short range of coupling strength (around λ = 0.16).
This delay was expected from the initial network configurations
of the abrupt transition, which prohibits the network from being
globally synchronized. Figures 2B,C shows how the higher and
lower degree nodes were differentially synchronized during
progressive and abrupt transitions. If we define a node with
the local order parameter ri = 0.8 as synchronized, the data
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FIGURE 1 | Distinct phase synchronization patterns in computational models of the human brain. (A) Exemplary cases for progressive (blue) and abrupt (red)

transitions. The abrupt transition shows a sharp increase of the order parameter at λ = 0.148 . The relationships between initial frequencies and node degrees for

(B) progressive and (C) abrupt transitions are presented. The abrupt transition has a V-shape in the relationship. The relationships between initial frequencies and

average frequencies of the nearest neighbor nodes are also presented for (D) progressive transition (ρf =−0.098) and (E) abrupt transition (ρf =−0.430).

FIGURE 2 | Global and local synchronization for progressive and abrupt transitions. (A) Median global order parameter of progressive (blue) and abrupt (red)

transitions for 100 frequency configurations. Colored area indicates the 25–75% values of rlink of 100 configurations. Local order parameter ri of (B) progressive and

(C) abrupt transition. The nodes are aligned with descending order of degree from top to bottom. Color indicates the value of ri.

demonstrate that, in the progressive transition, the sequence of
the synchronization process correlates with the node degree.
In other words, highly-connected hub nodes are synchronized
earlier than less-connected peripheral nodes. By contrast, in
the abrupt transition, the local synchronization of nodes across
the network takes place suddenly when a critical threshold of
coupling strength is crossed. This implies that the network

topology itself, represented as the node degree, has influence on
the synchronization level in the progressive transition, whereas
the effect of network topology is suppressed by the frequency
configurations during the abrupt transition before a critical level.
Thus, distinctive synchronization processes for two types of
transition are observed at the individual node level of the brain
network.
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FIGURE 3 | Analysis of synchronization clusters. (A) Change in the median number of synchronization clusters (NC) as a function of λ in progressive (blue) and abrupt

(red) transitions. Colored area indicates the 25–75% values. (B) Change in the median size of a giant synchronization cluster (GC) as a function of λ in progressive

(blue) and abrupt (red) transition. Colored area indicates the 25–75% values.

Synchronization Cluster Formations for
Progressive and Abrupt Transitions
We investigated synchronization processes in the brain network
at the level of clusters for progressive and abrupt transitions. The
number of synchronization clusters, NC, and the size of giant
synchronization cluster, GC, were examined to study how the
clusters merge and how the size of the largest cluster develops
during progressive and abrupt transitions (Figures 3A,B). As
shown in Figure 3A, the evolution of NC as a function of λ for
two transitions is similar when λ is small (<0.086), but they
show different cluster merging behaviors at higher values. In the
progressive transition (blue), the NC decreases slowly, whereas
the NC of the abrupt transition (red) is relatively preserved until
λ ∼= 0.15 and thereafter sharply drops. The evolution of size
of giant synchronization cluster, GC, for the two transitions
is illustrated in Figure 3B. The size of GC in the progressive
transition (blue) grows gradually, while the size of giant
synchronization clusters of the abrupt transition (red) grows
faster with constraints that make the largest synchronization
cluster size bigger than 15 before λ = 0.148. Thus, the progressive
transition follows the general synchronization path, in which a
cluster is first centered around hub nodes attracting circumjacent
peripheral nodes, and gradually grows into a dominant giant
cluster (Gómez-Gardeñes et al., 2007). By contrast, for the abrupt
transition, several smaller sized clusters are formed, but do not
merge together until a certain coupling strength. At a critical
point, they abruptly coalesce into big clusters (Zhang et al., 2014).
In comparison to the progressive transition, the abrupt transition
consistently demonstrates the delay of the major change and the
sharp drop of the NC with abrupt growth of the size of abrupt
growth of the size of the GC.

General Relationship between Structure
and Dynamics
We examined the global relationship between network structure
(node degree) and node dynamics (local order parameter) as

well as how it changes along with increasing coupling strength
for progressive and abrupt transitions. The Spearman correlation
between node degree and median ri over 100 configurations was
calculated to elucidate the global relationship.

