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Subthreshold fluctuations in neuronal membrane potential traces contain nonlinear

components, and employing nonlinear models might improve the statistical inference.

We propose a new strategy to estimate synaptic conductances, which has been tested

using in silico data and applied to in vivo recordings. The model is constructed to

capture the nonlinearities caused by subthreshold activated currents, and the estimation

procedure can discern between excitatory and inhibitory conductances using only one

membrane potential trace. More precisely, we perform second order approximations

of biophysical models to capture the subthreshold nonlinearities, resulting in quadratic

integrate-and-fire models, and apply approximate maximum likelihood estimation where

we only suppose that conductances are stationary in a 50–100 ms time window. The

results show an improvement compared to existent procedures for the models tested

here.

Keywords: synaptic inhibition and excitation, quadratic integrate-and-fire model, Ornstein-Uhlenbeck process,

oversampling method, spinal motoneurons, intracellular recordings of membrane potentials, maximum likelihood

estimation, intrinsic currents

1. INTRODUCTION

Unveiling the information that a neuron receives from other neurons and distinguishing between
excitatory and inhibitory inputs is an important task in neuroscience as it provides valuable
information on local connectivity and brain operating conditions. From an experimental point
of view, this is difficult due to the diversity of synaptic inputs and their unattainable conductances.
Therefore, inverse methods are sought to retrieve the dynamics of mean synaptic conductances
from measurements of the membrane potential of the neuron. Different statistical tools have been
proposed to solve this problem in the literature, but they have individual drawbacks. First, it is
desirable that such methods do not rely on repeated trials since it is difficult to assume exactly
repeated synaptic input from trial to trial. Therefore, estimation of excitatory and inhibitory
conductances from single time courses of the membrane potential is preferable. Second, estimation
methods should be based on few assumptions in order to be applied in as general conditions as
possible, and therefore, the underlying mathematical models have to be as nonspecific as possible.
Finally, one has to take into account the presence of noise as well as potential nonlinearity in the
experimental data.
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As far as we know, no complete solutions to these constraints
are yet available. On one hand, many existing methods require
repeated trials of recordings of the membrane potential (see
Monier et al., 2008 for a review). On the other hand, almost all
methods in the literature are based on linear models (see e.g.,
Borg-Graham et al., 1998; Anderson et al., 2000;Wehr and Zador,
2003; Rudolph et al., 2004; Pospischil et al., 2009; Bédard et al.,
2012; Berg and Ditlevsen, 2013; Kobayashi et al., 2016; Yasar
et al., 2016). Noise has been taken into account through stochastic
linear processes (Rudolph et al., 2004; Pospischil et al., 2009;
Paninski et al., 2012; Berg and Ditlevsen, 2013, among others)
or sophisticated filtering techniques (e.g., Lankarany et al., 2013;
Closas, 2014; Ditlevsen and Samson, 2014; Lankarany et al.,
2016), whereas some methods are restricted to deterministic
models (e.g., Bédard et al., 2012; Vich and Guillamon, 2015).

It has been reported that linear models provide poor estimates
in spiking regimes (Guillamon et al., 2006), so most of the above
methods only apply to data from subthreshold activity. Linear
models have provided good approximations of subthreshold
neural activity (Jolivet et al., 2004; Kobayashi et al., 2009;
Berg and Ditlevsen, 2013). However, if ionic currents inducing
nonlinearities in the subthreshold regime are active (such as
situations where resonant and amplifying currents coexist, see
Rotstein, 2015, or in presence of the IT current, see Destexhe
and Babloyantz, 1993), linear models can also lead to poor
estimates in subthreshold regimes (Vich and Guillamon, 2015).
Thus, taking a linear model as a generic model does not
seem a valid strategy in all situations; even with some data
treatment, such as filtering the observed trace, the transformed
dynamics cannot always be assumed to follow a linear model.
A new procedure to estimate conductances taking into account
possible subthreshold activated currents was introduced in
Vich and Guillamon (2015). It is based on a quadratization
of a deterministic model, and significantly improves estimates
when compared to those obtained by the common linear
methods. However, the method does not incorporate noise
and, moreover, it requires the use of voltage traces from two
trials.

The obstacles discussed above motivated us to seek for
estimation approaches using single-trial data and stochastic
models incorporating nonlinear effects. The main goal of
this paper is to estimate synaptic conductances based on
a quadratization of a stochastic model. The approach is
based on a combination of the methods from Berg and
Ditlevsen (2013) and Vich and Guillamon (2015) in order
to capture both subthreshold noise and nonlinearities in
the experimental data. One method presented in Berg and
Ditlevsen (2013), which we refer to as the OU method, since
it is based on an Ornstein-Uhlenbeck process, is effective
in dealing with noise using single trial voltage traces. Thus,
we extend the OU method by adding a quadratic term to
the underlying model; more specifically, by considering a
stochastic version of the quadratic integrate-and-fire (QIF)
model (see Latham et al., 2000 and Hansel and Mato, 2001).
In Berg and Ditlevsen (2013) both maximum likelihood
estimation and estimation of the membrane time constant via
the autocorrelation function are proposed. Here we explore

approximate maximum likelihood estimation, since the exact
likelihood and autocorrelation function are not available for
the QIF model. For voltage values close to the spiking
threshold, the QIF model is a good candidate to approximate
subthreshold dynamics of conductance-based models since it can
reproduce the bifurcation structure of the biophysical models
(see Ermentrout and Kopell, 1986), even in the presence of active
nonlinear currents. In this regime, the linear methods can be
inaccurate.

