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The discovery of oscillations in brain activity is as old as electroencephalography (EEG), but only
with the development of powerful imaging and computational techniques in the last decades it
has been possible to start understanding the role of brain rhythms in brain physiology, pathology,
and cognition. For this reason, the study of brain rhythms and synchronization of oscillatory
activity is currently one of the hottest topics in neuroscience. Emerging from this research burst
is the following: brain rhythms coexist with the background, non-oscillatory (noisy) neuronal
activity, they appear to exist only at specific frequencies and they are generated in the brain as
the coordinated output of large neuronal networks. In other words, under certain circumstances
the normally very high-dimensional dynamics of neuronal networks activity collapses into low
dimensional oscillatory modes. As evidenced by seizures in epilepsies and tremor activity in
Parkinson disease, very rhythmic activity and excessive synchronization may be pathological for
the nervous system (especially for the higher brain centers, as it may be adequate for other
regions involved in the control of, say, breathing patterns). On the other hand, a large corpus of
evidence has shown the connection of brain rhythms and neural synchronization to cognition.
Experimental research on brain oscillations and neural synchronization has been accompanied
by an intense effort to understand the generation of rhythms and the mechanisms of neural
synchronization through computational modeling and non-linear dynamics. However, the two
sides of this enterprise often lack a common language, methodology, and concepts. In this opinion
article, we consider neural synchronization from the perspective of oscillation theory. We also
describe recent experiments on epileptogenic activity in rat models, providing further evidence
of the applicability of oscillator theory to a neuroscience context. Finally, we briefly compare the
terminology used in physics and neuroscience in the context of synchronization phenomena.

A mathematical description of neural synchronization (Buzsaki, 2006; Nowotny et al., 2008) can
be done within the framework of non-linear dynamics (specifically oscillator theory) that accounts
for synchronization phenomena in general (Kuramoto, 2003; Pikovsky et al., 2003; Guckenheimer
and Holmes, 2013; Landa, 2013). Central to synchronization theory is the concept of self-sustained
oscillator: an autonomous continuous-time dynamical system with a special kind of attractor, a
limit cycle (Guckenheimer and Holmes, 2013; Strogatz, 2014). Due to the existence of the limit
cycle, a stationary self-sustained oscillation can be described in terms of a phase, which is a variable
parameterizing the motion along the cycle. In general, when oscillators interact they adjust their
phases and frequencies and can eventually synchronize (Kuramoto, 2003; Pikovsky et al., 2003;
Landa, 2013). Synchronization manifests itself via phase and frequency locking (entrainment)
(Pikovsky et al., 2003). When coupling is weak the amplitudes are nearly unchanged and the
dynamics admits a reduced description in terms of phase models (Kuramoto, 2003; Pikovsky
et al., 2003). It is worth emphasizing that synchronization applies to self-sustained oscillators only,
but their presence in the nervous system is not a priori clear (Perez Velazquez, 2005). Thus, the
applicability of synchronization theory to a specific neuroscientific context should be analyzed in a
case-by-case fashion.
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Although the limit cycle oscillation is an idealization, not
typically fulfilled in real systems, this concept can be extended to
noisy and/or weakly chaotic systems for which the phase can be
defined. This is crucial for applications in neuroscience because
these kind of systems can gives rise to a narrow band signal as
the one observed in electrophysiological recordings of the brain
(Pikovsky et al., 2003).

Oscillatory activity in the nervous system appears at different
spatio-temporal scales, and they include spike trains, local
field potentials, and large-scale oscillations (Varela et al,
2001). Quite often, individual neurons exhibiting rhythmic
spiking or bursting activity can be considered as self-sustained
oscillators (Buzsaki, 2006; Ermentrout and Terman, 2010). The
existence of macroscopic self-sustained oscillators is perhaps
more controversial. It has been for long hypothesized that
macroscopic rhythms like pacemaker activity, motor pattern
generation and cortical (alpha, theta, gamma) rhythms emerge
through a Hopf-like bifurcation. In this case, the corresponding
neuronal population can be considered as a self-sustained
oscillator (noisy periodic or chaotic). Computational models
and in vitro experiments point in this direction at least in
the important case of the gamma rhythm (Akam et al.,, 2012;
Kotani et al,, 2014). Here, we emphasize the possibility that
macroscopic self-sustained oscillators can be experimentally
studied in the nervous system. Thus, we have recently found
in vivo experimental evidence for the existence of a macroscopic
self-sustained oscillator in the brain of epileptic rats (Perez
Velazquez et al., 2015). The approach used was to study the
response of thalamocortical circuits to periodic pulse stimulation,
in a rat model of absent seizures. During these absent seizure,
brain activity is rhythmical (spike and waves discharges, that were
recorded with intracranial electrodes in cortical regions), and
it was observed that stimulation with a periodic pulse (in the
thalamus) changed the frequency of the rhythm. It was found that
the thalamocortical network (which is crucial for the generation
of seizures) exhibited the phenomenon of frequency locking,
at least within a restricted frequency range. The characteristic
Arnold tongues were experimentally observed. In conclusion,
this activity appears to represent a macroscopic self-sustained
oscillation.

