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Neuroimaging in combination with graph theory has been successful in analyzing the

functional connectome. However almost all analysis are performed based on static

graph theory. The derived quantitative graph measures can only describe a snap shot

of the disease over time. Neurodegenerative disease evolution is poorly understood

and treatment strategies are consequently only of limited efficiency. Fusing modern

dynamic graph network theory techniques and modeling strategies at different time

scales with pinning observability of complex brain networks will lay the foundation for

a transformational paradigm in neurodegnerative diseases research regarding disease

evolution at the patient level, treatment response evaluation and revealing some central

mechanism in a network that drives alterations in these diseases. We model and

analyze brain networks as two-time scale sparse dynamic graph networks with hubs

(clusters) representing the fast sub-system and the interconnections between hubs the

slow sub-system. Alterations in brain function as seen in dementia can be dynamically

modeled by determining the clusters in which disturbance inputs have entered and the

impact they have on the large-scale dementia dynamic system. Observing a small

fraction of specific nodes in dementia networks such that the others can be recovered is

accomplished by the novel concept of pinning observability. In addition, how to control

this complex network seems to be crucial in understanding the progressive abnormal

neural circuits in many neurodegenerative diseases. Detecting the controlling regions in

the networks, which serve as key nodes to control the aberrant dynamics of the networks

to a desired state and thus influence the progressive abnormal behavior, will have a huge

impact in understanding and developing therapeutic solutions and also will provide useful

information about the trajectory of the disease. In this paper, we present the theoretical

framework and derive the necessary conditions for (1) area aggregation and time-scale

modeling in brain networks and for (2) pinning observability of nodes in dynamic graph

networks. Simulation examples are given to illustrate the theoretical concepts.

Keywords: neurodegenerative disease, singular perturbations, area aggregation, multi-time-scale brain network,
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1. INTRODUCTION

Novel mathematical paradigms such as graph theoretical
techniques can capture the brain connectivity and its topology
(Fornito et al., 2012; Giessing and Thiel, 2012; Zeng et al.,
2012). New descriptors of complex networks are able to quantify
induced changes in topology or network organization or serve as
theory-driven biomarkers to be used in disease prediction at the
level of the individual subject.

Whilemost graph networks applied to brain research are static
graph networks and can not capture the dynamical processes
governing the time evolution of neurodegenerative diseases, a
new paradigm in brain research—dynamical graph networks—
is required to advance this field and overcome the obstacles
posed by static graph theory in terms of disease prediction and
evolution, and its associated connectivity changes.

Biologically-relevant brain networks represent complex large-
scale dynamical systems capturing the interaction of a large
number of subsystems. Standard analysis methods and control
strategies become very difficult and novel techniques need to
be developed to (1) analyze the dynamical behavior of these
large-scale systems or (2) to observe their states.

To address the first issue of how to control these networks,
we need to employ a model simplification resulting in a model
of lower complexity, that is easier to handle, and that will
provide a simplified synthesis procedure for design problems
at a reduced computational complexity. Balanced truncation
is known as a popular method for model reduction since it
is relatively simple and the quality of the reduced model is
guaranteed. The interpretation of most balancing techniques
is based on the concept of past and future energy. The most
important contribution was the balancing for stable minimal
linear systems (Moore, 1981). It is based on a state—space
point of view of employing the well—known observability and
controllability Gramians and related to the past input energy
(controllability) and future input energy (observability). The idea
behind transforming a system into balanced form is to easily
detect and remove a state component of the initial system to
obtain a reduced–order model. The importance of a component
is based on Hankel singular values which determine if the output
energy of a certain component is small and thus difficult to
observe and if the input energy to reach this state is large. While
for linear systems finding a balancing coordinate transformation
via solutions of the controllability and observability Lyapunov
equations is quite easy, for nonlinear systems these equations
are almost impossible to solve and thus balancing becomes in
general not a simple task (Lall et al., 2002; Scherpen, 1993). These
techniques have been applied to the analysis of gene regulatory
networks (Meyer-Bäse, 2008), however they are not quite
efficient in terms of model reduction for large-scale networks
since they involve the computationally expensive operation of
matrix factorization. In addition, this method does not preserve
the connection structure between subsystems and erases the
neurological connection between the subsystem state variables.
Therefore, a network topology-preserving mechanism to provide
model reduction is required for large-scale networks. We will
present an area aggregation and time-scale modeling for sparse

