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The brain integrates information from different sensory modalities to generate a coherent

and accurate percept of external events. Several experimental studies suggest that this

integration follows the principle of Bayesian estimate. However, the neural mechanisms

responsible for this behavior, and its development in a multisensory environment, are still

insufficiently understood. We recently presented a neural network model of audio-visual

integration (Neural Computation, 2017) to investigate how a Bayesian estimator can

spontaneously develop from the statistics of external stimuli. Model assumes the

presence of two unimodal areas (auditory and visual) topologically organized. Neurons in

each area receive an input from the external environment, computed as the inner product

of the sensory-specific stimulus and the receptive field synapses, and a cross-modal

input from neurons of the other modality. Based on sensory experience, synapses were

trained via Hebbian potentiation and a decay term. Aim of this work is to improve the

previous model, including a more realistic distribution of visual stimuli: visual stimuli have

a higher spatial accuracy at the central azimuthal coordinate and a lower accuracy at

the periphery. Moreover, their prior probability is higher at the center, and decreases

toward the periphery. Simulations show that, after training, the receptive fields of visual

and auditory neurons shrink to reproduce the accuracy of the input (both at the center

and at the periphery in the visual case), thus realizing the likelihood estimate of unimodal

spatial position. Moreover, the preferred positions of visual neurons contract toward the

center, thus encoding the prior probability of the visual input. Finally, a prior probability of

the co-occurrence of audio-visual stimuli is encoded in the cross-modal synapses. The

model is able to simulate the main properties of a Bayesian estimator and to reproduce

behavioral data in all conditions examined. In particular, in unisensory conditions the visual

estimates exhibit a bias toward the fovea, which increases with the level of noise. In cross

modal conditions, the SD of the estimates decreases when using congruent audio-visual

stimuli, and a ventriloquism effect becomes evident in case of spatially disparate stimuli.

Moreover, the ventriloquism decreases with the eccentricity.
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INTRODUCTION

In daily life, we constantly localize objects in space, by merging
information coming from different sensory modalities, with
different spatial and temporal reliability and corrupted by noise.
This capacity to provide an optimal localization, by minimizing
errors, is crucial for animal survival and for almost all motor and
cognitive problems involving interactions with the environment.

A wide amount of literature, both theoretical (Patton and
Anastasio, 2003; Pouget et al., 2003, 2013; Colonius and
Diederich, 2004; Ma et al., 2006; Ma and Rahmati, 2013; Rich
et al., 2015), and experimental (Shams et al., 2000, 2005a; Alais
and Burr, 2004; Körding et al., 2007; Gu et al., 2008; Fetsch
et al., 2009, 2012; Fischer and Peña, 2011; Cazettes et al., 2016),
suggests that the brain uses a Bayesian approach to combine
stimuli in order to estimate their spatial localization. According
to the Bayes rule, an optimal estimate (i.e., one that minimizes
the probability of error) can be achieved by computing the
maximal posterior probability. The latter, in turn, depends on
two different pieces of information: The likelihood probability of
the stimulus, which captures the process of stimulus generation
(for instance, the effect of noise, or the stimulus spatial tuning),
and the prior probability, which summarizes past experience on
the parameter to be estimated (for instance, how frequently the
stimulus occurred at a given position, how cross-modal stimuli
are spatially linked).

Mathematical equations, based on the Bayes theorem,
provided accurate reproduction of behavioral data in a variety
of conditions, including the ventriloquism effect (Alais and Burr,
2004; Ursino et al., 2017), the fission effect (Shams et al., 2005b),
the causal inference problem (Wozny et al., 2010). See Ursino
et al. (2014) for a review.

Two important problems, however, are still a matter of
debate in cognitive neuroscience: Does the brain implement the
Bayesian estimate via biological neural circuits? How can the
likelihood and prior probabilities be extracted from the stimulus
and from the previous experience, and encoded in the topological
structure of a neural net?

The last question is strictly related with the problem of
how a neural net develops during the early period of life.
Indeed, if spatial estimate follows the principles of Bayesian
inference, a training period is necessary to infer the nature of
the generative process and, above all, to construct a prior from
previous experience. Accordingly, various experimental (Wallace
and Stein, 1997; Froemke and Jones, 2011; Pecka et al., 2014) and
behavioral (Birch et al., 1983; Gori et al., 2008; Nardini et al.,
2008; Johnson, 2010; Aslin and Newport, 2012) results suggest
that spatial localization capabilities, both in the cortex and in the
superior colliculus, are not fully present at birth, but progressively
develop under the pressure of multisensory environment.

In order to shed light onto the previous questions, several
authors used a “neural population coding” approach (Deneve
et al., 1999; Pouget et al., 2003; Ma et al., 2006; Ma and
Rahmati, 2013). In this approach, information on the probability
distributions is represented by the activity of a population of
neurons, which code for the attributes of the input stimuli (for
instance position), but without the use of learning rules. A
suitable metrics is then used to extract the hidden information

from the ensemble activity, i.e., to infer the estimation from the
probability distributions.

Despite the previous important contributions, however, some
aspects of spatial inference in the brain still deserve further
theoretical analysis. In particular, we wish to focus attention on
two major problems. First, learning in a neural net model is
realized via synapse adjustments. Hence, which learning rule can
be used by the brain to encode probabilities within a population
of neurons, reflecting previous experience and the environment
statistics, and which topology of synapses realizes this coding in
a proper way? In particular, we are not aware of previous neural
network models that use learning rules to code probabilities, but
synapses are assigned a priori to reflect probabilities. Second,
how can the likelihood probabilities and the prior probability
be merged together within the neural population model, to
automatically compute the posterior-probability required for
Bayesian estimate?

To address these critical questions, in a recent paper (Ursino
et al., 2017), we proposed a neural network model, consisting of
two interconnected chains of unisensory neurons (let us assume,
in this paper, visual and auditory, although similar ideas can be
used to deal with other multisensory combinations, for instance
visuo-tactile). Using a realistic learning rule (i.e., a Hebbian
reinforcement with a forgetting factor) we demonstrated that
the likelihood probabilities (visual and auditory, respectively) are
stored in the receptive fields (RFs) of the individual neurons,
while the prior probability of the co-occurrence of the stimuli
(i.e., audio-visual spatial proximity) is stored in the cross-modal
synapses linking the two areas. After training, the network is
able to perform a maximum-likelihood estimation of the spatial
position in unisensory conditions, and a near-optimal Bayesian
estimation of the auditory and visual positions in cross-modal
conditions. In particular, in the presence of two spatially proximal
(but not-coincident) audio-visual stimuli, the model simulates
the ventriloquism illusion (i.e., a shift of the auditory estimate
toward the visual position) predicting an auditory perception bias
as large as 8–10 deg, but quite a negligible visual perception bias,
in agreement both with behavioral data (Bertelson and Radeau,
1981; Hairston et al., 2003; Wallace et al., 2004) and with the
Bayesian inference.