We apply the statistical model to estimate synaptic
conductances from both simulated and experimental data.
Simulated data are obtained from two different neuron
models using prescribed synaptic inputs. Experimental data
come from intracellular recordings in current-clamp mode
of spinal motoneurons of red-eared turtles, and have been
analyzed elsewhere (Berg et al., 2007; Jahn et al., 2011; Berg
and Ditlevsen, 2013). Given a membrane potential trace, we
fit the data to the reference QIF model and estimate the time
course of the conductances by means of an approximated
maximum likelihood procedure. In the case of simulated data,
we compare the estimated conductances with the true ones to
evaluate the performance of the procedure, as well as compare
the method with two previously proposed methods, which
only need a single voltage trace: the oversampling method
(Bédard et al., 2012), based on a deterministic approach,
and the OU method (Berg and Ditlevsen, 2013) mentioned
above.

The paper is structured as follows: in Section 2, the estimation
procedure, the neuron models used to generate the in silico data,
and the experimental setup for the in vivo intracellular voltage
traces are described. In Section 3, we show the results obtained
when the estimation procedure is applied to both in silico and
in vivo voltage traces. We also compare the estimates to those
obtained by the OU and the oversampling methods based on
single-trial recordings. We discuss the results in Section 4. We
include three appendices devoted to the more technical details of
the models and the procedure.

2. METHODS

In this Section we describe the new procedure to estimate
the time course of the synaptic conductances. We also briefly
describe the OU and the oversampling methods from the
literature, with which we will later compare. We generate in
silico voltage traces from computational neuron models using
prescribed synaptic inputs generated from Ornstein-Uhlenbeck
processes with sinusoidal drift, or use in vivo data of intracellular
recordings of a spinal motoneuron subjected to rhythmic
synaptic bombardments from the surrounding network. Finally,
we explain how to embed a given biophysical model or an
experimental data trace into the QIF model.

2.1. New Estimation Procedure: QIF
Method
To capture nonlinearities in the subthreshold regime, we
use the QIF model as a base model for the estimation
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procedure. It is given by a single equation for the membrane
potential V(t),

C
dV(t)

dt
= α

(

V(t)− VT

)2 − IT − gE(t)
(

V(t)− VE

)

− gI(t)
(

V(t)− VI

)

+ Iapp + η(t), (1)

where C is the total capacitance, gE(t) and gI(t) are the time-
varying excitation and inhibition conductances, VE and VI are
their respective reversal potentials, η(t) is a zero mean noise
process taking into account the random arrivals of synaptic input,
and Iapp is the applied current imposed by the experimenter.
Furthermore, specific to the quadratic model, IT is the largest
input current at which the neuron does not spike in the absence
of synaptic input, applied current and noise, VT denotes the
corresponding voltage of the V − I curve at IT , and α =
gL/(21T), where gL is the leak conductance and 1T is the
spike slope factor at IT , which corresponds to the inverse of
the curvature of the V − I curve at (IT ,VT). In Section 2.4.3,
we explain in detail how to obtain numerical values for IT and
VT both from biophysical models and from data. See Fourcaud-
Trocmé et al. (2003) for more details about the deterministic
version of the model.

Suppose the membrane potential V is sampled at M time
points t0, t1, . . . , tM with sampling step 1 = tj+1 − tj, such
that vj is the j-th sampling point of V , over an interval of L ms.
Hence, the sample is {vn}Mn=0 and the aim is to estimate the time
course of gE(t) and gI(t) from this sample. Below, we will consider
subsamples of the data over time windows of length l ms, where
l≪L. Letm = [l/1] andM = [L/1]. For simplicity and without
loss of generality, we assume that l and L are multiples of 1, and
m andM are even integers.
Rewrite Equation (1) as:

dV =
(

aV2 + bV + c
)

dt + σdWt , (2)

whereWt is a Wiener process, σ scales the noise, and

a = α

C
,

b(t) = 1

C

(

−2αVT − gE(t)− gI(t)
)

, (3)

c(t) = 1

C

(

αV2
T − IT + gE(t)VE + gI(t)VI + Iapp

)

.

Notice that coefficients b and c are time dependent, whereas
coefficient a is not. To estimate the constant a and the time course
of b and c using only one voltage trace, we first use a sliding
window of l ms to find an approximate maximum likelihood
estimator (MLE) of a, b and c assuming these constant within
each time window. Then, we use the average of the estimators
of a from all time windows as the final estimate. This estimate
of a is then used to estimate the time course of b and c, as
explained below. The likelihood function is the product of the
transition densities, but these are not known for this model. We
therefore approximate the likelihood function using an Euler
discretization, and then find the MLE of this approximate model.

We first discretize the diffusion process in Equation
(2) as:

Vn+1 ≈ Vn + (aV2
n + bnVn + cn)1 + σ

√
1ξn+1, (4)

where

bn = 1

C

(

−2αVT − gE,n − gI,n
)

,

cn = 1

C

(

αV2
T + gE,nVE + gI,nVI − IT + Iapp

)

, (5)

with Vn = V(n1), gE,n = gE(n1), gI,n = gI(n1), and ξn+1

follows a Gaussian distribution with mean 0 and variance 1,
for n = 0, . . . ,M − 1. The constants C, gL,VE and VI are
assumed known from prior experiments (Berg and Ditlevsen,
2013), Iapp is controlled by the experimenter, and IT and VT are
determined from the V − I curve of the neuron, in a different
set of experiments (see Section 2.4.3 for more details on how to
obtain these parameters).