brain networks with densely interconnected hubs and externally
sparse interconnections between these hubs (Tahmassebi et al.,
2017). In Biyik and Arcak (2008) it was shown that the neurons
in the hubs synchronize on the fast time-scale and as aggregated
neurons determine the slow dynamics of the neural network.
We derive a simplified dynamic two-time scale representation
for brain connectivity networks assuming linear connections
between the nodes. The eigenvalues of the state matrices of the
slow and fast system will provide important information about
the dynamic evolution of brain connectivity networks at different
stages of neurodegenerative diseases. The structural parameters
of these networks expressed by the node and area parameter will
unveil changes in the sparsity patterns in the course of the disease
associated with the disease.

The second issue of observability of neural states can
be achieved over synchronization. Synchronization plays
an important role in the analysis of neural networks in
neurodegenerative diseases. For many neurodegenerative
diseases it is very important to obtain some information about
some neural states in order to recover the others. This new
concept of “pinning observability,” first proposed in Yu et al.
(2014), refers to observing a small number of neurons such that
the states of the other neurons can be recovered. Differently from
the concept of pinning controllability (Chen et al., 2007; Liu
et al., 2011; Song and Cao, 2010; Tang et al., 2012), the dynamics
of the neurons can be heterogeneous. This property is extremely
appealing to brain connectivity networks where we aim to obtain
insight into the dynamics of several regions by observing only a
few of them.We will derive for these networks a general criterion
for synchronization and then some decoupled conditions for
pinning observability taking into account their heterogeneous
architecture.

In the present paper, we will present a reduced-model
approximation over time for large-scale brain networks and
derive pinning observability conditions for competitive neural
networks and illustrate in an example the theoretical analysis.

2. REDUCED-MODEL APPROXIMATION
OVER TIME

Many brain connectivity networks exhibit a heterogeneous
structure with densely linked nodes in an area but with sparse
connections between these areas. The network is viewed as
an interconnected graph with links between the areas which
are viewed as nodes in the graph. Thus, the architecture can
be described concisely by two main parameters (Chow and
Kokotovic, 1985): the node parameter d and the area parameter
δ. The node parameter is given as

d =
cE

cI
≪ 1 (1)

where cE is the number of external links of the node with the
largest number of external links to nodes outside its area and cI is
the number of internal links of the node with the smallest number
of internal links to nodes inside its area. d needs to be a small
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number. The area parameter is given as

δ =
γ E

mcI
≪ 1 (2)

where γ E is the number of external links of the area with the
largest number of external links and m is the minimal number
of nodes found in an area.

While the node and area parameters describe the static
behavior and the sparsity pattern of the network, a more
interesting approach is to analyze the dynamical behavior of such
a network. In order to obtain a reduced-model approximation we
view the brain connectivity graph as a structured representation
with dense areas (clusters) and sparse interconnections between
these areas (Biyik and Arcak, 2008). The time behavior of
networks with densely linked neurons in an area but with sparsely
connected areas can be described dynamically by a two-time scale
system where the neurons within the same area synchronize on
the fast time-scale because the dense internal links allow the
neural potential in the same area to quickly reach an equilibrium.
During the fast time scale the exchange with the other areas
is slow because of the sparsity of the links and this becomes
significant only over a longer period thus leading to a slow time-
scale. This coupled dynamics leads to a reduced-order model
describing the long-term behavior of the overall network.

The dynamical formulation will be that the activation states
within a group synchronize with each other and achieve a
reference group velocity υ(t):

lim
t→∞

|xi(t)− xj(t)| = 0, i, j = 1, ...,N

lim
t→∞

|ẋi − υ(t)| = 0, i = 1, ...,N
(3)

The synaptic connections dik are defined as

dik=





1, : if the i-th node is the positive end of the k-th link
−1, : if the i-th node is the negative end of the k-th link

0 : otherwise
(4)

We assume having a neural network ofN nodes andM total links
yielding thus a N ×M incidence matrix D describing this neural
network. The formulated objectives in Equation (3) are achieved
by the following network architecture

ẋi = −
M∑

k=1

dikfk(θk)+ υ(t), i = 1, · · · ,N (5)

where the difference variable θk is the difference between the
positive and negative ends of k-th link, i.e.,

θk: =
N∑

l=1

dlkxl =
{
xi − xj : if i is the positive end,
xj − xi : if j is the positive end,

(6)

and fk(θk) being uniformly monotone and fulfilling the sector
condition fk(θk)θk > 0 for all θk ∈ R.