Compared to biological reality, however, the previous paper
introduced two important simplifications. First, we assumed
that the spatial accuracy of the stimulus is independent of the
azimuthal coordinate. Hence, during training, we used visual
(auditory) stimuli with a fixed spatial resolution at all positions
from 0 to 180 deg (but with the visual stimuli muchmore accurate
than the auditory ones). Conversely, biologically data show that
visual acuity is much better near the fovea, and progressively
decreases in the semi-peripheral visual field (Kerr, 1971; Johnson
and Leibowitz, 1979; Ransom-Hogg and Spillmann, 1980; Oehler,
1985; Strasburger et al., 2011). Second, the prior probability of the
unisensory stimuli was independent of their position. In other
words, we assumed that visual (auditory) stimuli occur with the
same probability at all points of the spatial field. Conversely, in
everyday experience, visual inputs are not uniformly distributed.
Indeed, humans tend to center sight on stimuli, which leads to a
greater probability of having a visual input near the fovea than in
the periphery (Ludwig et al., 2014).
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Aim of the present work is to improve the previous model,
to account for the spatial dependence of the visual stimuli.
Accordingly, we trained the network using visual stimuli with
higher accuracy and higher probability in the center than in
periphery. The first amendment is reflected in the likelihood
probability of the visual stimuli, the second in the prior
probability. Thus, both aspects significantly affect the Bayesian
inference, and both require a proper synaptic change, that was
not accomplished in the previous model version. In particular, it
is worth noting that now the prior probability must incorporate
two aspects: the non-uniform probability of the unisensory input
(more frequent in certain spatial regions than in others) and the
regular spatial proximity of the audio-visual stimuli.

The following aspects are then analyzed via model
simulations: is the network able to encode a non-uniform
likelihood (i.e., one that varies with the azimuth)? How and
where are two different aspects of the prior probabilities coded
in the network? Can the network, after training, produce a near-
optimal Bayesian estimate, both in unisensory and cross-modal
conditions?

According to the results, we claim that most aspects of these
questions are satisfactorily addressed with the proposed model,
thus representing a significant step toward Bayesian development
in biologically inspired neural nets. Furthermore, we compared
the model results with behavioral data present in literature.
Similarity between human behavior and the model’s results
suggest that similar processes could be present in the human
brain and in the proposed model.

MATERIALS AND METHODS

Qualitative Model Description
The model includes two chains of unisensory neurons (one
auditory and one visual) topologically organized (see Figure 1).
Each neuron codes for a different portion of space, although
this position can be modified by experience (see below). The
activity of each neuron is simulated bymeans of a static sigmoidal
relationship and a first-order dynamics, with time constant τ .
According to the sigmoid relationship, the neuron exhibits no
appreciable activity when it receives negligible input (below a
given threshold) and maximal saturation activity in case of high
excitatory input. In this model, the upper saturation is assumed
equal to 1, i.e., all activities are normalized. The time constant
describes the time required for the neuron to integrate its input
and produce the response. Finally, each neuron receives lateral
synapses from other elements within the same region, and cross-
modal connections from neurons belonging to the other chain.

Therefore, each neuron, both in the acoustic and in the visual
chain, receives three kinds of inputs:

(i) The external input of its specific modality (i.e., the auditory
input for neurons in the auditory chain and the visual
input for those in the visual one) which is spatially filtered
through the neuron’s receptive field. In the initial (pre-
training) configuration, all neurons have the same receptive
field, having identical shape characterized by large width.
This is realized with a Gaussian function with SD = 30 deg.
Moreover, we assume that the center of the receptive fields

before training is uniformly distributed in space, reflecting
the absence of any prior information. In this model we use
180 neurons for each layer, coding for the overall azimuthal
coordinates. Hence, the initial position of the center of RFs
for two consecutive neurons differs by 1 deg. An important
new aspect of this work, not incorporated in the previous
version, is that the preferred position of each neuron is not
fixed, but can shift as a result of the sensory training, to
incorporate the statistics of the unisensory inputs. To this
end, the preferred position is computed as the barycenter
of its RF. In particular, after training (see section Results)
the RFs of all neuron shrink (to reflect the likelihood of the
external input) and their position moves (to reflect the prior
probability of the external input).

(ii) A lateral input from other neurons in the same layer
through the lateral synapses. These connections have a
Mexican Hat spatial shape (i.e., excitation from proximal
neurons and inhibition from more distal ones) to
implement a competitive mechanism. As a consequence, in
response to a single input of a given modality, a bubble
of neurons is excited within the layer surrounded by an
annulus of inhibited neurons. We assumed that lateral
synapses are not subject to training.

(iii) A cross-modal input via the cross-modal synapses from
neurons in the other sensory modality. Cross-modal
synapses are initially set at zero (i.e., there is nomultisensory
integration before training; this is a reasonable choice,
since we do not have any prior information on how visual
and auditory stimuli can co-occur, and so no relationship
is implemented in the network). Then, these synapses
are progressively created during training in presence
of a multisensory environment, to incorporate a prior
probability on the audio-visual relationship.

The complete set of equations, describing network dynamics, is
presented in the Appendix 1 (Supplementary Material).

Training Procedure
The network was trained during a training period, starting
from the initial synapse condition described above (large and
uniformly distributed RFs, equal for the auditory and the
visual nets; cross-modal synapses initially at zero). We used a
Hebbian learning rule with a forgetting factor. A synapse is
strengthened if the pre-synaptic and the post synaptic activities
are high; however, in order to avoid an indiscriminate synapse
potentiation, a portion of the previous synapse is lost if the
post-synaptic activity is high. This learning rule was adopted,
for training both the synapses in the RFs and the cross-modal
synapses between the two areas. The equations of synapses
training are reported in Appendix 1.

The training procedure consisted of 100 epochs. During
each epoch, we presented 360 unisensory visual inputs, 360
unisensory auditory inputs, and 180 cross-modal inputs. Hence,
the total number of trial was 90,000, with a ratio “unisensory
visual”:“unisensory auditory”:“cross-modal” = 2:2:1. We also
performed separate training with different percentages of
cross-modal stimuli. The results, not shown for briefness, are
briefly commented in the Discussion. A crucial aspect is the
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FIGURE 1 | The neural network used in the present work. Each neuron accomplishes the scalar product of the external stimulus and its receptive field (rkj ), but also

receives lateral synapses (λkj ) from other neurons of the same modality, and cross-modal synapses (wkj) from neurons of the other modality. Synapses rkj and wkj are

trained with the adopted learning rule.

definition of possible statistics for the position, the strength and
the width of the inputs to be used during training: here, the logic
driving the adopted statistics is presented.

Strength and Width of the Inputs: Spatial Resolution

of the Stimuli and Likelihood Functions
In the following, the superscript S will be used to discriminate
between a visual (S = V) or an auditory (S = A) stimulus,
reaching the corresponding chain of neurons.

During training, and in the subsequent simulations, we used
visual and auditory inputs with a Gaussian shape, centered at
an assigned position, θS, a standard deviation, σ

S, area, iS
strength

,

and superimposed noise, nS. As in the previous paper (Ursino
et al., 2017) in order to avoid border effects, we assumed that
all distances have a circular shape. In this way, all positions
are equal before training, and all observed differences in the
azimuthal coordinate are merely a consequence of learning from
the environment. As a consequence, we can write the following
expression for the spatial distribution of a visual or auditory input
as a function of the azimuthal coordinate, ϑ :

iS (ϑ) =
iS
Strength
√

2πσ S2
exp

(

−
(

d
(

ϑS,ϑ
))2

2σ S2

)

+nS (ϑ) S = A or V (1)

where iS
strength

is the area of the Gaussian function (which can be

considered as the strength of the stimulus), θS is the stimulus
position (equal to the mean value of the Gaussian function) and
nS (ϑ) is a Gaussian white noise term (zero mean value and
assigned standard deviation νS).