Assume we can obtain estimates â, b̂n, ĉn, for n = 0, . . . ,M−1,
where the hat indicates these are estimates and not the true
values. This yields the estimation of the desired parameters,
α̂ = âC, and

ĝE,n = AnVI − Bn

VI − VE
, (6)

ĝI,n = Bn − AnVE

VI − VE
,

where An = −b̂nC− 2âCVT and Bn = ĉnC− âCV2
T + IT − Iapp,

for n = 0, . . . ,M − 1.
The discretized process (4) is Gaussian with conditional mean

Vn + (aV2
n + bnVn + cn)1 and variance σ 21 (conditional

on Vn). Assume the conductances are approximately stationary
for a time window of l = m1 ms, i.e., their means are
approximately constant, which implies that also the parameters
b and c are approximately constant in this window. Within this
sample window, we compute the MLE of parameter θ from
the discretized model (see Appendix B for more details). We
distinguish two situations: (i) when θ = (a, b, c)T , i.e., both α

and the conductances are unknown, in which case the MLE is
given by Equation (10); and (ii) when θ = (b, c)T , i.e., only
the conductances are unknown, in which case the MLE is given
by Equation (11). By moving the sample window, we obtain
a discretized sequence for θ̂(t), providing a discretized time
course of α̂(t), ĝE(t) and ĝI(t) through system (6). The estimation
procedure is given in Algorithm 1.

Note that the conductances during the first and the last l/2 ms
are not estimated since otherwise the sliding window would not
have sufficient width.

2.2. OU Method
For the sake of completeness, in this subsection we briefly explain
the OU method proposed in Berg and Ditlevsen (2013).

The OU method is based on a stochastic version of the Leaky
Integrate-and-Fire model, modeling the subthreshold activity
by an Ornstein-Uhlenbeck process. As above, this estimation
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Algorithm 1 QIF method. The proposed estimation procedure

1. Set n = m/2. While n ≤ M −m/2:

(i) use the subsequence {vj}n+m/2
j= n−m/2 to estimate θ̂n =

(ân, b̂n, ĉn)
T from Equation (10).

(ii) put α̂n = ânC.
(iii) set n = n + 1.

2. Put α̂ = 1
M−m

∑M−m/2
n=m/2 α̂n.

3. Set n = m/2. While n ≤ M −m/2:

(i) use the subsequence {vj}n+m/2
j= n−m/2 to estimate θ̂n =

(b̂n, ĉn)
T from Equation (11).

(ii) use Equation (6) to find ĝE,n and ĝI,n.
(iii) set n = n + 1.

4. If smoother results are desired, then apply the median filter
given in Equation (9) below (or any other filter) to the
estimated conductance traces ĝE,n and ĝI,n.

procedure approximates the membrane potential to be stationary
in a given time window. Then, using the MLE within each
window (the exact MLE, no discretization is needed in this case),
the excitatory and inhibitory conductances are inferred (see Berg
and Ditlevsen, 2013 for more details).

The estimation of conductances by using the OU method has
been done using the code from Berg (2013) and using the sample
window that provides the best estimation results (100 ms for in
silico data and 300 ms for in vivo data).

2.3. Oversampling Method
For the sake of completeness, in this subsection we briefly explain
the oversampling method proposed in Bédard et al. (2012).

The oversampling method assumes that the dynamics of the
membrane potential has no ionic currents and no noise. It is
based on the model V̇ = gα(t)V + gβ (t), where gα and gβ are
called preconductances which depend linearly on the synaptic
conductances. This differential equation is discretized such that
the preconductances are represented with half the sampling
frequency as that of V . Parameters gα and gβ are estimated and
used to determine both excitatory and inhibitory conductances.
Two thresholds, denoted κα and κβ , need to be defined to avoid
possible singularities (see Bédard et al., 2012 for more details).

The estimation of conductances by using the oversampling
method has been carried out using the code from Bédard et al.
(2012). For the singularity points, the authors recommend that
the two thresholds, κα and κβ , should be close to 0.1 when
experimental data are analyzed (Bédard et al., 2012). For the
in silico data, we estimated the conductances using various
threshold values, and chose those values providing the best
estimation results, also being κα = κβ ≈ 0.1.

2.4. Neuron Models
To generate membrane potential traces we use two different
neuron models that contain nonlinear subthreshold activity:
(a) the QIF model, (Latham et al., 2000; Hansel and Mato,

2001; Gerstner and Kistler, 2002; Fourcaud-Trocmé et al., 2003),
and (b) a stellate neuron model (Rotstein et al., 2006). Note
that the first model coincides with the model used in the
estimation procedure, while the second model is employed to
illustrate the robustness of the second order approximation to
the nonlinearities. The stellate neuron model is endowed with a
spiking mechanism generated by sodium and potassium, and two
subthreshold currents, the persistent sodium (NaP) current and
the h-current. In the twomodels, themembrane potential is given
by the equation:

C
dV(t)

dt
= f (t,V(t))− Isyn(t)+ Iapp + η(t), (7)

where f (t,V(t)) is a model specific function depending on the
leakage current, IL(t), and possibly other ionic currents, V(t)
denotes the membrane potential, C is the membrane capacitance,
Isyn(t) is the synaptic current, Iapp is the applied current, assumed
constant for simplicity, and η(t) is a white noise process, with
zero mean and standard deviation σ , modeling the random
arrivals of synaptic input.

The leakage current is modeled as IL(t) = gL(V(t) − VL).
The synaptic current is split into the excitatory (IE(t)) and
the inhibitory (II(t)) currents, which we model as IE(t) =
gE(t)(V(t)− VE) and II(t) = gI(t)(V(t)− VI).