In matrix representation this can be expressed as

ẋ = −Df (DTx)+ 1Nυ(t) (7)

with f (θ) =
[
f1(θ1), · · · , fM(θM)

]T
and 1N being the N-vector of

ones.
We reorder the incidence matrix D as

D = [DI |DE] (8)

such that DI = diag(DI
1, . . . ,D

I
r) correspond to the r areas.

We assume that we have an N-node network with r internally
dense regions but sparsely connected. Area α has mα neurons
with α = 1, 2, · · · , r and the vector xα = [xα

1 · · · xα
mα

]T contains
all neural activities in area α. Then we define the slow variable
(Biyik and Arcak, 2008; Chow and Kokotovic, 1985) representing
an aggregate region as

yα : =
mα∑

i=1

xα
i

mα

=
1

mα

uTαx
α , (9)

i.e., yα is the average of the components of xα , and in matrix
representation, we obtain

y = M−1
a UTx (10)

with Ma = diag(m1,m2, · · · ,mr) and U = diag(u1, u2, · · · , ur)
where each uα = 1mα

is anmα-vector of 1’s.
The fast variable zα is given as the transformation of the

differences between the activation of the neurons in the same
region (Biyik and Arcak, 2008; Chow and Kokotovic, 1985)

zα = Qαx
α (11)

where the (mα − 1) × mα matrix Qα is a difference matrix. In
Chow and Kokotovic (1985) Qα is given by

Qα =




−1 1 0 · · · 0
−1 0 1 · · · 0
...

...
...
. . .

...
−1 0 0 · · · 1


 (12)

while in Biyik and Arcak (2008) it is chosen to have orthonormal
rows with the vector 1N as a null vector:

Qα =




−1+ (n− 1)v 1− υ −υ · · · −υ

−1+ (n− 1)v −υ 1− υ · · · −υ

...
... · · ·

. . .
...

−1+ (n− 1)v −υ · · · −υ 1− υ


 (13)

where n = mα and υ = (n −
√
n)/(n(n − 1)). In this work we

will use the latter version of Qα given in (Equation 13). This has
the advantage that the pseudoinverse of Qα is simply QT

α .
In matrix form we have the fast z (N − r)-vector with z =

[zT1 z
T
2 · · · zTr ]T

z = Qx (14)
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with Q = diag(Q1,Q2, · · · ,Qr) being an (N − r) × N block
diagonal matrix.

We have thus defined a new transformation of the original
neural activation X into a slow and fast variable (Biyik and Arcak,
2008)

(
y
z

)
=

(
M−1

a UT

Q

)
x (15)

Similarly to the matrix Q describing the connections’ differences
between the nodes in one area, we introduce the matrix R, an
(r−1)×rmatrix also with orthonormal rows and with null vector
1r , that models the interarea dynamics

ỹ = Ry (16)

where ỹ is the area difference variable. For further computations,
we define a new matrix C as C = RM−1

a RT .
By splitting the nonlinear vector f (θ) from Equation (7) into

two components and UTD and QD we obtain the block diagonal
matrices representations

UTD =
(
0|6

)
, f =

(
fI
fE

)
,QD =

(
A|B

)
(17)

where 6 = UTDE, A is the matrix of the internal links over all
areas and B corresponds to the external links. This yields to a new
singular perturbed model

˙̃yi = −CR6fE(6
TRT ỹ+ BTz)

ż = −AfI(A
Tz)− BfE(6

TRT ỹ+ BTz)
(18)

The above model (Equation 18) applies to large-scale brain
networks for sufficiently small network parameters δ and d. The
theoretical results from Biyik and Arcak (2008) state that the
neurons in the same region synchronize in fast time-scale leading
to a substitute aggregate neuron in the slow time-scale.

