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Visual information in the visual cortex is processed in a hierarchical manner. Recent

studies show that higher visual areas, such as V2, V3, and V4, respondmore vigorously to

images with naturalistic higher-order statistics than to images lacking them. This property

is a functional signature of higher areas, as it is much weaker or even absent in the primary

visual cortex (V1). However, the mechanism underlying this signature remains elusive.

We studied this problem using computational models. In several typical hierarchical

visual models including the AlexNet, VggNet, and SHMAX, this signature was found

to be prominent in higher layers but much weaker in lower layers. By changing both

the model structure and experimental settings, we found that the signature strongly

correlated with sparse firing of units in higher layers but not with any other factors,

including model structure, training algorithm (supervised or unsupervised), receptive field

size, and property of training stimuli. The results suggest an important role of sparse

neuronal activity underlying this special feature of higher visual areas.

Keywords: visual processing, deep learning, higher-order statistics, V1, V2, V4

INTRODUCTION

After a complex visual pattern enters the visual system of mammals, the pattern undergoes different
processing stages. In general, each stage captures the pattern in different abstraction levels. For
instance, many neurons in the primary visual cortex (V1) are sensitive to edges (Hubel andWiesel,
1962, 1968), some neurons in the visual area V2 are sensitive to line conjunctions or corners (Hegde
and Van Essen, 2000; Ito and Komatsu, 2004), and some neurons in the inferior temporal cortex are
sensitive to the whole pattern, such as faces or cars (Kanwisher et al., 1997; Epstein and Kanwisher,
1998; Gauthier et al., 2000). But the differences among the simple response properties of neurons
in various areas are not always prominent and robust. For example, the neural responses to many
artificial stimuli in V2 are largely similar to those in V1 (Peterhans and Vonderheydt, 1989; Hegde
and Van Essen, 2000; Lee and Nguyen, 2001).

Using controlled naturalistic texture stimuli, electrophysiological recordings revealed that
neurons in macaque V2 (Freeman et al., 2013) and V4 (Okazawa et al., 2015) but not V1 prefer
stimuli with the higher-order statistical dependencies found in natural images rather than in
spectrally matched noise stimuli that lack naturalistic structures. Consistent with this, functional

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2017.00100
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2017.00100&domain=pdf&date_stamp=2017-10-30
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xlhu@tsinghua.edu.cn
https://doi.org/10.3389/fncom.2017.00100
https://www.frontiersin.org/articles/10.3389/fncom.2017.00100/full
http://loop.frontiersin.org/people/461529/overview
http://loop.frontiersin.org/people/212595/overview


Zhuang et al. Deep Learning Predicts Functional Signature

magnetic resonance imaging measurements in humans
demonstrated a much higher preference for stimuli with
naturalistic higher-order statistics in V2, V3, and V4 than in V1
(Freeman et al., 2013). These results suggest that the sensitivity
to naturalistic textures is a functional signature of higher areas
of the visual cortex. However, it remains unknown how this
signature emerges.

Because the naturalistic texture images used in these
experiments (Freeman et al., 2013; Okazawa et al., 2015) were
synthesized by matching various higher-order dependencies
among linear and energy filters (akin to V1 simple and complex
cells, respectively) to those present in natural images, it is
straightforward to assume that higher areas encode correlations
among the output of V1 neurons. Given this assumption, a
hierarchical model in which higher layers take the combined
efferents of lower layers as afferent would exhibit a functional
difference similar to that found between V1 and higher areas
(Freeman et al., 2013). However, the principles underlying a
model built to lead to this difference are unknown. Simply
stacking a computational module one by one with random
connections between them is likely insufficient (see section
Higher Layer Units Prefer Naturalistic Texture Images). It is
also unknown what factors in the models will contribute to
the difference and how they will contribute. Answers to these
questions may shed light on how the functional signature
emerges in higher visual areas.

In the present study, we first discovered that the signature is
a common property in the higher layers of several hierarchical
deep learning models (Krizhevsky et al., 2012; Hu et al., 2014;
Simonyan and Zisserman, 2015), which are built on the extended
theory of V1 simple and complex cells (Hubel and Wiesel,
1962, 1968) in higher areas. Although quite different in learning
principles, either for achieving high classification accuracy or for
achieving good reconstruction of the input, after training, the
higher layer units in thesemodels were found to bemore sensitive
to the synthetic naturalistic images containing higher-order
statistical dependencies than to spectrally matched noise that lack
them. By contrast, only a weak though significant preference
was observed in lower layer units. A positive correlation was
demonstrated between the strength of this signature and the
sparseness of responses in higher layer neurons, which suggests
that sparse firing may underlie the emergence of the functional
signature of higher areas found in primates (Freeman et al., 2013;
Okazawa et al., 2015).