Common biophysical parameters in both models are set to
C = 1 µF/cm2, gL = 0.1mS/cm2, VL = −65mV, VE = 0mV,
VI = −80mV and σ = 1/CmV/

√
ms.

Next, we describe the main features of the two neuronmodels.

2.4.1. Stochastic Version of the Quadratic

Integrate-and-Fire Model
As a basemodel for the estimation procedure described in Section
2.1, and in order to generate membrane potential traces using
prescribed conductances, we consider the QIF model given by a
single equation for the membrane potential in the form (7) with

f (t,V(t)) = α
(

V(t)− VT

)2 − IT , see also Equation (1).
To generate voltage traces from the model, we set the

parameters IT = −1.359 µA/cm2, VT = −74.27 mV, Iapp =
-8.7µA/cm2 and α = 0.0067 mS/cm2mV.

An example of a trajectory of this model, which we have
used to estimate conductances, can be found in Figure 2C of
Section 3.1.1.

2.4.2. Stellate Neuron Model
The last model is the medial entorhinal cortex stellate cell
model taken from Rotstein et al. (2006). This model has four
different currents: the sodium and the potassium currents,
which build up the spiking mechanism, and the persistent
sodium (NaP) current and the h-current, whose interaction
induces subthreshold oscillations independently of the spiking
mechanism. The membrane potential is given by Equation (7),
with f (t,V(t)) = −IL(t) − Iion(t) and Iion(t) = INa(t) + IK(t) +
INaP(t) + Ih(t). We note that the h-current has one fast and one
slow component. See Appendix A for more details. The neuron
parameters are set toVT = −58.7379mV, IT = −9.496µA/cm2,
and Iapp = −16.9µA/cm2. This last value is chosen to be close to
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the largest current that with high probability do not cause spikes
in the model for the given level of noise.

An example of a trajectory of this model, which we have
used to estimate conductances, can be found in Figure 2C of
Section 3.1.2.

2.4.3. Choice of Parameters
In the estimation procedure, we need to fix two parameters: the
largest input current such that the neuron does not spike, IT ,
and the corresponding membrane potential,VT . These values are
extracted through the V − I curve, and can be assumed to be
known.

To determine the values of these parameters for the in silico
data generated from the stellate neuron model, we use the V-I
bifurcation diagram of the model obtained in the absence of
noise and synaptic currents. For this model, there is a threshold
value such that for lower values of the input current, the model
does not spike, whereas for higher values it does. Parameter IT
corresponds to this threshold value separating nonspiking and
spiking regime. Parameter VT corresponds to the resting value
of the membrane potential when the injected current is set to IT .
We find IT = −1.46 µA/cm2 and VT = −73.499 mV.

For the in vivo data IT is chosen as the minimum input
current that induces spikes by applying different injected currents
to the neuron without synaptic inputs. Parameter VT is the
corresponding value in the V − I curve obtained for the specific
neuron (see Section 2.5 to see how to extract the V − I curve
experimentally).

2.4.4. Synaptic Drive
We generate traces of conductances following Ornstein-
Uhlenbeck processes with sinusoidal drifts, given as solutions to
the stochastic differential equation:

dxt =
1

τx

(

x0 + µx cos(wxt)− xt
)

dt + σxdWt , (8)

where x denotes either the excitatory (gE) or the inhibitory
(gI) conductance. In the simulations, we set τgE = 10ms,
τgI = 5ms, gE0 = 0.1mS/cm2, gI0 = 0.14mS/cm2,
µgE = 0.0321mS/cm2, µgI = 0.0867mS/cm2, wgE =
wgI = 2π/1, 000 ms−1, σgE = 0.00064 mS/(cm2√ms), and
σgI = 0.00065mS/(cm2√ms), unless otherwise stated. These
values have been chosen such that amplitudes and frequencies are
similar to the estimated traces in the experimental data from Berg
and Ditlevsen (2013). The synaptic traces used to generate data
from the stellate cell model, have been tripled in order to induce
higher subthreshold activity.

The simulated traces of excitatory and inhibitory
conductances used for the QIF model can be found in
Figures 2A,B, while those used for the stellate model can
be found in Figures 3A,B.

2.4.5. Numerical Methods
The stochastic differential equations, both for the synaptic drive
and the neuron models, have been solved using the Euler-
Maruyama method with a step size of 1 = 0.01ms. Then, data
were subsampled every 5th observation to reduce discretization

errors. We then get samples with time step 0.05 ms, which is
similar to that of the experimental data. We smooth the obtained
conductance traces with bandwidth of length lf . We choose the
median filter for the smoothing step: for each point p: = (t, xn)
of a signal x, we compute:

x̃n = median
n−mf /2 ≤ j ≤ n + mf /2

{xj}, (9)

where mf = [lf /1]. We chose this filter since it is often used to
clip spikes, but any filter can be used. Unless otherwise stated we
set lf = 50 ms in the simulations.

2.5. Experimental Data
The experimental data are taken from a previous study, where
traces of 25 s of the membrane potential of a motoneuron
were measured during different current injections under the
same mechanical stimulation (Petersen et al., 2014; Vestergaard
and Berg, 2015). The trace analyzed in this paper is shown in
Figure 5B of Section 3.2. Briefly, the experiments were performed
in an integrated spinal cord-carapace preparation from an adult
red-eared turtle (Trachemys scripta elegans). In the integrated
preparation, the spinal cord remains in the spinal canal with
the tactile sensory nerves from the carapace intact. The motor
nerves are carefully transected to avoid muscle movements
and dissected out for electroneurogram recordings. A scratch
reflex was activated bymechanical somato-sensory stimulation of
selected regions on the carapace, which induced motor network
activity of ∼20 s duration. Intracellular recordings in current-
clamp mode were obtained from a motoneuron in segment
D10. Data were sampled at 20 kHz, i.e., the time step between
observations is 1 = 0.05 ms.