We propose that other macroscopic rhythms in the brain
could be investigated using analogous techniques. Indeed, a
similar approach was recently implemented on human subjects
to investigate the functional relevance of brain oscillations in the
alpha frequency range (8-13 Hz), via rhythmic light stimulation
(Notbohm et al.,, 2016). We emphasize that these results (Perez
Velazquez et al., 2015; Notbohm et al., 2016) are also valid for a
noisy limit cycle or a weakly chaotic oscillator, as explained above.

A related and very important methodology in the research
of rhythms is the phase response—or resetting—curve (PRC)
(Schultheiss et al., 2011). It measures the phase perturbation
of an oscillator as a function of the phase of the oscillator
at the moment of stimulation. It allows experimentalists to
study the properties of the underlying oscillators, generating the
rhythm. As an example of its applicability, in a study on the
same absent seizure model described above, the dynamics of
thalamic and cortical networks was found to be compatible with
a very simple system of coupled oscillators. The thalamus and

the cortex were described as two oscillators with interactions
given by the experimentally obtained PRCs (Velazquez et al,
2007). Taken together, these works (Velazquez et al., 2007; Perez
Velazquez et al.,, 2015) demonstrate that oscillator theory fairly
describes several aspects of the inherent dynamics of seizures in
the thalamocortical system. This has important implications for
seizure control, given that such simple models can be studied
using non-linear dynamics both theoretically and in simulations.
For example, such models can be used for seizure cancelation
in medical settings, through the implementation of feedback
control systems that could induce desynchronization of the
thalamocortical network as it was recently achieved in other in
vivo seizure models using a feedback, or closed-loop, protocol
(Salam et al., 2015).

The term oscillatory synchrony, neural synchrony, or
neural synchronization is widely used in the neuroscience
literature referring to somehow related but slightly different
concepts, depending on the context (Varela et al, 2001).
In its most common connotation, the term is associated
to temporal correlation between brain signals. This is an
operational definition, and a statistical one—based on how
synchrony between brain signals is measured. For this reason,
this definition is scale-dependent. At the cellular level, it
is measured by cross-correlograms of spike trains, typically
correlating with local field potential oscillations (Friston, 1997).
In other words, it is understood that neurons synchronize if
they spike simultaneously. On the other hand, the physical
definition of synchronization is more general, allowing for
the possibility of phase shift between synchronized signals.
At the cortical column level, the postsynaptic activity of
networks of pyramidal cells is synchronized, giving rise to
a measurable electrophysiological signal [such as electro and
magnetoencephalographic (EEG/MEG) signals]. The power of
these signals is a measure of correlated activity in the underlying
networks. By construction, both cross-correlograms and cortical
electrophysiological signals measure both phase and amplitude
correlation in neuronal activity. Synchrony can also be measured
between spatially separated brain regions—the so-called large-
scale neural synchronization—representing in principle phase
synchronization (measuring phase correlation but not amplitude
correlation). However it should be noticed that large-scale neural
synchrony is not a direct measure of coupling between neuronal
sources due to the fact that scalp-measured signals are a signal
superposition of brain sources (Nunez et al., 1997; Nolte et al.,
2004; Meinecke et al., 2005).

Several measures of interdependence of neural signal
synchrony and of their synchrony in particular exist in the
literature, based on time series analysis techniques (see Kreuz,
2011 and Lehnertz, 2011; and references therein). These measures
capture both linear (spectral coherence and cross-correlation)
and non-linear (Granger causality, phase synchronization,
non-linear interdependences mutual information, and transfer
entropy) aspects of interactions. Measures of synchronization
such as mean phase coherence and phase locking values has
been specifically introduced within a neurophysiological context
(Lachaux et al., 1999; Mormann et al., 2000). Most of the
measures used to detect neural synchrony are based on pairwise
analysis of bivariate signals. However, in a typical experimental
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setting there are many channels and a bivariate analysis does not
account for the full covariance information of a multichannel
set. For this reason, genuine multivariate analysis has been
introduced to analyze neurophysiological signals (see Pereda
et al., 2005 and references therein).