RESULTS

Stimuli and Models
Following the procedures described in previous studies (Freeman
et al., 2013; Okazawa et al., 2015), two sets of synthetic stimuli
were generated based on the properties of natural texture images
(Figure 1). The first set of stimuli was obtained by randomizing
phases of Fourier components in the original images. Therefore,
they had the same spectral properties as the original images
and were called spectrally matched (SM) images (Figure 1A).
The second set of stimuli was generated from Gaussian noise

using an iterative procedure, with the aim to match the higher-
order statistics in them (correlations between filter responses
as well as their energies) to those in the original images.
These images were called correlation-matched (CM) images,
and they looked similar to the original images as judged by
human observers (Portilla and Simoncelli, 2000) (Figure 1A).
Based on each natural texture image, respective SM and CM
images were synthesized. A total of 25 families of natural texture
images (40 per family) were used, yielding 1,000 SM images and
1,000 CM images. Different families of natural texture images
had different higher-order statistical dependencies and therefore
different appearances, as did different families of CM images
(Figure 1A).

Since Hubel and Wiesel discovered simple and complex
cells in the V1 area of cats in the 1960s (Hubel and Wiesel,
1962), various computational models for the visual system
have been proposed (Fukushima, 1980; LeCun et al., 1989,
1998; Riesenhuber and Poggio, 1999; Ullman, 2007; Hu et al.,
2014), and these fall into two categories, supervised and
unsupervised learning models. Among those in the first category,
the convolutional neural network (CNN) (LeCun et al., 1989,
1998), which showed remarkable performance in a variety of
visual recognition and detection tasks (Krizhevsky et al., 2012;
LeCun et al., 2015), was selected for investigation in this study.
Among those in the second category, we selected the sparse
HMAX (SHMAX) model (Hu et al., 2014), which is essentially
a hierarchical sparse coding model, an extension of the original
biological-inspired model HMAX (Riesenhuber and Poggio,
1999; Serre et al., 2005). Both CNN and SHMAX are capable
of learning low-, mid-, and high-level representations of object
(Hu et al., 2014; Zeiler and Fergus, 2014), making these models
good candidates for this investigation because different levels of
representation of visual input have long been known to exist in
the ventral stream of the visual cortex (Hubel and Wiesel, 1962;
Kanwisher et al., 1997; Epstein and Kanwisher, 1998; Gauthier
et al., 2000; Hegde and Van Essen, 2000; Ito and Komatsu,
2004).

Two typical CNNs, AlexNet (Krizhevsky et al., 2012) and
VggNet (Simonyan and Zisserman, 2015), were trained on a very
large dataset containing millions of images (Russakovsky et al.,
2015). SHMAX was trained on a subset of this dataset. Because
the models had different numbers of layers, for convenience,
some layers were grouped based on their structural properties
so that all of the models contained five big layers, LAYER1 to
LAYER5 (Figure 1B; sectionMaterials andMethods). These were
the main locations in the models we investigated.

Higher Layer Units Prefer Naturalistic
Texture Images
Two sets of stimuli, CM images and SM images, were presented to
the three deep learning models, AlexNet, VggNet, and SHMAX,
and the responses of each unit in these models were recorded
(Figure 1). For each unit, a modulation index between −1 and
1 was calculated to reflect its preference for CM images or
SM images (see section Materials and Methods). A modulation
index approaching 1 indicates higher preference for CM images,
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FIGURE 1 | Stimuli and experimental protocol. (A) Example stimuli. Based on each natural texture image (top) a pair of CM (middle) and SM (bottom) images was

synthesized. (B) Illustration of a deep learning model with five big layers, LAYER1 to LAYER5. Each big layer contained at least a convolutional layer (for CNN) or

sparse coding layer (for SHMAX), a pooling layer, and sometimes a normalization layer. After LAYER 5, CNN often had several fully connected layers and an output

layer for classification, which are not shown here. (C) Normalized responses of four sample units in LAYER1 (top) and LAYER5 (bottom) of AlexNet averaged over

images in each of 25 texture families. The response of a unit was normalized by dividing its maximum response to all CM images and SM images. The gray dots and

black dots denote the responses to SM images and CM images, respectively. Clearly, the LAYER1 units fired more vigorously than the LAYER 5 units.

approaching −1 indicates higher preference for SM images, and
near zero indicates little preference for either type of stimulus.
The mean modulation index of a set of units was defined as the
population modulation index (PMI).