The determination of IT and VT is not exact, and these
values might induce a bias in the estimated conductances, and
in particular, could give rise to negative conductance estimates.
Since conductance cannot be negative, the sign of gI and/or gE
provides a means to verify the initial estimate of IT and VT .

In Figure 1, we depict the V − I relationship (red dots)
obtained by injecting different levels of current into the neuron
in absence of synaptic activity. We made a linear fit (gray line)
and a square root fit (black line) of the V − I points. The square
root fit is clearly chosen above the linear fit using either AIC or
BIC criteria, since differences are both larger than 7 (1AIC= 9.2,
1BIC = 8.1). This value is suggested in Burnham and Anderson
(2002) as the critical value for the less plausible model to have
considerably less support in the data compared with the better
model.

The square root approximation (squared approximation as a
function of V) is given by Iapp(V) = 0.00095V2 + 0.22V +
11. Since the last input current for which the neuron did not
spike was −0.515 µA/cm2, we set IT = −0.515 µA/cm2,
which corresponds to VT = −79.926 mV from the V − I
curve. The remaining neuron parameters have been set to VL =
−77 mV, VI = −79 mV, VE = 0 mV, gL = 0.026 mS/cm2,
Iapp = -1.24 nA, and C = 1 µF/cm2; these values have been
obtained from the actual data by using the code in Berg (2013).
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FIGURE 1 | V-I curve of the measured motoneuron. The red dots are the

subthreshold V − I relations obtained by applying different current levels to the

motoneuron. The black line shows the square root fit to these points, and the

gray line depicts the linear fit.

3. RESULTS

In this section, we present the estimation results from simulated
(in silico) and experimental (in vivo) data by using the estimation
procedure given in Algorithm 1. The simulated data consist
of membrane potential traces generated from each of the two
neuron models: the QIF model and the stellate neuron model,
described in Section 2. Note that the estimation procedure
assumes that the data are generated from the QIF model,
and thus, results from the other model show how robust
the estimation procedure is to model misspecification. The
experimental data are obtained from a motoneuron as described
in Section 2.5. Finally, the results obtained from the stellate
neuron model as well as from experimental recordings, are
compared to both the oversampling method and the OUmethod.

3.1. Estimation Results from Simulated
Data
3.1.1. Results for the QIF Model
Figure 2 shows the estimation results when the membrane
potential is generated from the QIF model, setting α = 0.0067.
This parameter was estimated to α̂ = 0.0077. Panel A depicts
the true (black curve) and the estimated (red curve) excitatory
conductances, and panel B shows the true (black) and the
estimated (red) inhibitory conductances. The true excitatory
trace is well approximated by the estimated trace, whereas
the estimation of the inhibitory conductances only captures
the overall shape and level, and is much more noisy. This is
because the membrane potential is close to the inhibitory reversal
potential, whereas it is far from the excitatory reversal potential,
and thus, the synaptic drive is higher for excitation. This was also
shown in Berg and Ditlevsen (2013), where analytic expressions
for approximations of the variance of the estimators were derived

from the Fisher Information matrix. Panel C shows the true
membrane potential (black curve) and the reconstructed voltage
by using the estimated conductances (red curve). The actual
voltage is well reproduced by the reconstructed one.

3.1.2. Results for the Stellate Neuron Model
Results for the stellate neuron model are depicted in Figure 3.
Panels are as in Figure 2.

The excitatory and inhibitory conductances are well
approximated; however, as in the QIF model, the estimate of
the excitatory conductance trace is more accurate. It can be
appreciated how well the reconstructed voltages match the true
voltages. The estimated value of α is 0.0100.

Surprisingly, the estimated conductances for this model are
nearly as good as the original QIF model, and show robustness
of the method. It also indicates that a quadratic approximation
seems to be sufficient to capture the nonlinearities caused by the
ionic currents in this more biophysically realistic model.

Note that, for this model, the specified conductances do
not induce large fluctuations in the membrane potential,
but even these small effects provide sufficient information
to recover the overall structure of the conductances. If the
excitatory conductance is increased relative to the inhibitory
conductance, larger oscillations in the membrane potential are
seen, comparable to the QIF model (results not shown). It is
remarkable that even so small fluctuations in the membrane
potential are sufficient to trace and separate the excitatory and
inhibitory dynamics.

3.1.3. Effects of the Variability of the Quadratic Term,

Sliding Window Size and Injected Current
During the estimation procedure described in Section 2.1, first a
time varying estimate of α is obtained, then the average is used as
the final estimate of the constant value of α. It might be of interest
to study how α as either a time-varying or a constant parameter
affects the estimates of the conductances. Figure 4 depicts the
estimated time varying α over the observation interval for both
computational neuron models. The variability is relatively small
for the QIF model, and slightly larger for the stellate neuron
model, probably because the membrane potential in this case
is less oscillating, thus containing less information about the
dynamics.

The error of a given estimate is assessed by the mean squared
error (MSE). The MSE of estimating x by y is defined as
(x − y)2/M, where x and y are either excitatory or inhibitory
conductances or the membrane potential, and M is the length
of x.

To assess how the estimates are affected by imposing α

constant, the MSEs obtained for the stellate model are given in
Table 1 from (i) letting α be time varying; and (ii) forcing α

to be constant. The errors of the estimated conductances are
smaller when α is constant, in agreement with the QIF method.
Moreover, imposing the second order term to be constant
probably makes the estimates of the time varying conductances
more robust and less noisy.