The following equation has been used to compute the circular
distance:

d
(

ϑS,ϑ
)

=
{
∣

∣ϑS − ϑ
∣

∣ if
∣

∣ϑS − ϑ
∣

∣ ≤ 90

180−
∣

∣ϑS − ϑ
∣

∣ if
∣

∣ϑS − ϑ
∣

∣ > 90
(2)

where, 0 < ϑ < 180. According to Equation (2), the position
ϑS = 1 deg is equally distant from position ϑ = 180 deg and

from position 2 deg, is equally distant from the position 179 deg
and from position 3 deg, etc.

It is well-known that the spatial acuity of the visual stimuli is
much better in the center (close to the fovea) and progressively
deteriorates toward the periphery. In order to simulate a
physiological condition, we used an empirical curve from Dacey
(1993). This author derived visual acuity from the diameter of the
dendritic fields of parvocellular cells: this value (named D in the
following) is equivalent to the space between two cells. Acuity can
be computed as the reciprocal of Dmultiplied by

√
3.

By denoting with θV the position of a visual stimulus in the
azimuthal coordinate (i.e., 0 ≤ θv ≤ 180 deg ), and with eV =
θV − 90 the eccentricity with respect to the fovea, the equation
from Dacey can be re-written as follows

D
(

eV
)

= 2.1+ 0.058eV + 0.022eV
2 − 0.00022eV

3
(3)

It is worth noting that the previous equation is expressed in
minutes of arc. Hence, to express the same quantity in deg, we
need to divide it by 60. Accordingly, visual acuity (in deg) is
expressed as follows

A
(

eV
)

= 60√
3D
(

eV
) (4)

In order to simulate the presence of better acuity at the center,
and reduced acuity at the periphery, we assumed that the SD of
the visual input increases with the eccentricity of the stimulus,
following the reciprocal of Equation (4) (i.e., the smaller the
acuity, the larger σ

V ). We have

σV
(

eV
)

= σV
0 − ε

A(0)
+ ε

A(eV )

= σV
0 + ε

√
3

60

(

D(eV )− D(0)
)

(5)

Equation (5) can be explained as follow: σV
0 represents the SD

of the visual inputs at the fovea (i.e., at zero eccentricity). We

Frontiers in Computational Neuroscience | www.frontiersin.org 4 October 2017 | Volume 11 | Article 89

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ursino et al. Development of Multisensory Bayesian Inference

used the same value as in the previous paper, i.e., σV
0 = 4 deg.

Then, the SD linearly increases with the quantity D. Finally,
we use a parameter, ε, to adapt the function to the model’s
capacities. In particular, based on adopted parameter, σV ranges
between 4 deg, at 0 eccentricity, to about 12 deg at maximum
eccentricity.

p
(

iSj
∣

∣ϑS
)

= 1
√

2πυS2
exp



















−

[

iSj −
iS
Strength√
2πσ S2

exp
(

−
(

d
(

ϑS,ϑj

))2
/

(

2σ S2
) )

]2

2υS2



















j = 1, 2, ..., 180 (9)

The auditory acuity also decreases from the center to the
periphery, although it is difficult to quantify this effect being
influenced by many factors, such as the stimulus intensity
and frequency (Middlebrooks and Green, 1991; Wood and
Bizley, 2015). However, this effect is less evident and of smaller
entity compared with the visual one (Perrott and Saberi, 1990).
Hence, for the sake of simplicity, we assumed that the auditory
spatial resolution remains basically constant independently of the
azimuthal coordinate. As in the previous paper, we set a value
for the auditory SD much larger than the visual SD: We have
σA = 20 deg.

Another important point for the training consists in the choice
of the strength for the input (i.e., the quantities iV

Strength
and

iA
Strength

in Equation 1). These strengths have been chosen so that

any unisensory input produces a response, in the corresponding
area, close to the maximum saturation. It is worth noting that,
due to the presence of a lateral competition, the larger the
standard deviation of the input, the greater the input strength
required to elicit a consistent response. For this reason, we always
used iA

Strength
> iV

Strength
; moreover, we used a strength of the

visual input that moderately increases with the eccentricity. The
following empirical law was used for the visual strength as a
function of its eccentricity:

iVStrength
(

ev
)

= σV (ev)

σV
0 + α

(

σV (ev) − σV
0

) iVStrength (0) (6)

where α is a parameter less than 1. The equation can be
explained as follows: the visual strength increases with the
standard deviation (provided by Equation 5). However, since
a proportional increase produced an excessive activation at
the periphery (resulting from our preliminary simulations) this
was attenuated by the factor included at the denominator of
Equation (6).

Finally, from the previous expressions one can compute the
likelihood functions. In particular, by denoting with IV and
IA the stimuli which reach the network (obtained by sampling

Equation 1, i.e., IS = [iS1i
S
2 · · · iSj · · · iSN]

T
, with N = 180, iSj =

iS
(

ϑj

)

and ϑj = 1, 2, ...180), and assuming the independence of
noise, we can write

p
(

IA, IV
∣

∣ϑA,ϑV
)

= p
(

IA
∣

∣ϑA
)

p
(

IV
∣

∣ϑV
)

(7)

where

p
(

IS
∣

∣ϑS
)

=
N
∏

j= 1

p
(

iSj
∣

∣ϑS
)

(8)

with

where in writing Equation (9) we made use of Equation (1).
Briefly, the likelihood probability represents the stimulus
generative process: Equation (9) implies that the stimulus has
a Gaussian shape centered at a given position θS, on which a
normal Gaussian white noise with zero mean value and standard
deviation υS is superimposed. iS

Strength
represents the area under

the stimulus curve (on the average), i.e., the stimulus strength,
assuming that the higher the area, the higher the effect of the
stimulus on the neural net. During training we used υS =
0.5

iS
Strength√
2πσ S2

(i.e., 50% of the maximum input). Different values

were used during the testing phase (see Results). Finally, it
is worth noting that, in the visual case, the likelihood varies
across the visual field due to a change in the parameter σ

V (see
Equation 5) which sets the spatial accuracy of the stimulus, and a
parallel change of parameter iV

Strength
(Equation 6), which sets the

stimulus strength.

Input Positions: Probability Distribution of the Inputs

and Priors
We assume that the visual input has a greater probability close
to the fovea, and smaller probability at the periphery. This
corresponds to have a non-uniform prior in visual unisensory
conditions. Conversely, since we lack elements to suppose a non-
uniform distribution for auditory stimuli, a uniform probability
has been used for the auditory unisensory position, as in the
previous work. The following probabilities have been used to
generate the position of the visual and auditory inputs during
training.

Visual unisensory prior
The visual position follows a Gaussian distribution, centered at
the fovea. Hence

p
(

ϑV
)

= 1
√

2πλV
2
exp

(

−
(

ϑV − 90
)2

2λV2

)

(10)

The standard deviation λ
V (which here plays the role of a space

constant) has been set at 30 deg; i.e., the visual stimuli becomes
very rare at±90 deg eccentricity.