The PMIs in LAYER1 in all networks, as well as LAYER2 in
VggNet and SHMAX, were close to zero (Figure 2), indicating
little preference of these low-level units for any type of image.
By contrast, the PMIs in higher layers of these networks were
substantially larger than zero (Figure 2). Some units in these
layers responded to CM images only (modulation index equaled
1). The PMIs in LAYER4 and LAYER5 were significantly larger
than that in LAYER1 (P < 10−5, unpaired one-tailed t-test
after repeatedly sampling 100 units from two groups; see section
Materials and Methods for details). These results are consistent
with findings in primates (Freeman et al., 2013; Okazawa et al.,
2015). Moreover, from LAYER2 to LAYER5, there was a general
trend for the modulation index to be larger in a layer than in
the layer just below it (P < 0.05, unpaired one-tailed t-test
after repeatedly sampling 100 units from two groups; Figure 2,
leftmost), except in AlexNet, where the PMI in LAYER3 was
smaller than that in LAYER2.

Different texture families evoked different degrees of response
preference to naturalistic structures. We sorted the texture
families based on the PMI in the top layers of the three models
(Figure 3) and found that the orders were consistent across the
models as measured by ranking distance (RD) (section Materials

and Methods). The RD-values between the orders of AlexNet
and VggNet, between AlexNet and SHMAX, and between
VggNet and SHMAX were 11.01, 13.99, and 13.24, respectively.
According to a permutation test, these values indicate significant
consistency between the orders (P = 0.0002, 0.0037, 0.0019,
respectively).

The synthesized CM images contained many groups of
statistics, including cross-scale, cross-position, and cross-
orientation correlations of linear filter responses or energies (L2-
norm of responses of two identical linear filters at the same
position, scale, and orientation, but differing by 90◦ in phase).
We found that the relative contributions of these statistics to the
modulation indices of the top layer units in the models were
qualitatively similar to their contributions to human sensitivity
(Freeman et al., 2013) and the macaque V4 neuron sensitivity
(Okazawa et al., 2015) to synthetic texture images (section
Materials and Methods; Figure 4).

What causes the preference of higher layer units to naturalistic
structures in these models? The answer to this question may
shed light on the understanding of the mechanism underlying
the functional and perceptual signatures of the higher areas
in the visual cortex. First, hierarchical structure should play
an important role, as it is a property common to all models
as well as to the visual cortex. However, this is not the only
factor, because models with random weights did not exhibit
this signature (Figure 5). Learning should also contribute, and
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FIGURE 2 | PMIs in different layers of AlexNet (top), VggNet (middle), and SHMAX (bottom) calculated based on all CM and SM images. The bar plots in the first

column show the PMI in each layer. The asterisks indicate the results of pairwise random sampling t-tests (RST; see section Materials and Methods) determining

whether the modulation in any layer is significantly larger than that in the preceding layer (*P < 0.05; **P < 0.01; ***P < 0.001; n.s., not significant). The solid lines in

the first column indicate the percentages of units that show significant positive modulation indices (P < 0.05, randomization test for each unit, see section Materials

and Methods). The other columns show the distributions of the units in each layer with different mean modulation indices. The P-values are averaged P-values over

500 RSTs examining whether the modulation was significantly larger than zero (see section Materials and Methods).

this contribution may not be restricted to specific learning rules
because both supervised and unsupervised learning led to similar
results. The resolution may lie in the common features of the
learning procedures, and these were thus investigated in detail,
as described below.

Response Sparseness Correlates with
Modulation
We observed different response patterns of units in different
layers of the models (Figure 1C), which motivated us to inspect
the unit response pattern first. We found that all units in
the models exhibited a certain level of response sparseness
as quantified using lifetime sparseness (see section Materials
and Methods) (Willmore et al., 2011) (Figure 6A). This result
was not unexpected for SHMAX because its learning principle
encourages the sparse activity of hidden units [see Equation
(1) in section Materials and Methods]. The more interesting
finding was that the two CNNs also exhibited sparse firing,
even though this property was not explicitly specified in their
learning rules. Similar results were obtained in a recent study
(Yu et al., 2016). It is partly due to the rectified linear function
used in these models. Comparison of Figure 6A and Figure 2

suggests a certain amount of correlation between sparseness and
modulation. For instance, the top layer of each model had both
the highest sparseness andmodulation, and bothmodulation and
sparseness increased with ascending layers in SHMAX. Note that
the correlations in the two CNNs were not introduced by layer

grouping because similar results could be obtained based on the
original layers in the models (Figure S1).