Since most brain connectivity graph networks are modeled as
linear systems, we can derive a reduced model approximation
over time. We assume linear connections for the brain network
and replace the nonlinearity f by the identity function and set
υ(t) = 0. Then ẋ = Kx = (KI +KE)x with KE being the external
and KI being the internal connection matrix.

The new linear singular perturbed system is given as

(
ẏ
ż

)
=

(
Ã11 Ã12

Ã21 Ã22

)
·
(
y
z

)
(19)

where
(
Ã11 Ã12

Ã21 Ã22

)
=

(
GKEU GKEQT

QKEU Q(KI + KE)QT

)
(20)

and G = M−1
a UT . Note that in Equation (20) we chose Q using

the Qα matrices given in Equation (13). If we had chosen to
use (Equation 12) instead, the rows of Q would not have been
orthonormal and the QT in Ã12 and Ã21 would be replaced with
Q+ = QT(QQT)−1.

We can determine the time-scale model by defining the fast
and slow time-scales

tf = cIt and ts = δtf (21)

and rescaling the matrices Aij as

A11 =
Ã11

cIδ
A12 =

Ã12

cIδ

A21 =
Ã21

cId
A22 =

Ã22

cI

(22)

leading to a new system

dy

dts
= A11y+ A12z

δdz

dts
= dA21y+ A22z

(23)

The above results are summarized in the theorem proven in
Chow and Kokotovic (1985).

Theorem 1. Chow and Kokotovic (1985) There are δ∗ and d∗

such that for all 0 < δ ≤ δ∗, 0 < d ≤ d∗ the system in Equation
(23) has r slow eigenvalues and n− r fast eigenvalues. The fast and
slow subsystems are given as

dys

dts
= (A11 − dA12A

−1
22 A21)ys = A0ys, ys(0) = y(0)

dzf

dtf
= A22zf , zf (0) = z(0)+ dA−1

22 A21y(0).

(24)

In Chow and Kokotovic (1985) a simplified formulation of the
slow system was presented, the so-called aggregate system, given
as

Ma
dys

dt
= Kays (25)

with Ka = UTKEU.
We illustrate the time-scale separation properties and the

aggregation procedure first on a general example and then on
a structural and functional connectivity network from healthy
and dementia patients. The reduced-order model will deliver
important dynamic parameters derived from the state matrices
of the slow and fast subsystem that are different for healthy and
dementia subjects. In addition, it determines sparsity parameters
based on the area and node parameters which are different at each
specific stage of the disease.

2.1. Examples
Example 1. Consider an 8-node brain network that is
partitioned into two areas as shown in Figure 1.

The connection matrix for Figure 1 are

KI
1 =




−3 1 1 1
1 −2 1 0
1 1 −3 1
1 0 1 −2


 ,KI

2 =




−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3


 , (26)
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FIGURE 1 | An 8-node, 2-area network.

KE
12 =




0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 1


 = (KE

21)
T , (27)

KE
11 = diag(0, 0,−1,−1), and KE

22 = diag(−1, 0, 0,−1).
(28)

We have cI = 2, cE = 1, d = 0.5, γ E = 2, δ = 0.25. Further we
have for the slow subsystem according to the Equation (24)

dys

dts
= A0ys (29)

with A0 =
(
−0.7634 0.7634
0.7634 −0.7634

)
and having the following two

eigenvalues 0 and −1.5267. These two eigenvalues are close to
those two of 0 and −2 of the matrix A11. Thus we could show
that the system can be in the long-term correctly approximated
by the slow subsystem.

Example 2. We apply the theoretical results on functional
(FDG-PET) and structural (MRI) connectivity graphs (Ortiz et
al., 2015) for control (CN), mild cognitive impairment (MCI)
and Alzheimer’s disease (AD) subjects. For the structural data,
the connections in the graph show the inter-regional covariation
of gray matter volumes in different areas while in the case of
functional data, the connections do not show the correlation
in activity but in the glucose uptake between different regions.
(Ortiz et al., 2015) considered only 42 out of the 116 from the
AAL in the frontal, parietal, occipital and temporal lobes. The
nodes in the graphs represent the regions while the links show if
a connection is existing between these regions or not.