Auditory unisensory prior
Wemaintained a uniform distribution. We have

p
(

ϑA
)

= 1

180
(11)
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Cross modal prior
In the cross modal case during training, we assumed that the
visual and auditory inputs always originate from proximal spatial
positions, i.e., are produced by the same cause. According to the
Bayes rule, the joined prior probability can be computed from
knowledge of the individual probability of one stimulus, and
the conditional probability of the other. A problem is whether,
in cross modal conditions, the distribution is dominated by
the visual prior (more frequently close to the fovea) or by the
auditory one (uniform distribution). We assumed that, in 50% of
cases, the cross-modal stimuli follow the visual distribution and
in the other 50% of cases follow the auditory one. Hence

p
(

ϑV ,ϑA
)

= 0.5p
(

ϑV
)

p
(

ϑA
∣

∣ϑV
)

+ 0.5p
(

ϑA
)

p
(

ϑV
∣

∣ϑA
)

(12)

where we used Equations (10) and (11) for the visual and
auditory priors, and the following expression for the conditional
probability

p
(

ϑA
∣

∣ϑV
)

= p
(

ϑV
∣

∣ϑA
)

= β
1

180

+ (1− β)
1

√

2πλAV
2
exp

(

−
d
(

ϑA,ϑV
)2

2λAV2

)

(13)

In writing Equation (13) we assumed that the conditional
probability is computed as the weighted sum of a uniform
distribution, 1/180, reflecting the moderate possibility
that the two stimuli are independent, and a second term,

1√
2πλAV

2
exp

(

− d(ϑA,ϑV)
2

2λAV
2

)

reflecting the probability that the

auditory and visual events are originated from the same source.
As in the previous work, we used a value of parameter β close

to zero and a space constant λAV = 1 deg, assuming that the two
stimuli almost always originate from the same source.

Computation of the Estimates
The preferred position of each neuron after training is calculated
using the barycenter of its ownRF. However, in order to eliminate
the effect of noise (see Figure 2), which produces errors in
the computation of the preferred positions, we applied a 0.2
thresholding. Hence, by denoting as rS

kj
with S = A,V the j-th

synapse of the receptive field entering a neuron of modality S at
position k, (see the Appendix 1 for the complete equation set),
the following expression holds for the neuron preferred position,
ρS
k

ρS
k =

180
∑

j= 1

[

rS
kj
− 0.2

]+
ϑj

180
∑

j= 1

[

rS
kj
− 0.2

]+
with S = A,V (14)

where, []+ is the function “positive part” (i.e., [y]+ = y if y > 0,
[y]+ = 0 if y≤ 0) and ϑj is the position of the input which excites

the neuron through the synapse rS
kj
. Since all positions in the

model were computed using a circular distance, to avoid border
effects (see Equation 2), ϑj was also computed following a circular
rule (see the Appendix 2 in the Supplementary Material).

Finally, the network is used to compute the estimated visual
and auditory positions, in response to a given noisy unisensory
or cross-modal input. These estimates are compared with
those provided by a Bayesian estimator with maximal posterior
probability.

The auditory and visual positions in the network are estimated
by using the barycenter of the activities in the auditory and visual
nets, weighted by the preferred positions:

ϑ̂S
model =

180
∑

k= 1

yS
k
ρ̃S
k

180
∑

k= 1

yS
k

with S = A,V (15)

where ϑ̂A
model

and ϑ̂V
model

are the estimated auditory and visual

positions, yA
k

and yV
k

are the activities of the auditory and

visual neurons with label k (and preferred position ρA
k

and

ρV
k

respectively). However, in this case too, the preferred

positions were re-calculated with a circular shape (say ρ̃S
k
, in the

Appendix 2).
Finally, the estimated values have been compared with those

obtained from the Bayesian estimator with Maximum posterior
probability. The latter is

[

ϑ̂A
Bayes, ϑ̂

V
Bayes

]

= argmax
{

p
(

ϑA,ϑV
∣

∣IA, IV
)}

= argmax
{

p
(

ϑA,ϑV
)

p
(

IA
∣

∣ϑA
)

p
(

IV
∣

∣ϑV
)}

(16)

where we made use of Equations (7–13) to compute the
expression (Equation 16).

RESULTS

Training of Receptive Fields
First we analyzed how the receptive fields are affected by training.
At the beginning of training, all the receptive fields are large,
with the same SD (30 deg) both for the auditory and the visual
neurons. Moreover, the RFs have an equal spatial distance, i.e.,
their spatial distribution is uniform. In particular, in this work we
used 180 neurons in each area, with an initial preferred direction
uniformly distributed from 1 to 180 deg (this signifies that, at
the beginning of training, the jth neuron has a RF centered at j
deg). During training, the receptive fields progressively shrink, to
reflect the SD of the input stimuli. Moreover, in the visual case,
the preferred direction shifts toward the fovea, due to the greater
percentage of central visual stimuli.

Shrinking of the receptive fields is a consequence of the
learning rule adopted (a Hebb rule with a forgetting factor,
Equation A9 in the Appendix 1). In fact, according to this rule,
each receptive field after training becomes equal to its average
sensory input (Ursino et al., 2017). Since we assumed that the
receptive fields are initially much larger than the inputs, training
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FIGURE 2 | Examples of the progressive shrinking of the receptive fields (RFs) during training. The figures illustrate the RFs of two exemplary neurons in the auditory

network (Upper) and in the visual network (Bottom). The initial preferred positions of these neurons were at 50 and 90 deg (blue lines). It is worth noting that, at the

end of training (green lines), the visual RFs are more tuned than the auditory ones, reflecting the more precise spatial localization of the inputs. Moreover, the RF of the

visual neuron at initial position 50 deg shifts toward the fovea, as a consequence of the higher prior probability of central visual stimuli. The auditory RFs do not exhibit

an appreciable shift.

necessarily results in a progressive reduction of the RF width. In
other words, those synapses that are rarely used by the inputs are
pruned.

Some examples are presented in Figure 2, where we show the
progressive change in the RF for the two auditory neurons with
initial preferred position at 50 and 90 deg, and for the two visual
neurons with the same initial preferred positions. Two aspects
are of value: the visual RFs exhibit a much stronger shrink, which
reflects the greater accuracy of the visual stimuli. Moreover, the
RF of the visual neuron at preferred position 50 shifts toward the
fovea. After training, its preferred position moves at∼65 deg.

In a previous paper (Ursino et al., 2017) we demonstrated
that the width of the RFs reflects the likelihood of the inputs.
As a new element, the position of the RFs reflects the prior
about the frequency of the inputs (in particular, the greater
probability to have a visual stimulus close to the fovea, according
to Equation 10). As it will be shown below, this prior causes a bias
in the visual position estimate in unisensory conditions.

This point is further summarized in Figure 3, which describes
the preferred positions of all 180 auditory and all 180
visual neurons (computed with Equation 14) after training.
As evident from the left panel, the preferred positions of
auditory neurons exhibit a uniform distribution; conversely,
the preferred positions of visual neurons are thickened around
90 deg: in particular, about 1/3 of visual neurons (i.e., those
labeled from 60 to 120) have a preferred position between
72 and 108 deg, and about 1/2 of visual neurons (i.e., those
labeled from 45 to 135) have preferred position between 60 and
120 deg.