We then controlled sparseness for SHMAX and AlexNet
to further inspect the relationship between sparseness and
modulation. By varying the λ parameter during training of
SHMAX [Equation (1) in section Materials and Methods] and
AlexNet [Equation (4) in section Materials and Methods], we
could separately control the sparseness level of each layer. In
this way, three control models for SHMAX and two control
models for AlexNet were trained that differed from the baseline
model only in parameter λ for LAYER3, LAYER4, and LAYER5
in SHMAX and for LAYER2 and LAYER4 in AlexNet. We found
that, in any layer, the PMI increased as the sparseness level
increased (Figures 6B,C).

As mentioned before, the response sparseness in the
baseline AlexNet is attributed to the rectified linear activation
function. One would expect that changing the activation
function to the sigmoid function would lead to less sparse
activity in the model. A control model was constructed with
this setting. With the aid of batch normalization (Ioffe and
Szegedy, 2015), it was trained successfully on the ImageNet
dataset (section Materials and Methods). With similar layer
grouping, it was found that the sigmoid function led to
much lower sparseness and PMI in the model compared with
the rectified linear function (Figure S2). This result again
supports the strong correlation between the sparseness level
and PMI.
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FIGURE 3 | PMIs in each layer of AlexNet (A), VggNet (B), and SHMAX (C) calculated separately based on 25 texture families. The texture families shown below are

sorted in decreasing order of PMI in LAYER5. The number below each texture family is the rank of that family in the sorted family sequence based on AlexNet.

The above results did not imply that all units with higher
lifetime sparseness tended to prefer CM images; in fact, many
units with higher lifetime sparseness tended to prefer SM images.
This result was valid not only across layers but also within
the same layer. A scatter plot of the lifetime sparseness and
the modulation index of the units in each layer of each model
exhibited a “tornado” pattern: the units with lower sparseness
were distributed within a narrower band in the modulation
index axis centered at about zero, whereas the units with
higher sparseness were distributed within a wider band in the
modulation index axis (Figure 6D). Importantly, this pattern was
not symmetric around zero but skewed to the positive side.

In the study of neuroscience, the term “sparseness” has
several definitions, and the definitions may not correlate with
one another (Willmore and Tolhurst, 2001; Willmore et al.,
2011). Some definitions are for a single neuron responding to
many stimuli (such as the lifetime sparseness definition used

above), and others are for a population of neurons responding
to a single stimulus. However, using different definitions
of sparseness, including kurtosis, non-firing sparseness, and
population sparseness (section Materials and Methods), we
obtained qualitatively similar results to those observed using
lifetime sparseness (Figures 7–9).

Different Receptive Field Sizes between
Layers Do Not Explain the Modulation
Difference
Neurons in higher areas of the visual cortex have larger receptive
fields (RFs) on average, and it is possible that V2 neurons prefer
CM images simply because their RFs contain more naturalistic
structures than those of V1 neurons. However, this possibility
was previously ruled out by showing no evidence for a correlation
between RF size and modulation (Freeman et al., 2013). Because
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FIGURE 4 | Contributions of different groups of statistics to modulation in the

top layers of the models calculated using the averaging-over-orderings

technique based on linear regression analysis. (A) The left panel shows the

result of regression for PMI in LAYER5 of VggNet based on different groups of

statistics (correlations of linear or energy filter responses cross-scale,

cross-position, and cross-orientation together with marginal and spectral

statistics) in the original natural texture images. Each dot represents the

measured and predicted PMI corresponding to one pair of CM and SM

images. The right panel shows the contributions of different groups of statistics

to PMI in LAYER5 of VggNet. (B) The contributions of different groups of

statistics to PMIs in LAYER5 of AlexNet (left) and SHMAX (right).

the effect of increasing RF size along the ascending hierarchy
was also present in the computational models owing to the
interleaving pooling layers, it is unknown if it was this factor that
induced higher modulation in higher layers.

Different from their biological counterpart, these
computational models have the same size RFs in the same
layers, making it impossible to analyze the effect of RF size in the
same way as it was analyzed in monkeys (Freeman et al., 2013).
Our solution was to first construct a two-path deep learning
model, such that the RF size in a given layer of one path was
equal to the RF size in a different layer of the other path, and then
to compare the modulation of the two layers (section Materials
and Methods; Figure 10A).