Figure 2 shows the clusters found on the functional data for
(A) controls, (B)MCI and (3) AD (Ortiz et al., 2015).We perform
a time-scale modeling and area aggregation with two main areas
on the three functional networks from Figure 2. For CN and
MCI, we can apply Theorem 1, however for AD we are not able
to obtain an area aggregation since the conditions in Theorem 1
are not satisfied.

The results of the in-depth dynamical analysis are shown in
Table 1. The controls show smaller node and area parameters

than the MCIs. But most importantly, both the exact as well as
the rigid aggregatemodel as shown in Equation (25) show smaller
eigenvalues for the controls than the MCIs.

Similarly, we perform a time-scale modeling and area
aggregation with twomain areas on the three structural networks
from Figure 3. For CN and MCI, we can apply Theorem 1,
however for AD we are not able to obtain an area aggregation
again because the conditions are not met.

Figure 3 shows the clusters found on the structural data for
(A) controls, (B) MCI and (3) AD (Ortiz et al., 2015). The
results of the in-depth dynamical analysis are shown in Table 2.
Similarly, the controls show smaller area parameters than the
MCIs and smaller eigenvalues. However, the node parameter is
larger in the case of controls.

While the results obtained through static graph analysis
revealed the loss of strong connections in AD andMCI compared
to CN, the dynamic graph analysis reveals different slow modes
between MCI and CN. The CN have smaller eigenvalues than
the MCI for both functional and structural data and those
eigenvalues remain operative. The contribution of the larger
eigenvalues over time decreases quickly. The range of the
eigenvalues for each subject represents an important biomarker
for disease prediction. It is worth noting that an area aggregation
is not possible for the ADs in both structural and functional
networks since the conditions of Theorem 1 are not fulfilled.
By providing an area and node parameter, we are able to add
to the dynamic biomarkers additional static graph descriptors.
The reduced-order time scale modeling provides a change in the
sparsity pattern for MCI and AD patients compared to the CN,
and shows higher values for the node and area parameters.

It is worth mentioning that the slow or aggregate variable
represents in Markov chains the probability for a Markov process
to be in a group of states.

3. PINNING OBSERVABILITY

Brain connectivity networks have lots of nodes and connections
between them, and it is effectively impossible to observe the
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A B

C

FIGURE 2 | Areas of the connectivity graph for functional data for (A) controls, (B) MCI, and (C) AD.

TABLE 1 | Area aggregation parameters and time-scale modeling for functional

connectivity graphs.

Subject Node Area Slow λ Slow λ

parameter d parameter δ exact

system

rigid aggregate

system

CN dave = 1
5 δ = 1

5 λi = {0,−2} λi = {0,−13/40}
MCI dave = 2

3 δ = 2
3 λi = {0,−8} λi = {0,−7/6}

AD – – – –

states of all nodes such that the network can be recovered by
reaching synchronization between the original network and a
reconstructed network. Pinning observability is introduced as a
new technique to reduce the number of observable nodes, and at
the same time to be able to recover the states of other nodes. We
give a new criterion for synchronization via pinning observability
for nonlinear brain networks and derive decoupled conditions for
pinning observability for brain connectivity networks.

We consider in the following the general neural network
equation describing the temporal evolution of the neural
activation states for the ith neuron of an N–neuron network:

ẋi = Aixi +
n∑

j=1

d̃ij f̄ (xj) i = 1, ...,N (30)

where xi = (xi1(t), · · · , xin(t))T ∈ Rn is the state vector of
node i, Ai ∈ Rn×n is a matrix, and f̄ (xi) is the neuron’s output.

d̃ij represents a synaptic connection parameter between the ith

neuron and the jth neuron and is defined as the matrix D̃ = (d̃ij).

Pinning observability is applied only to a small number l
of nodes and thus we obtain a pinning observable network
supposing these first l nodes are selected:

˙̃xi = Aix̃i +
n∑

j=1

d̃ij f̄ (x̃j)+ ui i = 1, ...,N (31)

where

gi(xj) =
N∑

j=1

d̃ij f̄ (xj) (32)

and

ui = −di(x̃i(t)− xi(t)) 1, · · · , l (33)

are n-dimensional linear feedback controllers with the control
gains di > 0, i = 1, · · · , l and di = 0 for i = l+ 1, · · · ,N.