During the estimation procedure described in Section 2.1
(Algorithm 1), some values need to be chosen: (i) the size of the
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FIGURE 2 | Estimation by the QIF method of the conductances from data generated from the QIF neuron model. (A) True (black) and estimated (red) excitatory

conductances. (B) true (black) and estimated (red) inhibitory conductances. (C) simulated voltage using the true conductances (black) and the estimated

conductances (red). The data have been obtained each dt = 0.05 ms and the MLE is applied with a l = 50 ms sliding window. The estimated conductances have

been filtered by the median filter using a sample window of lf = 50 ms. The neuron parameters are given in Section 2.4.1, and the synaptic drive description is given in

Section 2.4.4. Estimation has been performed using the QIF method in Algorithm 1. See Figure S1 in Supplementary Material for a plot of true vs. estimated

conductances.

FIGURE 3 | Estimation by the QIF method of conductances from data generated from the stellate cell model. (A) True (black) and estimated (red) excitatory

conductances. (B) True (black) and estimated (red) inhibitory conductances. (C) Simulated voltage using the true conductances (black) and the estimated

conductances (red). The data were generated each dt = 0.05 ms and the MLE sample window was l = 100 ms. The estimated conductances have been filtered by

the median filter using a sample window of lf = 50 ms. The neuron parameters are given in Section 2.4.2, and the synaptic drive description is given in Section 2.4.4;

additionally, for this model, we have tripled the conductance traces obtained from (8) in order to induce higher subthreshold activity. Estimation has been performed

using the QIF method given in Algorithm 1. See Figure S3 in Supplementary Material for a plot of when the sliding window is l = 50 ms.

FIGURE 4 | Time course of α̂(t) using Algorithm 1. Estimated time varying α in the first step of Algorithm 1 for the different in silico models: QIF model in the top panel

(black trace) and the stellate model in the bottom panel (blue trace).

sliding window, within which conductances are supposed to be
stationary; and (ii) the applied current that is injected to prevent
the cell from spiking.

When choosing the size of the sample window, there is a trade-
off between the assumption about stationarity and accuracy: the

window has to be small for the conductances to be approximately
stationary but large enough for the MLE to produce low errors.
In Table 2, errors of the conductances and the reconstructed
membrane potential are quantified by MSE for different window
sizes. Errors are computed for the QIF method applied to
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TABLE 1 | Mean squared errors of the excitatory and inhibitory conductances

with α constant or time varying.

Algorithm gE gI

QIF method with α constant 2.03 · 10−3 9.44 · 10−3

QIF method with α time varying 2.38 · 10−3 1.27 · 10−2

Data have been generated from the stellate neuron model described in Section 2.4.2 with

synaptic drive given in Section 2.4.4. The window size used in both cases is l = 100 ms.

The estimated conductances have been filtered by the median filter using a sample

window of lf = 50 ms. The MSEs are given for excitatory and inhibitory conductances

letting α be time varying or constant.

TABLE 2 | Mean squared errors of the QIF method for different window sizes.

Sample window (ms) gE gI v

l = 10 2.12 · 10−2 1.59 · 10−1 2.54 · 10−1

l = 25 4.01 · 10−3 2.96 · 10−2 2.14 · 10−1

l = 50 2.40 · 10−3 1.46 · 10−2 1.15 · 10−1

l = 75 1.92 · 10−3 9.59 · 10−3 1.08 · 10−1

l = 100 2.03 · 10−3 9.44 · 10−3 7.34 · 10−2

l = 150 2.14 · 10−3 9.46 · 10−3 6.71 · 10−2

l = 200 2.19 · 10−3 9.54 · 10−3 9.54 · 10−2

Data have been generated from the stellate cell model described in Section 2.4.2 with

synaptic drive given in Section 2.4.4. The estimated conductances have been filtered by

the median filter using the same window size as the estimation procedure. The MSEs

are given for excitatory conductances (first column), inhibitory conductances (second

column), and the membrane potential (third column). Similar effects are observed for the

OU method, but with higher MSE, see Table 3.

simulated data from the stellate cell model described in Section
2.4.2 with synaptic drive given in Section 2.4.4. The window size
with smallest error is around 100 ms.

Finally, the estimation errors are also sensitive to the amount
of applied current Iapp. Lower values of Iapp hyperpolarize the
membrane potential away from the threshold, thus separating the
neuron dynamics from the regime where the QIFmethod is more
advantageous. In the simulations, the maximal applied current
for which the neuron does not exhibit spikes in the presence of
noise and synaptic currents was injected. To study the effect of
lowering the applied current, the MSE for different values of Iapp
injected into the stellate cell model is provided inTable 3. Moving
the dynamics away from the threshold induces a loss of accuracy.
However, a large negative current needs to be applied in order
to see a large increase in MSE, and, even in those cases, the QIF
method still performs better than the OU method. We repeated
the simulations with different random seeds and results were
qualitatively the same (see Supplementary Material, Table S2).

To evaluate the effect of possible measurement noise on the
membrane potential, we repeated the analyses on the simulated
data from the stellate model by adding independent normally
distributed variables with mean 0. The QIF method seems robust
in the presence of small levels of measurement noise. For a
standard deviation of 0.1 mV, theMSEs increase 2–3 times on the
conductances, whereas the MSEs increase slightly less for the OU
method, but the QIF still performs better. However, for a large
standard deviation of 0.5 mV, the QIF methods breaks down,

TABLE 3 | Mean squared errors of the QIF and OU methods applied to the

stellate cell model for different applied currents.