We first tailored SHMAX in this manner. Because the PMI
increased from LAYER2 to LAYER5 in the baseline model
(Figure 2), we constructed three control models by manipulating
the sizes of RFs for the units in neighboring layers, namely,
LAYER2 and LAYER3, LAYER3 and LAYER4, and LAYER4
and LAYER5, respectively, in the three models and trained them
with settings similar to those for the baseline model. The results
of the first and second control models indicated that, within the
same layer, units with larger RF sizes tended to have a larger
modulation index (one-tailed paired t-test, P < 8.2 × 10−6).

However, this result was not observed in the third control model.
By contrast, in all control models, the PMI in the higher layer was
much larger than that in the lower layer (one-tailed paired t-test,
P < 5.4 × 10−7), despite the units in the two layers having the
same size RFs (Figure 10B).

Tailoring AlexNet and VggNet for this purpose was difficult
because they were big and hard to train. We therefore designed
a small CNN with four big layers, LAYER1 to LAYER4 (section
Materials and Methods), termed SmCNN, as the baseline model.
After training on a quarter of the ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012) dataset (Russakovsky
et al., 2015),∼3.0× 105 images, the network exhibited increasing
PMIs from the lower to higher layers, except between LAYER2
and LAYER3 (Figure 5). Therefore, we examined the influence
of RF size by manipulating only LAYER1 and LAYER2 (control
model 1) and LAYER3 and LAYER4 (control model 2). After
training, we found that a larger RF size did not lead to a larger
PMI for the computational units (Figure 10C). Instead, units in
the higher layers had a larger modulation than those in the lower
layers, although their RF sizes were the same.

Taken together, these results indicate that RF size differences
cannot explain unit preference differences for naturalistic
textures in different layers.

Similarities between Training Images and
CM Images Do Not Explain the Difference
in Modulation
All models were trained on natural images, leaving open the
possibility that their higher layer units preferred CM images to
SM images because the CM images looked more similar than the
SM images did to the natural images. Thus, we next investigated
whether the preference emerged when the models were trained
on SM images. Because there were only 1,000 SM images, to avoid
overfitting, we tested two small models, SHMAX and SmCNN.
After training on these SM images, the higher layer units in
both models exhibited a preference for CM images (Figure 11A),
although the PMIs were smaller than those in the corresponding
layers trained on natural images.

These results indicated that SM images contained certain
higher-order statistics because otherwise the models could not
have developed a preference in higher layers for CM images,
which inherit many forms of higher-order statistics from the
natural images. To investigate which groups of higher-order
statistics were preserved in SM images, we projected correlations
across position, scale, and orientation of linear filter responses
or energies calculated on SM images and CM images to the
corresponding principal components. We then visualized each
group of statistics in pairs, with the SM image and CM image
as two-dimensional points (Figure 11B). We found that the
correlations of both linear filter responses and energy filter
responses across different positions in the SM images were highly
correlated with those in the CM images (Figure 11B, r = 0.7767
and 0.7297, respectively), indicating the presence of a certain
amount of these statistics in SM images. This result was mainly
because the correlation between responses of a filter at two fixed
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FIGURE 5 | PMIs in each layer of AlexNet and SmCNN before and after training. Error bars indicate the standard deviation of 10 models with the same architecture

using different initial values. The results of AlexNet after training are the same as those in Figure 2.

positions in the image plane was invariant to phase shuffling,
which was used to generate SM images (Figure 11C).

However, not all types of statistics were preserved in SM
images, for example, the correlations of both linear filter
responses and energy filter responses across different scales,
as these statistics in SM images and CM images showed low
correlation (Figure 11B, 0.2308 and r = 0.3712, respectively).
The reason for this can be explained as follows. In calculating
this type of statistic, two filters (linear or energy) were separately
applied to an image of two different scales, which were
formed using different sets of Fourier components (Figure 11D).
Consequently, the correlation of the two filters was sensitive to
phase shuffling, a random operation for all Fourier components.

DISCUSSION

Recent studies show that, along the ventral visual pathway, higher
areas, including areas V2 and V4, play more important roles than
V1 for the perception of natural texture images (Freeman et al.,
2013; Okazawa et al., 2015), but the mechanism underpinning
this functional signature of the higher areas is unclear. In the
present study, we first found this signature in higher layers of
deep learning models and then revealed a strong correlation of
this signature with response sparseness of the model neurons.
Our findings suggest an important role for the sparse firing of
neurons underlying the emergence of this signature in higher
areas of the visual cortex.