The overall correlation values between node degrees and local
order parameters of the progressive transition are higher than the
abrupt transition in Figure 4A. During the progressive transition,
the correlation increases until it has a maximum value at λ = 0.1.
After that point, the correlation decreases until it has almost
zero value. The relatively higher correlations of the progressive
transition imply that the synchronization strengths of the brain
regions during the progressive transition are more predictable
and reflected at the individual node level. The correlation of the
abrupt transition reaches a maximum (=0.70), which is delayed
compared to the progressive transition and with a lower value
than the progressive transition (=0.87).

Dynamics of Hub and Peripheral Nodes
We analyzed how hub and peripheral structures in the brain
network are reorganized during the progressive and abrupt
transitions as coupling strength increases (Figures 5A,B). We
ranked the degree-classified subgroups in terms of the median
rs over 100 configurations for each subgroup (Figures 5C,D).
The initial ranks were randomly given by the initial network
configurations for both transitions. However, the ranks of
subgroups are reorganized in distinctive ways as the coupling
strength increases, depending on the type of transition. The
reorganization among the subgroups takes place in a low
and short coupling strength range (λ: 0.03–0.07) for the
progressive transition, whereas it occurs in a relatively high and
broad coupling strength range (λ: 0.064–0.168) for the abrupt
transition.

During the progressive transition, the subgroups of higher
degree go up to higher ranks of synchronization, while
the subgroups of lower degree descend to the lower ranks
of synchronization. At the end of the short and random
reorganization process, the five subgroups have been arranged
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FIGURE 4 | Relationship between degree and local order parameter ri for coupling strength λ. (A) Spearman correlation between degree and median local order

parameter ri for coupling strength λ . Blue line indicates progressive transition and red line indicates abrupt transition. Black dotted vertical lines indicate λ = 0.02, 0.1,

0.16, and 0.22. Four representations of degree vs. ri for λ = 0.02, 0.1, 0.16, and 0.22 (from left to right) in (B) progressive and (C) abrupt transition (Spearman

correlation = 0.55, 0.87, 0.53, and 0.14 for gradual; Spearman correlation = 0.24, 0.50, 0.70, and 0.12 for abrupt transition).

FIGURE 5 | Synchronization level and synchronization rank for subgroups classified according to degree. Global synchronization monitored by median Dij for all

nodes i of each subgroup in (A) progressive and (B) abrupt transitions. Each colored line indicates a synchronization level of each subgroup classified with node

degree k (black: 4 ≤ k < 11, blue: 11 ≤ k < 14, yellow: 14 ≤ k < 18, green: 18 ≤ k < 22, and red: 22 ≤ k < 32). Synchronization rank among subgroups in (C)

progressive and (D) abrupt transitions. Each color is the same as denoted in (A,B). In the progressive transition, subgroups with a higher degree are synchronized

earlier. In the abrupt transition, the synchronization of hub nodes is suppressed below a certain value λ, but sharply increases after the critical point is reached.

in descending order of degree with the descending order
of synchronization. This reorganization process takes place
before the major increase of the global order parameter of the
brain network (Figure 2A), and before reaching the maximum

correlation between node degrees and local order parameters
(λ = 0.1) in Figure 3A.

The abrupt transition demonstrates a significantly different
reorganization process compared to the progressive transition.
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FIGURE 6 | Reconstitution orders of regional brain structures. Squares in 1st line show node degrees of the region. Squares in 2nd (3rd) line are the reconstitution

orders for progressive (abrupt) transition. Warmer (cooler) color indicates a higher (lower) degree or faster (slower) integration. Difference between first coupling

strength values reaching local order parameter ri > 0.2 and ri > 0.8 was defined as the integration duration for each region. Median rank of integration durations over

100 configurations was used for ordering. Black squares in 4th line mark the regions that have statistically different reconstitution orders between progressive and

abrupt transitions (Wilcoxon rank sum test; p < 0.05 considered significant). Name of brain regions was abbreviated for convenience (See Table S1 for full name).