A summary of some auditory and visual receptive fields
after training is reported in Figure 4. It is evident the uniform
distribution of the auditory RFs, with larger width, and the
non-uniform distribution of the visual RFs: they are sharper
close to the fovea due to the greater precision of the central
visual stimuli, and denser near the fovea, reflecting the
prior.

Training of Cross-Modal Synapses
While the presence of a prior probability of the visual stimuli is
reflected in the preferred positions of visual neurons, the prior on
the co-occurrence of visual and auditory stimuli is incorporated
in the model in the cross modal synapses. The pattern of some
cross-modal synapses after training is shown in Figure 5. It is
worth noting that these synapses link neurons which have similar
preferred positions. In fact, they are created during training
thanks to the Hebbian mechanism (see Appendix 1) whenever
visual and auditory stimuli occur together. It is worth noting that
the visual neurons exert a strong effect on the auditory ones close
to the fovea, but have a minor influence at the periphery (since
visual stimuli infrequently occur at the periphery). Conversely,
the auditory neurons exert quite a uniform effect on the proximal
visual ones throughout the azimuthal space, but with major
strength at the periphery.

The previous figures describe the effect of training on the
RFs and on the cross-modal synapses. Then, we used the trained
network to evaluate positions in unisensory and cross-modal
conditions, and compare model estimates with those obtained
with the Bayesian estimator.
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FIGURE 3 | Distribution of the preferred positions for all 180 auditory (Left) and visual (Right) neurons after training. The distribution of auditory neurons is linear, i.e.,

the RFs are uniformly distributed, reflecting the uniform unisensory prior. Conversely, the distribution of the visual neurons is denser toward the fovea, reflecting the

Gaussian distribution of the prior (with more visual stimuli at the center, and less at the periphery).

FIGURE 4 | Exempla of auditory (Left) and visual (Right) RFs after training. We showed the RFs of neurons with initial preferred positions from 10 to 170 deg with a

20 deg step. It is evident that the visual RFs are denser and more precise close to the fovea.

Spatial Position Estimate: Unisensory
Stimulation
First, we evaluated model performance in unisensory conditions
by assessing the mean value and standard deviation of the
estimates at all spatial positions of the input stimuli. The
estimates are repeated at different levels of superimposed noise,
i.e., using a SD of noise (υS in Equation 9) equal to 33, 50, or 66%
of themaximum input. Of course, the higher the noise, the higher
the standard deviation of the estimates and the higher the effect
of prior compared with the likelihood function.

The mean values of the position errors (perceived position—

real position) are shown in Figure 6 for the auditory (upper
panel) and visual (lower panel) cases. However, since the

estimates are affected by a large variance at the periphery of the
visual field, we focus attention only on the range with acceptable
variance. It is worth noting that, for an unbiased estimator, the

average position error should be close to zero.
Results show that the mean values of the model estimates

substantially agree with those of the Bayesian estimator. In the

visual case, we can observe a constant bias: the estimated visual
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FIGURE 5 | Example of cross-modal synapses after training. Each curve represents the synapses that reach one auditory neuron (Left) or one visual neuron (Right)

from all 180 neurons in the other modality. We showed neurons with initial preferred positions from 10 to 170 deg with a 20 deg step. It is worth noting that auditory

neurons receive stronger cross-modal synapses when they are placed toward the fovea, whereas visual neurons receive stronger cross-modal synapses when placed

at the periphery. Moreover, each neuron receives synapses only from other neurons with similar preferred positions. These patterns reflect the prior on the proximity of

visual and auditory positions in cross-modal stimulation, and the prior on the higher frequency of visual stimuli at the fovea, and scarce frequency of visual stimuli at

the periphery.

position is significantly shifted toward the fovea (i.e., we have a

negative shift at positive eccentricities and vice versa), and this
shift is especially evident in the eccentricity ranges ±30–60 deg.
This shift increases significantly with the level of superimposed
noise (up to about 6–8 deg when noise is as high as 66% of the
input) and reflects the effect of the prior information on the visual
stimuli. Conversely, the auditory estimates are quite unbiased,
i.e., they exhibit almost zero position errors.

Figure 7 shows a comparison between the SD of the estimates
in the network and in the Bayesian estimator. The agreement
is quite good in the overall central range and at all noise levels
used. It is evident that the SDs of the estimates increase with the
noise level (i.e., moving from the left to the right columns in the
figure). Moreover, at the fovea the SD of the visual estimate is
smaller than the SD of the acoustic estimate, reflecting the greater
accuracy of the visual stimulus. However, the SD of the visual
estimate increases dramatically at the periphery, as a consequence
both of the reduced accuracy of the visual inputs and of the small
prior probability.

In the visual case, results of Figures 6, 7 agree with results by
Odegaard et al. (2015). These authors investigated the perception
of a visual stimulus vs. the azimuthal coordinate, and observed
that this perception is shifted toward the fovea up to about 1.5

deg, if the input is provided in the azimuthal range −13 to +13
deg. Furthermore, the authors observed that the SD of the visual
estimate moderately increases with the eccentricity in the same
azimuthal range. A comparison between model estimates and the
visual data by Odegaard et al. (2015) is shown in Figure 8. The
present network produces a similar visual shift (i.e., a similar bias
of the estimator) (upper panel) and a similar SD (bottom panel).
Indeed, the standard error of the means in the upper panel seems
higher in the model than in the data, but data have been obtained
on 412 subjects, who performed 512 trials each, thus strongly
reducing the variance of the mean.

Conversely, Odegaard et al. (2015) observed an opposite shift
(toward the periphery) for the auditory localization, at variance
with the present model. The same observation was also recently
confirmed by Garcia et al. (2017). These data are not explained by
the model and are further commented in the Discussion.

Spatial Position Estimate: Cross-Modal
Stimulation
Finally, we performed some additional simulations by providing
a cross-modal stimulus.

In a first set of trials we provided coincident cross-modal
stimuli (100 trials per each position) and evaluated the same
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FIGURE 6 | Position errors for the model estimates (Equation 15) for the auditory (Upper: blue lines) and visual (Bottom: red lines) stimuli in unisensory conditions, as

a function of the true stimulus position. Each point is the average of one hundred trials. The left column has been obtained using a SD of noise as low as 33% of the

maximum input. The middle and right columns have been obtained with a SD of noise as high as 50 and 66% of the maximum input, respectively. In these figures, the

peripheral space is not shown, due to the large SD of the visual estimates (i.e., visual estimates are nor reliable there). It is worth noting the bias of visual estimates

toward the fovea, reflecting the non-uniform distribution of the unisensory visual inputs. Moreover, this bias increases with the superimposed noise. Results are

compared with those obtained with the Bayesian estimator (Equation 16, black symbols).