Different forms of sparse neural firing have been
experimentally observed in many areas of sensory cortices
(Vinje and Gallant, 2000; Hromadka et al., 2008; Carlson et al.,
2011; Willmore et al., 2011). From a metabolic perspective,
sparse firing is energy efficient for neural encoding, as neurons
do not respond vigorously to stimuli. From a computational
perspective, this would reduce redundancy in the input such
that a succinct neural code could be obtained (Barlow, 1989;
Olshausen and Field, 1997). A number of studies support
this function of sparse firing by showing that the outputs of
computational models equipped with this characteristic match

physiological results in visual cortex areas V1 (Olshausen and
Field, 1996, 1997; Bell and Sejnowski, 1997) and V2 (Hosoya and
Hyvarinen, 2015), but detailed comparative studies linking this
function to physiological results in even higher areas are scarce.
A computational model was previously proposed to fit object
boundaries using a set of parametric curves that represent the
RFs of V4 neurons (Carlson et al., 2011). The results of that study
suggested that sparse firing underpinned the acute curvature
preference of V4 neural responses. However, this single layer
model is specific to V4 because it is built on the curvature
representation of the V4 neurons. By contrast, our use of deep
learning models enabled the simulation of all ventral pathway
levels, and our results indicated a function of sparse firing in all
higher layers.

Nevertheless, the following observations indicated that sparse
firing was not the only factor contributing to this signature.
First, models with similar response sparseness but random
weights failed to exhibit this signature in higher layers (Figure 5).
Although learning must have played an important role, the
necessary conditions for successful learning remain unknown
because both supervised and unsupervised learning led to
the signature in our experiments. Second, the preference for
naturalistic texture images in the bottom layers was significantly
weaker than that in the higher layers (Figure 2), although
bottom layers also exhibited response sparseness (Figures 6A,
7A, 8A, 9A). This observation highlights the importance of the
hierarchical organization of the models.

The computationalmodels used in this study are deep learning
models, which originated in neuroscience but do not faithfully
copy the structure of the brain. These models have recently
gained success in various engineering applications, including
image classification (Krizhevsky et al., 2012), speech recognition
(Dahl et al., 2012), natural language processing (Sutskever et al.,
2014), and game playing (Mnih et al., 2015; Silver et al., 2016).
The neuroscience community has begun to investigate the link
between deep learning models and the brain. Most of these
studies aimed to reveal how well the models match the monkey’s
visual system by either fitting or comparing real neuronal
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FIGURE 6 | Relationship between the modulation and the response sparseness of units in the models. (A) Boxplots of lifetime sparseness in different layers of

AlexNet, VggNet, and SHMAX. (B) PMI vs. mean lifetime sparseness of all units in three higher layers of SHMAX in three control experiments. Each dot represents the

result with a particular λ value in the corresponding layer. The solid curves are quadratic fitting. (C) PMI vs. lifetime sparseness of all units in two layers of AlexNet in

two control experiments, with correlation r being 0.75 and 0.95, respectively. (D) Scatter plots of the modulation index and lifetime sparseness of all units in different

layers of VggNet (top), AlexNet (middle), and SHMAX (bottom). Each dot represents one unit in the corresponding layer.

responses in specific areas, such as V4 and the inferior temporal
cortex, with the responses of the model neurons (Cadieu et al.,
2007; Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al.,

2014), or comparing performances on certain tasks based on real
and model neuronal responses (Cadieu et al., 2014). Different
from those studies, we aimed to reveal the computational
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FIGURE 7 | Relationship between the modulation and the response sparseness of units in the models measured by kurtosis. These data differ from Figure 6 only in

the sparseness measure. In the y-axis of (D), log (kurtosis) is used, and the minimum value of kurtosis is set to 0.01.