Iapp (µA/cm2) QIF method OU method

gE gI gE gI

−16.9 2.03 · 10−3 9.44 · 10−3 1.13 · 10−2 1.15 · 10−1

−17.9 1.78 · 10−3 1.24 · 10−2 1.29 · 10−2 1.28 · 10−1

−19.9 1.23 · 10−3 1.01 · 10−2 1.91 · 10−2 1.01 · 10−1

−28.9 7.99 · 10−3 2.21 · 10−2 5.21 · 10−2 1.23 · 10−1

Data have been generated from the stellate cell model described in Section 2.4.2 with

synaptic drive given in Section 2.4.4. The window size used in both methods is l = 100

ms. The estimated conductances have been filtered by the median filter using a sample

window of lf = 50ms. The MSEs are given for excitatory conductances, gE , and inhibitory

conductances, gI.

while the OU method still performs well. Hence, if measurement
noise is large compared to the nonlinear effects, the OU method
is more robust and will perform better, whereas for a small
measurement noise, the QIF method is recommended.

3.2. Estimation Results from Experimental
Data
In Figure 5 we show the results obtained with the estimation
procedure on experimental data described in Section 2.5. The
magenta line shows the estimated inhibitory conductances
whereas the blue line shows the estimated excitatory
conductances. Contrary to the in silico data, we have no
information on the true input conductances, and thus, they can
not be compared.

As shown in Figure 5A, both conductance traces follow
the shape of the membrane potential, suggesting that the
network generates the motor activity by balanced inhibition and
excitation. Moreover, the QIF method provided an estimated
value of the quadratic coefficient of α ≈ 0.1094. The
reconstructed membrane potential dynamics using the QIF
model with the estimated conductances as synaptic input is
shown in Figure 5B, and shows good agreement with the true
voltage trace, though it is slightly underestimated as can be
appreciated in the scatter plot of Figure 5C. In this case, the
MSE obtained is 3.04. We have also reconstructed the membrane
potential using the OU method obtaining a MSE of 9.62.

3.3. Comparison with Other Procedures
In this section we compare the QIF method with other existing
procedures that estimate conductances from a single trace,
namely the OUmethod and the oversampling method, described
in Sections 2.2 and 2.3. The estimation is conducted using the
codes of these procedures published by the authors (Bédard
et al., 2012; Berg, 2013). We first tested both codes on the linear
neuronal models that the methods assume, using the prescribed
conductances given in Section 2.4.4, and found similar results as
the original papers.

Comparisons between the three different estimation
procedures have been performed on the stellate cell model.
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3.3.1. Comparisons between the QIF, OU and

Oversampling Methods for In silico Data Generated

from the Stellate Model.

In Figure 6 the results obtained with the QIF method are
compared to the OU and the oversampling method, using
simulated data from the stellate cell model described in
Section 2.4.2.

The time courses of the true conductances are depicted
together with the estimates from the three methods. Both
the QIF and the OU show acceptable fits. The QIF method
provides a slight improvement on the estimated excitatory
conductance compared to the OU method, whereas the
inhibitory conductance is considerable better estimated with
the QIF compared to the OU method. The oversampling
method fails and should not be used for this type of
data.

To quantify and compare the errors of the different estimation
procedures, the MSEs and bias are shown in Table 4. The
MSE for the QIF method is smaller than those obtained

using either the OU method (by one order of magnitude)
and the oversampling method (by two orders of magnitude).
The MSE is smaller for the QIF method compared to the
OU method mainly due to decreased variance, whereas the
bias is comparable. For this example, the QIF has lower bias,
but for other examples of Hodgkin-Huxley type models the
bias is slightly smaller for the OU method (see Supplementary
Material). The difference between the QIF and the OU MSEs
is consistent throughout the different applied currents (see
Table 3).

3.3.2. Comparison of the Methods on Experimental

Data
Finally, we apply the three methods on the experimental data
described in Section 2.5. Results are depicted in Figure 7.
The results obtained using the three different methods for
the experimental data are very different. Only the excitatory
conductances estimated with the OU and the QIF method seem
to follow a similar pattern, even though there is a vertical shift

FIGURE 5 | Estimation by the QIF method of conductances from experimental data and reconstruction of the membrane potential. (A) Estimated excitatory (blue) and

inhibitory (magenta) conductances from the membrane potential obtained from in vivo experiment. The QIF method has been applied using a sliding window of

l = 100 ms. (B) The recorded membrane potential (black line) and reconstructed membrane potential obtained by using the estimated values of conductance traces

and the estimated α parameter (gray line). (C) The reconstructed vs. the true voltage. Estimation has been performed using the QIF method in Algorithm 1.

FIGURE 6 | Comparison between single-trial estimation procedures; QIF, OU and oversampling method on data generated from the stellate model. Prescribed and

estimated synaptic input generated from Equation (8). (A) Excitatory conductance. (B) Inhibitory conductance. The sample window used in the QIF and the OU

methods is l = 100 ms. In the oversampling method, parameter values are κα = κβ = 0.1. For the QIF method, the estimated conductances have been filtered by the

median filter using a sample window of lf = 50 ms.
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TABLE 4 | Mean squared errors and bias of the different estimation procedures.