By subtracting the pinned system Equation (31) and the
original system Equation (30), we obtain the error dynamical
system

ėi(t) = Aiei(t)+ gi(x̃1(t), · · · , x̃N(t))− gi(x1(t), · · · , xN(t)) (34)

and the error signal

ei(t) = x̃i(t)− xi(t). (35)

The following assumptions and lemmas are needed to obtain the
main result of the paper.
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A

C

B

FIGURE 3 | Areas of the connectivity graph for structural data for (A) controls, (B) MCI, and (C) AD.

TABLE 2 | Area aggregation parameters and time-scale modeling for structural

connectivity graphs.

Subject Node Area Slow λ Slow λ

parameter d parameter δ exact

system

rigid aggregate

system

CN dave = 2
3 δ = 1

2 λi = {0,−4} λi = {0,−17/26}
MCI dave = 4

7 δ = 2
3 λi = {0,−8} λi = {0,−1}

AD – – – –

Assumption A Assume a scale-free graph network and let D̃ =
(d̃ij)N×N be the coupling configuration matrix. Then there exists
a symmetric matrix Ŵ such that

N∑

i=1

(x̂i − ŵi)
T(gi(x̂1(t), · · · , x̂N(T))− gi(ŵ1(t), · · · , ŵN(t)))

(36)

≤
N∑

i=1

N∑

j=1

lij(x̂i − ŵi)
TŴ(x̂j − ŵj).

The following two lemmas will be useful.

Lemma 4. For any vectors x, y ∈ RN and positive definite matrix
G ∈ RN×N , the following matrix inequality holds

2xTy ≤ xTGx+ yTG−1y. (37)
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Lemma 5. Schur complement (Boyd et al., 1994). The following
linear matrix inequality (LMI)

(
Q(x) S(x)

S(x)T R(x)

)
> 0 (38)

with Q(x) = Q(x)T , R(x) = R(x)T is equivalent to either of the
following equivalent conditions

(1) Q(x) >0, R(x)− S(x)TQ(x)−1S(x) > 0 (39)

(2) R(x) >0, Q(x)− S(x)R(x)−1S(x)T > 0

We can now state a result concerning the two networks Equations
(30) and (31).

Theorem 6. Under Assumption A the two networks Equations
(30) and (31) are globally synchronized if the following condition
is satisfied

(A+ AT)/2− D⊗ In + (L⊗ Ŵ + LT ⊗ Ŵ)/2 < 0 (40)

where A = diag(A1, . . . ,AN), D = diag(d1, . . . , dl, 0, . . . , 0),

D̃ = (d̃ij)N×N and In being an n-dimensional identity matrix.

Proof: Consider the Lyapunov function candidate

V(t) =
1

2

N∑

i=1

eTi (t) · ei(t). (41)

We take the derivative of V(t) along the trajectories of Equation
(34) and obtain

V̇(t) =
N∑

i=1

eTi (t) · ėi(t) (42)

=
N∑

i=1

eTi (t)
(
Aiei(t)+ gi(x̃1(t), · · · , x̃N(t))

− gi(x1(t), · · · , xN(t))
)
.

From Assumption A we have

N∑

i=1

eTi (t)
(
gi(x̃1, · · · x̃N , t)− gi(x1, · · · xN , t)

)
(43)

≤
N∑

i=1

N∑

j=1

d̃ije
T
i (t)Ŵej(t).

Substituting Equation (43) into Equation (42), we have

V̇(t) ≤
N∑

i=1

eTi (t) · (Ai − diIn) · ei(t) (44)

+
N∑

i=1

N∑

j=1

lije
T
i (t)Ŵej(t)

= eT(t)
(
(A+ AT)/2− D⊗ In + D̃⊗ Ŵ

)
e(t).

As shown in Yu et al. (2014), it is possible to identify
the number of nodes that can be observed. The following
corollary gives a condition to check for each node whether
it can be controlled or not without involving the other
nodes.