principles of the visual system based on deep learning models by
manipulating their architecture, hyperparameters, and learning
principles. According to Marr and Poggio’s tri-level hypothesis
(Marr and Poggio, 1977; Marr, 1983), it is possible that
computational models share certain components with the brain
at the computational theory and algorithmic levels, especially
when the models robustly reproduce results measured in the
brain, as in the present study. The common components for
visual information processing suggested by the present study
include hierarchical structure, response sparseness, and certain
types of learning (Marblestone et al., 2016). Different types of
learning correspond to optimizing different cost functions. It is

hypothesized that the brain can optimize diverse cost functions
(Marblestone et al., 2016). However, since both supervised and
unsupervised learning led to qualitatively similar results in our
experiments, we were unable to distinguish which cost function,
prediction error or reconstruction error, plays a more important
role in shaping the visual system during development. Recent
studies emphasize the role of prediction error by fitting the
activity of the deep learning model neurons to that of cortical
neurons (Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al.,
2014; Yamins and DiCarlo, 2016). It is tempting to hypothesize
that the functional signature found in higher visual areas
is positively correlated with the classification performance of
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FIGURE 8 | Relationship between the modulation and the response sparseness of units in the models measured by non-firing rate. These data differ from Figure 6

only in the sparseness measure.

animals, but this was not validated in our deep learning models
(Figure 12), although optimizing the latter led to the emergence
of the former. These results indicate a complicated relationship
between neural signature and behavioral performance.

The models generated some predictions testable in animals
and humans. First, they predicted increasing modulation along
the visual ventral pathway, although this trend was not perfect
(Figure 2). Second, they predicted a “tornado” pattern for the
distribution of neurons in any area along the ventral pathway
in the modulation–sparseness plane (Figures 6D, 7D, 8D);
that is, with higher response sparseness, neurons show greater
preference for either CM images or SM images. Third, they

predict a positive correlation between response sparseness and
modulation of neurons in higher visual areas (Figures 6–9).
Verification of this last prediction will require manipulating the
activity level of neurons in vivo, which is technically difficult at
present, but using certain types of microbial opsins in animals
may be a solution (Atallah et al., 2012).

The limitation of the present study is obvious owing to
the great difference between the computational models and the
biological vision system. First, a real neuron has about 1,000
synapses but most model neurons in the convolutional layers
(for CNN) or sparse coding layers (for SHMAX) have no more
than 25 connections. Second, a large body of literature has
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FIGURE 9 | Relationship between the modulation and the response sparseness of units in the models measured by population sparseness. These data differ from

Figures 6A–C only in the sparseness measure. Unlike in Figure 6, there is no panel (D) here because population sparseness is not defined for single units.

reported anatomic difference in different visual cortical areas.
For example, along the ventral pathway, starting from V1,
neuron density decreases (Wilson and Wilkinson, 2015) while
the number of dendritic spines of layer III pyramidal neurons
increases (Elston and Rosa, 1998; Elston, 2002). However, the
spatial arrangement and the shape of the neurons are not
considered in these models. Third, both within areas and across
areas recurrent synapses are abundant in the visual cortex (Dayan
and Abbott, 2001; Gilbert and Li, 2013), but themodels are purely
feedforward architectures. It is unclear how these differences
could influence the functional signature found in higher layers
of the models. More biologically detailed models are entailed to
answer this question. Nevertheless, devising such models is still a
challenging problem in the deep learning community.

MATERIALS AND METHODS

Stimuli Synthesis
The stimuli were generated using the same method described
in two previous studies (Portilla and Simoncelli, 2000; Freeman
et al., 2013). For each natural texture image, two images were
synthesized, and these were called the SM and CM images.
The SM image was synthesized by first computing the Fourier
transform of the original image, then randomizing the phases
of the Fourier components, and finally computing the inverse
Fourier transform. This procedure is thought to preserve the
spectral properties of the original image, such as the spatial-
frequency content, and destroy higher-order statistics, such as the
correlations between linear filter responses in different scales of
the original image (Freeman et al., 2013), although our analysis
suggested that a certain amount of the higher-order statistics
were still preserved (Figure 11). The CM image was synthesized
from Gaussian noise using an iterative procedure “to match the

spatially averaged filter responses, the correlations between filter
responses, and the mean, variance, skewness, and kurtosis of
the pixel luminance distribution (‘marginal statistics’)” (Freeman
et al., 2013) of the original image.

The original texture images were from a dataset (Lazebnik
et al., 2005) consisting of 25 texture families, with 40 images per
family. All images were resized from 640 to 480 pixels to 128 ×

128 pixels to generate 1,000 SM images and 1,000 CM images of
the same size, using companion codes of reference (Portilla and
Simoncelli, 2000) with default settings. They were subtracted by
their mean and resized to 224 × 224 pixels before being sent to
the deep learning models, as the models were trained with images
of this size.