Characterizing interactions between oscillatory systems from
observations is a hard inverse problem even for noise-free and
stationary physical systems (Kralemann et al,, 2007). In fact,
information about the directional coupling cannot be derived
from synchrony measures and requires a reconstruction of the
dynamical model. A particular problem, not very well known
in neuroscience community is that phases extracted from the
data, e.g., with the help of the Hilbert transform, differ from the
phases of the underlying dynamical systems. The corresponding
dynamical systems, reconstructed from data, are not invariant,
in the sense that they depend on the measured signals as
well as on the embedding method used for the construction
of phases. This problem can be partially solved by means of
a special transformation (Kralemann et al., 2007, 2008, 2011).
We emphasize that this problem is not equivalent to the
volume conduction problem, because it appears whenever scalar
observables are measured (the underlying vector of state variables
is unknown), which is the case for most experimental conditions.
Indeed, the problem should persist even in the absence of
superposition of signals, as, for example, in intracranial EEG
recordings.

Synchronization has been associated in certain contexts to
the classical definition used in non-linear dynamics, while
keeping intact its different neural connotations. For example,
an influential book in mathematical neuroscience (Izhikevich,
2007) states that “partial synchrony in cortical networks is
believed to generate various brain oscillations, such as the alpha
and gamma EEG rhythms. Increased synchrony may result in
pathological types of activity, such as epilepsy” and also that
“There is an ongoing debate on the role of synchrony in neural
computation...devoted to the binding problem.” Also in the
mathematical neuroscience field, synchrony has been related
to brain rhythms such as those generated by central pattern
generators (Ermentrout and Terman, 2010).

One problem with this plurality of interpretations due to
field-specific definitions is the risk of extrapolating methods and
results from one field to another, without careful verification
of the underlying assumptions and the limits of applicability
of oscillation theory. Indeed, as noted above, neural synchrony
derived on the basis of electrophysiological recordings is not
necessarily a measure of phase synchronization alone (as it may
be amplitude-dependent) and it is not a direct measure of neural
coupling (due to the signal superposition/volume conduction
problem and the non-invariance of experimentally determined
phases). Furthermore, the concept of coupling itself may have
different meanings in different fields: in physics coupling is
typically understood as an existing physical connection between
systems (e.g., neurons are connected via synapses), while in
neuroscience quite often coupling between signals is understood
as a measure of correlation (synchronization). In this regard,
several notions of “connectivity” have emerged in neuroscience,
including structural and effective connectivity.

In the cognitive neuroscience literature, entrainment is
typically restricted to phase-locking, and not frequency-locking
[for example, “oscillations in the sensory cortices will entrain
(phase-lock) to the events in the attended stream” (Lakatos et al.,
2005) or “entrainment of low-frequency oscillations involves a
reorganization of phase so that the optimal, in this case most
excitable, phase comes into line with temporally expected critical
events in the ongoing stimulus” (Henry and Obleser, 2012)].
We emphasize here that without a self-sustained oscillator, one
cannot talk of entrainment, as it is understood in physics.
In particular, for a self-sustained oscillator, oscillations should
persist after the external stimulation is over; we remark that
self-sustained oscillations in physical language are equivalent
to “endogenous neural oscillations” in neuroscience. They
constitute rhythmic fluctuations in the excitation-inhibition cycle
of neuronal populations (Bishop, 1932; Buzsiaki and Draguhn,
2004; Lakatos et al., 2005). Furthermore, entrainment can be
easily confused with resonance: the response of a passive
system to external driving. In terms of dynamical systems, the
distinction between both systems resides in the existence of a
zero Lyapunov exponent for self-sustained oscillators, and its
absence in driven oscillators (Pikovsky et al., 2003). In other
words, an autonomous self-sustained oscillator has a neutrally
stable phase that can be adjusted by the external force, whereas
in driven systems the phase of oscillations is unambiguously
related to the phase of the external force, so it cannot be easily
shifted and therefore it cannot be synchronized. However, in
experimental settings, a system that is being driven could mimic
entrainment (Pikovsky et al., 2003). As an example, consider the
important line of research devoted to the study of entrainment
of oscillatory brain activity to stimuli in the auditory cortex
(Lakatos et al., 2005, 2008; Schroeder and Lakatos, 2009). In
this case, are we really talking about entrainment or resonance?
We propose that this should be experimentally assessed in
a case-by-case fashion: by just observing the adjustment of
an endogenous rhythm to the external stimulation, without
further investigation, it is difficult to distinguish between
entrainment and resonance. However, indirect evidence can also
help establishing the distinction. In this particular case, there is
physiological evidence for synchronization phenomena in early
stages of auditory perception. Indeed, the mechanical properties
of the basilar membrane’s response becomes highly non-linear
near the resonance, probably because the system operates close
to a critical point, a Hopf bifurcation (the birth of a limit
cycle) (Ospeck et al, 2001; Hudspeth et al, 2010). A Hopf
instability could also help understanding the cochlea tuning
curve (Magnasco, 2003). Given that the mechanical and neural
responses of the cochlea are strongly connected, neural self-
sustained oscillators could indeed exist at early stages in auditory
processing.
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