Synchronized if there exists a constant c > 0 such that the
following condition is satisfied

Corollary 7. Under the Assumption A, the two networks
Equations (30) and (31) are globally synchronized if there exists
a constant c > 0 such that the following condition is satisfied

(Ai + AT
i )/2− diIn + d̃iiŴ +

1

2
ci

N∑

j=1,j 6=i

|d̃ij|ŴŴT

+
1

2

N∑

j=1,i6=j

1

cj
|d̃ji|In < 0 (45)

The proof is based on using the same Lyapunov function as in the
above Theorem.

Thus we are able to give a much simpler condition with this
fixed constant c: if di = 0 and the condition given in the below
equation is satisfied for a node i, then the node may not be
controlled. Otherwise, if this condition is not satisfied for node
i, then the node can be controlled.

4i(c) =


(Ai + AT

i )/2− diIn + liiIn+ c
2

∑N
j=1,j 6=i lijIn

√∑N
j=1,i6=j |lij|In√∑N

j=1,i6=j |lij|In −2cIn


 < 0,

i = 1, 2, · · · ,N.

The above equation shows a simple modality to find the few
nodes that have to be controlled such that synchronization is
reached.

The following examples are given to show the application
of the theory to a simple neural network. We illustrate the
concept of pinning observability first on a general example
describing a network with nonlinear coupling and then on a
network processing olphactoric stimuli with linear coupling.
Both examples employ a simplified condition Equation 46
for pinning observability developed in the above theoretical
framework.

3.1. Examples
Example 3. In the following we give a numerical example to
elucidate the theoretical results in pinning observability.

The simplest example consists of three neurons. Let N = 3,

a1 = 2, a2 = 1.6, a3 = 0.5, c = 1 D̃ =
( 0.7 −0.2 −0.1
−0.2 0.5 −0.3
−0.1 −0.3 0.8

)
, and let

the nonlinearity f be a sigmoid function with K = 1.
The condition to be tested for each neuron is given by

Theorem 6.
In case the condition is satisfied for a fixed parameter c and

di = 0, then the neuron i can not be controlled. Node 3 is the one
that needs to be controlled and d1 = 1.5.
Example 4. The processing of olphactoric stimuli was shown to
involve a network of cortical and subcortical regions (Nigri et al.,
2013). The resulting connectivity graph in fMRI studies shows a
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FIGURE 4 | Nodes that can be controlled in the connectivity graph during

olphactoric stimulation marked as a donut (Nigri et al., 2013).

small number of hubs in this network suggesting that they have a
predominant role in information gathering. Applying the theory
of pinning observability on this networks reveals that there are
few nodes in the graphs that can be controlled, and that these
nodes are surprisingly not hubs but have sparse connections.
Figure 4 shows the distribution of these controlling nodes in the
olphactoric network.

4. DISCUSSION

In this paper, we introduced some novel dynamic graph theory
techniques to the analysis of the dynamical behavior of brain
connectivity networks. We applied the new concepts of time-
scale modeling for sparse networks and pinning observability
on brain networks of heterogeneous architecture. We considered

graphs with densely linked nodes in an area but with sparse
connections between these areas. We have shown that the nodes
in a dense area synchronize on the fast time-scale while the

dense areas become aggregate nodes on the slow time scale.
For the time scale modeling, we have derived new local models
that describe the fast and slow dynamics of brain connectivity
networks assuming linear connections between the nodes. This
new paradigms provides us with important disease descriptors
showing changes over the disease trajectory such as the modes of
the dynamic system and the sparsity patterns.

Observing a small number of nodes in brain connectivity
network and recovering the states of the others is of major
interest in a large-scale network. This was achieved through
pinning observability. We formulated a new criterion for
synchronization for nonlinear brain networks and derived
decoupled simplified conditions for determining the small
number of observable states in the network. Examples are
given to elucidate the theoretical results for both new
concepts.

While static graph theory shows the changes in graph
measures at certain points in time and the differences between
disease and normal control, the derived results may have
important implication for understanding and controlling the
evolution of neurodegenerative diseases that may further lead to
better therapeutic interventions. Thus by describing the dynamic
of the aggregate areas and the resulting time-scale modeling and
determining the observable nodes in a brain network, a new
research avenue is opened that allows more detailed study of
the differences between disease and healthy groups and which
provides a wider variety of characteristic parameters over time
for those groups.
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