The suppression of synchronization due to the initial network
configuration makes the full ordered ranks delayed until λ =

0.168. The reorganization follows a systematic process, going
up or down only one rank, rather than by discontinuous
jumps of multiple steps. Interestingly, before the highest degree
group occupies the top rank, the other subgroups already have
established and maintained the ordered ranks (λ < 0.122).
During this period, the highest degree group remains in the
bottom rank, then rises to the higher rank in a step-wise fashion.
The coupling strength at which the five subgroups were fully
reorganized in ordered rank is similar to the coupling strength of
the maximum correlation between node degrees and local order
parameters in Figure 4A.

Reconstitution of Brain Regions for
Progressive and Abrupt Transitions
In order to investigate the reconstitution processes in actual brain
structures, we compared the ranks of τi of brain regions within
each transition and for both transitions (Figure 6).

In accordance with the synchronization process we identified
above (hub nodes are synchronized earlier than peripheral
nodes), the higher degree brain regions recover faster compared
with the lower degree regions in both transitions (Spearman
correlation = −0.51, p < 0.001 for progressive transition;
Spearman correlation = −0.59 and p < 0.001 for abrupt
transition). This pattern is maintained even if the reconstitution
duration of the abrupt transition is relatively shorter than
the progressive transition. Most subcortical regions—including
thalamus, caudate, putamen, pallidum, hippocampus, and
accumbens—recover at early stages (reconstitution order <20,
Table S1) in both transitions. Ranks of all regions for 100
configurations are presented in Figure S2. For progressive
transitions, nodes in subcortical, prefrontal, and occipital regions
reconstitute earlier than other regions (p < 0.05, significantly
earlier than at least 5 regions). Recovery of central and insular
regions is faster than the other regions in the abrupt transition
(p < 0.05, significantly earlier than at least 5 regions). Hub nodes
in frontal (bilateral sup. fron.) and parietal (bilateral sup. pari.)

regions in progressive transition are relatively integrated at the
same stages (rank = 15 and 17 for bilateral sup. fron., and rank
= 12 and 11 for bilateral sup. pari.) but there is a significant
difference of reconstitution order between them in the abrupt
transition (rank = 4 and 8 for bilateral sup. fron., and rank =

30 and 24 for bilateral sup. pari., p < 0.05). Average ranks of
sub-regions are provided in Figure S3.

Nodes with significantly different reconstitution order
between progressive and abrupt transition are marked as black
squares in the last line in Figure 6 (Wilcoxon rank sum test;
p < 0.05). Recovery of bilateral putamen and left thalamus is
faster in the abrupt transition. Reconstitution of the prefrontal
area in the progressive transition seems to occur faster than
the abrupt transition with a significant difference in right
medial orbitofrontal cortex. Bilateral superior frontal regions
are integrated faster in the abrupt transition whereas bilateral
superior parietal regions are integrated faster in the progressive
transition. Bilateral insular and bilateral post-central (primary
somatosensory cortex) regions are relatively reconstituted at
early stage in abrupt transition.

DISCUSSION

Synchronization of neural activities is an important condition
for efficient information transmission among neural populations
(Varela et al., 2001; Tononi, 2004; Melloni et al., 2007; Uhlhaas
et al., 2009; Wang, 2010; Hipp et al., 2011; Plankar et al., 2013;
Bressler and Richter, 2015). Anesthesia induces unconsciousness,
fragmenting functional brain networks, and disrupting efficient
information integration (Alkire et al., 2008; Lee et al., 2009;
Boveroux et al., 2010; Ku et al., 2011; Schrouff et al., 2011;
Schröter et al., 2012; Casali et al., 2013; Jordan et al., 2013;
Lee U. et al., 2013; MacDonald et al., 2015), which is usually
accompanied by global spatiotemporal desynchronization of the
brain (Imas et al., 2006; Lee H. et al., 2013; Blain-Moraes
et al., 2014; Liang et al., 2015; Palanca et al., 2015; Huang
et al., 2016; Kim et al., 2016). However, after discontinuation of
general anesthetics, the brain restores its activity spontaneously
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and with diverse patterns (Lee et al., 2011; Chander et al.,
2014; Hight et al., 2014). Previous empirical data analysis
has demonstrated distinctive evolution patterns of EEG for
progressive/earlier or abrupt/delayed emergence from anesthesia.
The characteristic evolution patterns of empirical EEG can
potentially be explained by the patterns of progressive and
abrupt synchronization transitions that were identified in this
study of a neuroanatomically-informed model of the human
brain. Notably, the scope of the current study is to simulate
the macroscopic network of the whole-brain level. It should
be differentiated from the previous state transition studies in
mesoscopic networks at the neural population level (Steyn-Ross
et al., 1999, 2001, 2004).