FIGURE 7 | SD deviations for the auditory (Upper: blue lines) and visual (Bottom: red lines) estimates in unisensory conditions, as a function of the true stimulus

position. Each point was computed from one hundred trials. Results have been obtained from the same simulation data as in Figure 6. It is worth noting that the SD

of all estimates increases with the noise level (from left to right, 33, 50, and 66%). Moreover, the visual estimates have smaller SD close to the fovea compared with the

auditory estimates (0.8 vs. 1.5 deg, left column; 1.2 vs. 2.4 deg middle column; 2 vs. 3.5 deg right colum), but their SDs increase at the periphery. Results are

compared with those obtained with the Bayesian estimator (Equation 16, black symbols).

quantities as in Figures 6–8. The results are summarized in
Figure 9 (for briefness, just the case with 50% noise is shown).
Some aspects are of value. For what concerns the visual
estimates, first, the bias is significantly reduced compared with

the unisensory case due to the presence of a simultaneous
auditory stimulus (let us compare the upper right panel in
Figure 9, maximumbias=±2 deg, with the bottommiddle panel
in Figure 6, maximum bias = ± 5 deg). Moreover, the SD of the
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FIGURE 8 | Upper: Comparison between the visual estimation bias computed with the model with 66% of superimposed noise (red line), and that reported by

Odegaard et al. (2015) (black symbols). Bottom: Comparison between the visual SD computed with the model with 50% of superimposed noise (red line), and that

reported by Odegaard et al. (2015) (black symbols).

visual estimate is reduced at the periphery, compared with the
unisensory case. Finally, the SD of the auditory estimate is also
reduced compared with the unisensory case, and in the central
range becomes equivalent to the SD of the visual estimate.

A significant difference, however, emerges by comparing
model predictions with those of the Bayesian estimator. The two
estimators provide quite similar results for what concerns the
auditory estimate, and are in good agreement for what concerns
the visual estimate in the central range (70–110 deg). Conversely,
the network visual estimate exhibits a larger shift (but this is
just 1 deg) and a larger SD (although much smaller than in the
unisensory case) compared with the Bayesian one. The reason
is that the Bayesian estimator, due to the expression used for
the conditional probability (Equation 13) always chooses quite
coincident values for the visual and auditory positions. This
problem will be analyzed in the Discussion.

In the last set of simulations, we gave the network two cross-
modal stimuli at disparate spatial positions, in order to simulate
the ventriloquism effect. In particular, the visual stimulus was
placed at all positions between 40 and 140 deg, and, at each
position, an auditory stimulus was given with a shift in the
range −40 to +40 deg (here a positive shift means that the
auditory stimulus is located at the left of the visual stimulus,
and vice versa). One hundred trials were then repeated per each
combination of stimuli, with a 50% noise level and we evaluated
the average error in the auditory and visual position estimates.

Results are shown in Figure 10. The left upper panel
summarizes the results of all trials (i.e., at all positions of the

visual stimulus), displaying the perception error (auditory blue,
visual red) vs. the audio-visual shift. The auditory perception
exhibits a significant bias in the direction of the visual stimulus;
this bias increases up to a shift as large as 20–25 deg, and
then decreases. The visual perception also exhibits a moderate
bias in the direction of the auditory stimulus, but this is quite
small (<1 deg). The previous patterns agree with the well-known
ventriloquism effect (i.e., a shift of the auditory perception vs. the
visual one). By comparison, the rigth upper panel shows some
results in the literature (Bertelson and Radeau, 1981; Hairston
et al., 2003; Wallace et al., 2004), which confirm a similar trend.

Since an important aspect of this work is the role of the
azimuthal coordinate, it is of value to evaluate the dependence
of the previous results on the position of the visual stimulus.
This is illustrated in the two bottom panels of Figure 10, which
summarize the auditory and visual perception errors when the
visual stimulus was located at 95, 110, 125, and 130 deg. The
auditory ventriloquism effect decreases if the visual input moves
from the fovea toward the periphery, in agreement with some
data in the literature (Hairston et al., 2003; Charbonneau et al.,
2013). Conversely, the mild visual shifts thus not exhibit a
significant dependence on the azimuth.

It is worthwhile that the reduction of the ventriloquism
effect with the azimuthal coordinate can explain some of the
differences among the behavioral data in the right upper panel
of Figure 10. Wallace et al. (2004) used random positions for
the visual stimulation, including the central position. Bertelson
and Radeau (1981) used fixed acoustic stimuli at 10◦ left or
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FIGURE 9 | Position errors (Upper), and SD of the estimates (Bottom) computed with the model (Equation 15) for the auditory (Left: blue lines) and visual (Right:

red lines) stimuli in cross-modal conditions, with the two stimuli at the same position. Each point is the average of one hundred trials. The SD of noise was 50% of the

maximum input. It is worth noting that the bias of the visual estimate and its SD are smaller than in the unisensory case. Moreover, the SD of the auditory estimate is

significantly smaller than in the unisensory case. Black points are the results of the theoretical Bayesian estimator.

FIGURE 10 | Upper left: Ventriloquism effect simulated with the network during cross-modal trials. Cross modal trials were performed, by moving the visual stimulus

from position 40 deg to position 140 deg and, at each visual position, adding a second auditory stimulus with a shift in the range from –40 to + 40 deg from the visual

one. One hundred trials were performed at each condition, with 50% noise. Results are averaged over all the 100 positions and over all 100 trials per each shift. The

x-axis represents the audio-visual distance (where positive values indicate that the visual stimulus is placed on the right), the y-axis is the perceived error (estimated

position minus true position): auditory perception, continuous blue line; visual perception, dotted red line. The black lines represent the error of the Bayesian estimate

(*auditory, 1 visual) averaged over the same trials. Bars denote standard deviations. Upper right: Behavioral data from Hairston et al. (2003) 1, Wallace et al. (2004)

�, Bertelson and Radeau (1981) ∇, and o. Bottom: Auditory (Left) and (Right) visual position errors evaluated with the model when the visual stimulus was fixed at

position 95 deg (blue), 110 deg (green), 125 deg (cyan), and 130 deg (magenta). The auditory ventriloquism effect decreases with the azimuthal position.
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FIGURE 11 | Comparison between the ventriloquism effect simulated with the network and predictions of the Bayesian estimator, evaluated at different azimuthal

positions for the visual stimulus (first column 95 deg; second column: 110 deg; third column: 125 deg; fourth column: 130 deg). Upper: The auditory bias decreases

with the visual azimuthal coordinate, both in the model (blue lines) and in the Bayesian estimator (black). Bottom: The model exhibits negligible visual bias (red lines),

whereas the Bayesian estimator exhibits a significant visual bias (black) at large audio-visual shifts (visual shifts more negative than 10deg, occurring at audio-visual

disparity lager than 20 deg, are not reported since clearly unrealistic). A 50% noise was used during these trials.

right of the median line and visual stimuli at 7, 15, or 25◦ at
both sides of the acoustic one, thus including also peripheral
positions. Hairston et al. (2003), instead, considered different
visual position separately (0, 10, and 30◦) but maintain the visual
target fixed, so is the most similar condition to our simulation.
Accordingly, data reported by Hairston et al. for central position
exhibit the greatest bias, while those by Bertelson and Radeau the
smallest.