Estimation

procedure

gE MSE gI MSE gE bias gI bias

QIF method 2.03 · 10−3 9.44 · 10−3 3.44 · 10−2 5.98 · 10−2

OU method 1.13 · 10−2 1.15 · 10−1 −6.55 · 10−2 2.61 · 10−1

Oversampling

method

9.79 · 10−1 1.02 −1.71 · 10−2 −8.85 · 10−1

Data have been generated from the modified stellate cell model described in Section 2.4.2

with synaptic drive given in Section 2.4.4. The window size used in the QIF and the OU

methods is l = 100 ms. The estimated conductances have been filtered by the median

filter using a sample window of lf = 50ms. In the oversampling method, parameter values

are κα = κβ = 0.1. For the QIF method, the MSE are given for excitatory conductances

(second column) and inhibitory conductances (third column). Bias is given for excitatory

conductances (third column) and inhibitory conductances (fourth column).

between the two. The oversampling method presents a similar
pattern as the ones obtained in Bédard et al. (2012, Figure 2),
where they present results previous to suppressing singular
points. In Figure 7, we show the best results we have obtained
varying κα and κβ even after this suppression. Therefore, it seems
that this method is not able to provide plausible estimates from
these data.

Both the oversampling and the OU method assume a linear
behavior of the subthreshold activity. However, the V − I
curve obtained from the experimental recordings (Figure 1)
is better fitted by a square root regression than a linear
one, thus revealing the existence of nonlinear subthreshold
activity. Thus, we believe that the results obtained with the
QIF method are closer to the real conductances than the
other methods, which was also the case for the in silico
data.

4. DISCUSSION

In this paper we propose a new method to estimate synaptic
conductances from voltage traces in the subthreshold regime,
based on a combination of methods proposed in Berg and
Ditlevsen (2013) and Vich and Guillamon (2015). We have
shown that the method overcomes some of the drawbacks
of existing methods pointed out in the Introduction. The
method only uses a single-trial voltage trace, thus avoiding
the requirement that synaptic conductances are identical
across trials. Furthermore, since it is based on a quadratic
model with stochastic terms, it is able to account for the
nonlinearities in the subthreshold regime while it incorporates
noise.

When the membrane potential is far below the threshold,
we sometimes obtain negative estimates with the QIF method
for the inhibitory conductances (Figures 5A, 7B), which is
not as pronounced for the OU method. This suggests to
combine linear and quadratic methods when the membrane
potential is hyperpolarized. However, in excitability conditions,
the method improves both the OU method (Berg and Ditlevsen,
2013), and the oversampling method (Bédard et al., 2012).
In particular, we have tested it on intracellular recordings in
current-clamp mode of spinal motoneurons, and the results

show reasonable estimates of rhythmic activity of both excitatory
and inhibitory drive. Interestingly, for this specific case, we
do not observe any push-pull arrangement that signals a
balanced input, which could still be possible at a population
level.

For the in silico data, where prescribed conductances have
been injected into the cells, both the excitatory and the
inhibitory conductances are well estimated. We tested the
method on data generated from the QIF model, as well as
from the stellate model, which is a more biophysical realistic
model and shows the robustness of the method to model
misspecifications. In the SupplementaryMaterial we furthermore
show computations with a modified pyramidal cell model,
which confirms the validity of the results. Moreover, the QIF
method exhibits a significant improvement with respect to
the other two methods tested in this paper, mostly compared
to the oversampling method, thus underpinning the necessity
of nonlinear strategies to estimate conductances also in the
subthreshold regime, and showing improved results when
quadratic terms are considered in the estimation procedure.
The significant improvement compared to the oversampling
procedure could be explained by the fact that the oversampling
method does not consider neither ionic currents nor noise.
It is worth mentioning as well that the QIF method has
been successfully applied to a realistic neuron model having
different subthreshold-activated currents, thus validating the QIF
model as a reference model for subthreshold activity in this
problem.

For the in vivo recordings, we see first that the V − I curve
provided by the data is better fitted by a quadratic function
than by a linear one, providing experimental evidence of the
suitability of the quadratic approximation. Even though actual
conductances are unknown, we have seen that the pattern
estimated with the stochastic quadratization is more coherent
that those obtained with the other linear procedures, at least
if we expect the conductances to follow dynamics similar to
the membrane potential. Moreover, the oversampling method
has not been able to extract the conductances from these
data, again probably a consequence of both the noise and the
nonlinearities.

In summary, we propose a novel reliable strategy to
infer synaptic activity received by a cell in the subthreshold
regime. Apart from the constraint of the activity being in
the subthreshold regime, not too far from the threshold, the
method is robust enough to be applied to neurons whose V-
I curve follows a quadratic shape. The next challenge is to
test it on other electrophysiological data from different brain
areas and animals, as well as comparing with already existing
conductance traces obtained in the literature by means of
linear estimation methods. On the other hand, the Exponential
Integrate-and Fire (EIF) model and other IF extended models
(see for instance; Fourcaud-Trocmé et al., 2003; Brette and
Gerstner, 2005) are able to capture a wide repertoire of dynamics
exhibited by conductance-based models. However, in this paper
we treat only the subthreshold regime, and the QIF model
captures the basic dynamics of conductance-based models.
Further adaptations to more comprehensive IF models might
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FIGURE 7 | Estimated conductances from experimental data using the QIF, OU, and oversampling methods. Estimated conductances from the in vivo data described

in Section 2.5, for the QIF method (red curves), the OU method (green curves) and the oversampling method (blue curves). The time window is l = 50 ms for the QIF

method and l = 300 ms for the OU method. In the oversampling method, values are κα = κβ = 0.1. For the QIF method, the estimated conductances have been

filtered by the median filter using a sample window of lf = 50 ms. (A) Excitatory conductances. (B) Inhibitory conductances.

improve estimates in a broader range of dynamic regimes.
These extensions constitute an interesting challenging research
direction to pursue.
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