Progressive synchronization has been studied extensively with
a focus on the effects of hub, modular structure, and global
network topology in model and brain networks (Honey and
Sporns, 2008; Kitzbichler et al., 2009; Breakspear et al., 2010;
Gómez-Gardeñes et al., 2010; Cabral et al., 2011; Villegas et al.,
2014; Hellyer et al., 2015; Schmidt et al., 2015; Váša et al.,
2015; Finger et al., 2016). The hubs in scale-free networks
dominate the synchronization process, whereas in random
networks (which lack hub nodes), many individual nodes are
synchronized earlier (Gómez-Gardeñes et al., 2007). In human
brain networks, the hub-to-hub connections are critical for
inter-modular synchronization and the perturbation of the rich
club hubs significantly suppresses synchronization among the
functional modules (Schmidt et al., 2015). Moreover, the location
of each node in a network determines the temporal order of
the synchronization process. For instance, the connector hub,
which mediates several modular structures in a network, is
synchronized at the last moment (Arenas et al., 2006). This is
true across species; as one example, the hub areas in the cat brain
consistently played a critical role in the synchronization process
(Gómez-Gardeñes et al., 2010).

In contrast to the many studies of progressive
synchronization, abrupt synchronization in a network has
been investigated only recently with a series of studies focused
on explosive synchronization (Gómez-Gardeñes et al., 2011;
Leyva et al., 2013a,b; Li et al., 2013; Zhang et al., 2014, 2015).
Since the key mechanism of explosive synchronization is to
suppress the synchronization of hub nodes, we were able to
predict the hub dominance in progressive synchronization. If
hub structure is disrupted, there can be a significant change in
the synchronization process.

In this study, we simulated emergence patterns in brain
networks using the Kuramoto phase oscillator model applied
to a human brain network. Altering the network configurations
allowed us to model transitions at the individual node,
cluster, and global network levels. We identified distinct
patterns of progressive and abrupt synchronization transitions
(progressive/early, abrupt/delayed). These synchronization
phenotypes are consistent with behavioral phenotypes and
related EEG patterns identified during progressive and abrupt
emergence from unconsciousness (Lee et al., 2011; Chander
et al., 2014; Hight et al., 2014). In addition, the simulation study
sheds light on how regional brain functions reconstitute during
progressive and abrupt emergence from anesthesia.

During progressive synchronization, the brain network is
synchronized gradually from hub nodes attracting peripheral
nodes and the synchronization cascade is triggered earlier
with a lower coupling strength. The reorganization process
at the subgroup level is completed and remains stable before
major global change, which indicates that the brain network
is sub-structurally already well-organized at the early stage of
synchronization.

By contrast, during explosive patterns of synchronization, a
network is synchronized discontinuously at a critical point with
the delay of global integration (Zhang et al., 2014). For the abrupt
transition, we used the V-shape relationship between node and
frequency (i.e., hub nodes have higher and lower frequencies
than central frequency at the same time) with large frequency
disassortativity (higher frequency nodes tend to link with lower
frequency nodes, or vice versa) to inhibit the synchronization of
hub nodes (Leyva et al., 2013b; Li et al., 2013). Consequently,
the suppression of hub synchronization prohibits the formation
of giant clusters, allowing many small but disconnected clusters
to grow until the network reaches the critical threshold
where a small perturbation triggers the abrupt transition to
global synchronization. Therefore, the global synchronization is
delayed, but all clusters are combined at once in a single explosive
unification of the brain network. In the reorganization process at
the subgroup level, the delayed and slow reorganization of hub
groups induces delayed synchronization throughout the brain.
The reorganization of hub groups occurs with the change of
individual node and global network levels, whichmeans the brain
network is not prepared to be organized at the sub-structural
level in comparison with the gradual transition. The network
configuration for the abrupt transition might mirror the different
dose-dependent effects of anesthetic drugs on brain regions
(Detsch et al., 1999; Liu et al., 2013; Sellers et al., 2013; Hutchison
et al., 2014; Lv et al., 2016), a hypothesis that requires empirical
confirmation.