Finally, a comparison between model performance and the
Bayesian estimates can be found in the left upper panel of
Figure 10 (averaged over all azimuthal positions in the range
40–140 deg) and in Figure 11 (at exemplary positions of the
visual stimulus). Several aspects are of value. The pattern of
the auditory position bias is similar in the model and in the
Bayesian estimator. Both exhibit a linear increase up to a
maximum audio-visual shift (∼20–25 deg); then the auditory
bias decreases to zero at large audio-visual shift. Furthermore,
the auditory bias decreases with the azimuthal position of the
visual input, although this phenomenon seems more evident
in the model than in the theoretical estimator. However, a
significant difference is evident between the model and Bayesian
visual estimates. The Bayesian estimator predicts a significant
visual bias toward the auditory position at large audio-visual
shifts (a phenomenon neither produced by the model, nor
evident in the behavioral data). The reason for this difference
is that the Bayesian estimator tries to maintain the auditory
and visual stimuli at very proximal positions. A better Bayesian
estimator (more similar to behavioral data) could be designed

by distinguishing the case of one causal inference (C = 1) from
the case of two distinct causal inferences (C = 2), as done, for
instance, by Wozny et al. (2010). This problem will be analyzed
in the section Discussion and may be the subject of future work.

DISCUSSION

The idea that the brain can perform a near-optimal Bayesian
inference, thus exploiting multisensory information in an
optimal way, has been receiving an increasing interest in the
Neuroscience literature. Several recent results confirm that
the brain can combine cues from different sensory modalities
according to their reliability, in a way quite similar to that
performed by a Bayesian estimator, in an effort to maximize
the posterior probability of a correct choice (Shams et al., 2000,
2005b; Alais and Burr, 2004; Körding et al., 2007; Gu et al., 2008;
Fetsch et al., 2009, 2012; Fischer and Peña, 2011; Cazettes et al.,
2016).

Various neuro-computational models (some of which already
discussed in Ursino et al., 2014, 2017) analyze how Bayesian
estimates can be computed by a population of neurons, assuming
that the global population activity can encode the probability
distribution. In this regard, Deneve et al. (1999), Ma et al. (2006),
and Pouget et al. (2013) demonstrated that a population of
neurons can compute the likelihood function of the stimulus,
thus realizing an ideal observer. In particular, Deneve et al.
(1999) showed that a recurrent network of non-linear units with
broad tuning curves can achieve maximum likelihood, provided
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that the level of noise is independent of firing rate. Assuming
a third layer of neurons that encodes the prior probability,
Bayesian inference can be realized by simply summing up all
population activities (Ma and Rahmati, 2013; Pouget et al., 2013).
A population coding approach was also used in a series of studies
(Fischer and Peña, 2011; Cazettes et al., 2014, 2016; Rich et al.,
2015) to simulate position estimate in the owl’s auditory cortex:
in a single network of neurons, the authors assumed that the cue
repeatability (hence, the likelihood) is represented in the shape of
the tuning curves, and that the prior probability is coded in the
density of neurons preferred directions.

All previous contributions, however, describe a neuro-
computational network at its mature stage, providing suggestions
about where the likelihood and prior information may be
encoded. None of them describes how a neural network can
develop to learn the probabilities (likelihood and prior) under
the pressure of external events, starting from an initial immature
stage, nor including learning rules for synapse training.

In a previous study (Ursino et al., 2017), we demonstrated,
both theoretically and via computer simulations, that a near-
optimal Bayesian estimator can develop in a multi-sensory
environment using a network consisting of two chains of
unisensory neurons (say audio and visual) trained with a realistic
learning rule (i.e., a Hebb rule with a forgetting factor). The
likelihood functions are encoded in the width of receptive fields,
while a prior probability on the co-occurrence of the audio-visual
stimuli is encoded in the cross-modal synapses connecting the
two areas.

The present study introduces two new elements in the
Bayesian scenario, not contemplated in the previous study: first,
the accuracy of a stimulus (hence the shape of the likelihood
probability) can vary with the azimuthal coordinate. Second, the
frequency of the input stimulus may depend on the position too,
with some spatial zones more frequently excited than others. This
is reflected in a non-uniform unisensory prior. In particular, we
assumed that both the accuracy and the probability of visual
stimuli are higher near the fovea, and progressively decrease at
the periphery of the visual field.

Results confirm that the network can correctly encode these
new aspects of the environment, i.e., the non-uniform patterns of
the likelihood probability and of the unisensory prior. More in
detail:

(i) the different spatial accuracy of the input is coded in the
width of the RF synapses. In fact, during training the
RFs progressively shrink (starting from an initial wider
configuration) to match the local accuracy of the input
(Figure 4);

(ii) the non-uniform spatial prior of the visual stimuli is encoded
in the barycenter of the RF synapses, i.e., in the density of
the neuron preferred positions. As illustrated in Figure 2,
during training the RFs of some neurons shift toward the
center of the visual field. As a consequence (Figures 3, 4) a
larger density of neurons codes for positions close to the fovea,
whereas a sparser population codes peripheral positions. This
result agrees with several data from physiology, showing that
the magnification factor (i.e., the extent of visual cortex to

which a degree of retina projects) reduces by several fold
with the eccentricity (Cowey and Rolls, 1974), and with
studies that show that early visual experience is fundamental
for shaping neural responses (Blakemore and Cooper, 1970;
Mitchell et al., 1973). Furthermore, it is worth noting that a
similar way to code for the prior probability was proposed
by Girshick et al. (2011) and by Cazettes et al. (Fischer and
Peña, 2011; Cazettes et al., 2014, 2016; Rich et al., 2015) in
a neural network simulating the spatial localization of the
owl’s auditory system. In the present work, we demonstrated
that the same mechanisms exploited by Cazettes et al. (2014,
2016) develop automatically as a consequence of a biologically
realistic learning rule. In other words, while in Cazettes et al.
the hypotheses were used to build the network, i.e., were
a priori incorporated in the network, in the present model
they emerge spontaneously after training, from an immature
configuration, as a consequence of the assigned statistics of the
inputs.

Nevertheless, results in the literature suggest that even visually
deprived individuals (such as early blind and anophthalmic
patients) exhibit the typical retinotopic structure of V1 (hence
a magnification factor) despite retinal input deprivation and
absence of visual experience (Bock et al., 2015; Striem-Amit et al.,
2015). Of course, this observation does not change the main
conclusion of the present study. Here, we simply demonstrated
that a prior probability on the unimodal inputs can be acquired
from experience, and encoded in the density of the receptive
fields. Consequently, a near-optimal Bayesian estimate can be
achieved in case of a non-uniform unimodal prior too. Of course,
it is possible that part of this prior is already encoded and present
at birth.

The higher density of preferred positions close to the fovea
has important consequences for the perception of a single
unisensory input. In unisensory conditions, visual estimates
exhibit a significant bias toward the fovea (see Figure 6), which
is a direct consequence of a denser neuron distribution and
a greater accuracy at the center. This bias augments with the
level of superimposed noise, when the likelihood functions
become less accurate, and so the estimator places more weight
on the prior, and is reflected in a high SD of visual estimate at
high eccentricity, as evident in Figure 7. This model prediction
matches behavioral data (Odegaard et al., 2015) and essentially
agrees with the prediction of a Bayesian estimator based on the
same probabilities (Figures 6, 7).

(iii) Besides the previous two aspects, a third information is
encoded in the network in the form of cross model synapses
linking the two areas. As analyzed in the previous work
(Ursino et al., 2017) these synapses encode the prior
information on the conditional probability.

Results of the model in cross-modal conditions agree with
several behavioral data. As evident in Figure 9, in case of
coincident stimuli, the SD of the estimates is reduced in
cross-modal conditions compared with that computed in
analogous unisensory conditions. This result underlines the
advantage of multisensory integration, especially in conditions
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characterized by a large level of inaccuracy (such as in case of
a single unisensory auditory cue, or an eccentric isolated visual
cue).

Some illusory phenomena (not only the ventriloquism, but
also the fission effect, in which two auditory beeps modify the
perception of a visual flash, Shams et al., 2000, 2005a; Cuppini
et al., 2014) can be explained by these synapses developments.
Furthermore, in the previous paper (Ursino et al., 2017) we
showed that the model, with addition of a third layer of
multisensory neurons, can also explain the results by Alais and
Burr (2004), concerning bimodal localization of a single event
after manipulation of the visual input.

A new aspect, however, is evident in Figure 5 compared with
our previous paper. Cross-modal synapses are not only affected
by the conditional probability (i.e., Equation 13) but also by the
unisensory prior (Equation 10). In fact, the auditory neurons
receive stronger cross-modal synapses close to the fovea, where
the density and accuracy of the visual stimuli is higher. Therefore,
ventriloquism is higher at the center. Conversely, visual neurons
receive stronger cross-modal synapses at the periphery: here,
isolated visual stimuli are quite infrequent, but a visual cue
can be reinforced by the presence of a simultaneous peripheral
auditory cue.

The observed dependence of the ventriloquism on the
azimuthal coordinate agrees with some behavioral data, although
just a few studies examined this point. Hairston et al. (2003)
refer that bias declines with target eccentricity (see, for instance,
Figure 2 in their paper). The authors then conclude that
“central visual stimuli had a substantially greater biasing effect
on auditory target localization than did more peripheral visual
stimuli”. A similar result is reported by Charbonneau et al.
(2013). It is worth noting that this progressive decrease in the
auditory bias also agrees with the prediction of the Bayesian
estimator, as evident in the upper panels of Figure 11. Finally,
we can observe that the decrease in the ventriloquism effect
with eccentricity can at least in part explain the differences
between the results by Hairston et al. (2003),Wallace et al. (2004),
and Bertelson and Radeau (1981), as previously commented in
section results.

It is worth noting that, during the present training, we used
a percentage of cross-modal inputs as low as 20% of total. We
also performed some trials by modifying this ratio (for instance,
by using 30 or 40% of cross-modal stimuli). The results (not
reported here for briefness) indicate that a larger percentage of
congruent cross-modal inputs produces stronger cross-modal
synapses, and so a greater ventriloquism effect (for instance, an
auditory perceptual bias as large as 12–14 deg).

Lastly, we wish to comment on some limitations of the
present model and on the similarities/differences between model
predictions and those of the maximum posterior probability
estimator.

For what concerns a comparison between the model and
the Bayesian estimates, we found a satisfactory agreement in
unisensory conditions, both for what concerns the bias (Figure 6)
and SD (Figure 7) at different noise levels. Some differences can
be found, for what concerns the unisensory visual estimates, only
at the periphery (i.e., at an eccentricity higher than 60–70 deg)

where, however, the frequency of the visual stimuli becomes too
low to produce reliable predictions.

Furthermore, a very good agreement can be found for
what concerns the auditory estimate in cross modal conditions
(Figures 9, 11) both when congruent and incongruent audio-
visual inputs are used. Conversely, we noticed some severe
differences betweenmodel visual estimate and the Bayesian visual
estimate in cross modal conditions. These differences are evident
when using congruent audio-visual stimuli at an eccentricity
greater than 30 deg (Figure 9 right panels). Nevertheless, studies
that refer similarities between human behavior and Bayesian
estimate rarely consider such levels of eccentricity. Large
differences are also evident when using incongruent audio-visual
stimuli (Figure 10 left-upper panel, Figure 11 bottom panels). In
the latter case (i.e., during ventriloquism), the Bayesian estimator
predicts a large visual shift which, however, is not observed in the
behavioral data.

There are various possible explanations for these differences.
First, in the expression of the Bayesian estimator we used
the exact equations for the prior and conditional probabilities.
Conversely, a real Bayesian estimator should be constructed
from the actual data, i.e., using expressions for the probabilities
estimated from experiments. This would increase the variance
of the Bayesian estimator compared with the purely theoretical
formulas. Second, during training we always used congruent
cross-modal stimuli, i.e., we assumed a common cause. This
is equivalent as considering that a separate stage identifies
congruent stimulus pairs, and that this information is used for
training the circuit. As a consequence, we used a very small value
for parameter β in Equation (13). This signifies that the Bayesian
estimator cannot correctly manage the case of incongruent cross-
modal stimuli and, in case of too distant audio-visual inputs,
it tries to move also the visual estimate in the direction of
the auditory one (lower panels of Figure 11). A more reliable
expression for the Bayesian estimator should be constructed by
separately considering the case of one single cause (C = 1) and
two separate causes (C = 2), as in Wozny et al. (2010), and by
repeating the training procedure including both possibilities.

It is worth noting that in the present model, as in the previous
one (Ursino et al., 2017) we used cyclic boundary conditions.
These have been utilized to avoid a consistent bias from the
extreme periphery to the center, induced by the absence of a tail
in the sensory input. Indeed, with the use of a cyclic boundary, all
spatial positions have potentially the same capacity to deal with
sensory inputs, and differences emerge only from experience. We
are aware that cyclic boundary conditions are not physiological.
Hence, we repeated all simulations without them. Results (not
published for briefness) remain essentially the same as in the
present work in the range 20–160 deg for what concerns the
visual inputs, and in the range 40–140 deg for the auditory and
cross-modal ones (since the auditory stimuli have a wider spatial
extension). In particular, we claim that the observed differences
between the model and the Bayesian estimates (Figures 9–11)
cannot be ascribed to the cyclic boundary.

As a last point, we stress that a limitation of our model, which
may be the target of future studies, concerns the description of
the auditory net. While the visual net can be considered a good
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replication of the primary visual areas, where a spatial topological
organization is already present, the primary auditory cortex is
not spatially organized, and spatial information on the auditory
stimuli is extracted only at higher stages of the auditory pathway,
from interaural time difference or interaural phase difference
(Saberi et al., 1998; Recanzone and Sutter, 2008). Although
the basic idea of this work (i.e., that cross modal synapses
are created linking elements of the visual and auditory nets
participating to the same task, or which code for similar events),
has probably a general validity to implement conditional priors
(see Ursino et al., 2015; Zhang et al., 2016 for the application of
similar ideas in a wider context) a more physiological description
of the auditory processing stage is needed in future model
developments.

In this regard, we stress that some behavioral data (Odegaard
et al., 2015; Garcia et al., 2017) show that the auditory localization
estimate, in unisensory conditions, exhibits a bias toward the
periphery, i.e., auditory unisensory cues are perceived as more
eccentric than they are. The present model cannot reproduce
this observation. This bias, however, is not reported in all studies
and seems significantly affected by the experimental conditions,
as shown in Lewald et al. (2000). A more sophisticate auditory
network will be the subject of future work, to improve the
neurophysiology of this model and unmask possible additional,
still unknown mechanisms.
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