Another novel finding in this study was that, in the correlation
between node degree and local order parameter, progressive
transitions have a larger correlation than abrupt transitions. This
implies that the local dynamics of progressive synchronization
processes are more predictable based on the brain network
structure within a broad range of coupling strengths. The
maximum peaks of correlation in both transitions indicate that
the local order parameters are linearly arranged along with the
node degrees before the formation of a giant synchronization
cluster (Figures 3A, 4B,C). Notably, the maximum correlations
between network structure and local dynamics during both
transitions might reveal critical states in which the networks
balance functional integration and segregation for the given
conditions. Although the network reconfiguration processes
are distinctive between progressive and abrupt transition, the
principle of a higher degree node leading to higher local
synchronization seems to be a necessary condition for triggering
the global synchronization process in both transitions.

The simulations performed, based only on network principles
of the two synchronization processes, yielded results that are
consistent with the reconstitution of human brain functions
from anesthesia. In both transitions, there was an early recovery
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of subcortical areas and a relatively late recovery of cortical
areas, especially frontal and parietal areas. This is consistent
with empirical findings using positron emission tomography
data during recovery from propofol and dexmedetomidine
sedation (Långsjö et al., 2012). In terms of differences between
the two transitions, the earlier and bilateral recovery of
the insula in the abrupt synchronization warrants further
investigation, especially given roles in homeostasis, pain, and the
coherent self.

LIMITATIONS

This model study has many limitations. First, a simple coupled
oscillatory model like Kuramoto limits interpretation because it
can only capture the coarse-grained, large-scale synchronization
process. Second, there are regional and temporal patterns of
EEG in various frequency ranges during anesthesia and we are
unable to explain complex EEG patterns with this model. We
only took into account the alpha frequency band of EEG around
10 Hz to simulate the regional brain dynamics, but there are
numerous other oscillations of relevance to consciousness and
unconsciousness. More detailed models exhibiting a broad range
of frequency spectrum will be important for further study. Third,
the human brain network is neither a random, nor a scale-free
network. It has a complex structure through which information
transmission can be efficiently achieved with many types of hubs
(Van Den Heuvel and Sporns, 2013). With this complicated
structure, it is difficult to find the exact conditions for explosive
synchronization. Therefore, the V-shape relationship between
node degrees and frequencies as well as the large frequency
disassortativity that we used are not unique methods to suppress
the synchronization of hub nodes. Another possible network
configuration suppressing the synchronization of hub nodes
could alter the synchronization process. Fourth, despite our
primary focus on modeling progressive and abrupt emergence,
a mixed pattern of progressive and abrupt transitions empirically
exists. Future study would be required to generalize our models
toward a combined version of progressive and abrupt transitions.
Fifth, we determined the hub nodes based only on the anatomical
brain network structure. However, the effects of nodes on
synchronization, even with the same anatomical node degree,
could be different depending on their local network structure.
Sixth, we used an anatomical human brain network parceled out

into 82 nodes including cortical and subcortical regions. The
finite-size effect of the network could have affected our results.
To mitigate the finite size effect, we repeated the simulation
100 times and considered the averaged feature. Finally, we have
established only loose associations between network principles of
synchronization and behavioral or EEG phenotypes of recovery
observed in humans recovering from anesthesia. Further work
that studies synchronization processes in humans during the
reconstitution of consciousness and cognition will be important
to validate these findings.

CONCLUSIONS

This model study demonstrated that progressive and abrupt
synchronization transitions in a human brain network can occur
based on network principles alone. Distinctive characteristics of
network synchronization processes appear to match progressive
and abrupt emergence patterns from unconsciousness based
on behavior and EEG patterns. The characteristic network
reconstitution processes observed at the individual node, cluster,
and global network levels suggest underlying mechanisms for
how regional brain functions are reconstituted during the
progressive and abrupt emergence from the unconscious state,
providing a theoretical foundation for further studies.
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