Computational Models
Four deep learning models were used in the experiments.
AlexNet (Krizhevsky et al., 2012) is a CNN, which has five
convolutional layers (the number of filters for the five layers is
96, 256, 384, 384, and 256, respectively), interleaved with max
pooling layers and local response normalization (LRN) layers.
Each layer consists of a set of feature maps. A feature map of a
convolutional layer is an ensemble of the responses of a filter on
the output of the preceding layer. A max pooling layer or LRN
layer has the same number of feature maps as its preceding layer.
These layers were grouped into five big layers in the bottom-up
direction (Figure 1B), named LAYER1 to LAYER5, each starting
with a convolutional layer and ending with the preceding layer
of the next convolutional layer. Therefore, the number of feature
maps in each big layer was a multiple of the number of filters in
the corresponding convolutional layer. VggNet (Simonyan and
Zisserman, 2015) is a deeper CNN having 19 convolutional layers
separated by four max pooling layers into five groups. The five
groups, separated by four max pooling layers, each consisting
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FIGURE 10 | Effect of different RF sizes on modulation. (A) Illustration of the

control models obtained by separating the feature maps of two consecutive

layers of a baseline model into two sets (e.g., the lower layer is split into set b

and set c) such that the RF size of units in set a is equal to that of units in set

b, but larger than that of units in set c. The RF sizes are illustrated in the right

panel. (B,C) PMIs of different sets of units (drawn in the same colors as in (A)

in control models based on SHMAX and SmCNN. For SHMAX, controls 1–3

correspond to models with modifications in LAYER2 and LAYER3, LAYER3

and LAYER4, and LAYER4 and LAYER5, respectively. For SmCNN, controls 1

and 2 correspond to models with modifications in LAYER1 and LAYER2, and

LAYER3 and LAYER4, respectively. The error bars indicate standard deviation

over 10 models trained in the same way but from different initial values of

parameters. Statistical analysis between set a and set b is one-tailed paired

t-tests, and between set b and set c is two-tailed paired t-tests. **P < 0.01;

***P < 0.001; n.s., not significant.

of two to four consecutive convolutional layers, were named
LAYER1 to LAYER5. The numbers of filters in the five layers
were 64 × 2, 128 × 2, 256 × 4, 512 × 4, and 512 × 4,
respectively, where the first number is the number of filters in
a convolutional layer and the second number is the number
of convolutional layers in the corresponding big layer. Both
AlexNet and VggNet have some fully connected layers and an
output layer; however, these layers were not investigated in this
study because their structures differ significantly from that of
the convolutional layers, pooling layers, and LRN layers. For
fast training in an experiment (Figure 10), a small CNN, termed
SmCNN, was designed. It was obtained by deleting LAYER5
in AlexNet and decreasing the number of filters in the lower
layers and the number of units in the fully connected layers.
The numbers of filters in LAYER1 to LAYER4 were 64, 192,
160, and 128, respectively. The numbers of hidden units in
fully connected layers were all 2048. The activation function in
AlexNet and VggNet is the rectified linear function f (x) =

max(x, 0). SHMAX (Hu et al., 2014) is a deep learning model
consisting of alternating sparse coding layers and max pooling
layers. A SHMAX with a similar architecture to the first five big
layers of AlexNet was designed by deleting the LRN layers and

substituting the convolutional layers with sparse coding layers.
The pooling layers were the same as those in AlexNet, including
pooling sizes and strides.

AlexNet and VggNet were trained on 1.2 million images
in 1,000 classes from the ILSVRC2012 dataset (Russakovsky
et al., 2015). The models were directly tested using the pre-
trained weights downloaded from the website of MatConvNet
(Vedaldi and Lenc, 2015). SmCNN was trained on one-fourth of
the dataset using Cuda-convnet2 (Krizhevsky et al., 2012). The
performance of the model for classification was satisfactory (top-
1 error rate 59.128% and top-5 error rate 34.156% on∼5.0× 104

test images).
SHMAX was trained by layer-wise sparse coding with the

constraint that unit responses were non-negative.

minimize
∑K

j=1

(

∣

∣|xj − Asj|
∣

∣

2

2
+ λ

∣

∣|sj|
∣

∣

1

)

(1)

subject to
∣

∣|ai|
∣

∣

2

2
≤ 1, sij ≥ 0, ∀i = 1, . . . ,M; j = 1, . . . ,K,

where xj is an input (image patch for the first convolutional layer
or feature patch for other convolutional layers), each column of
A, denoted by ai, is a basis, and sj is the coefficient vector, which
can be regarded as responses of M units to the input xj. The
parameter λ in the objective function controls the balance of the
reconstruction error (the first term) and the level of population
sparseness (the second term). Unless otherwise stated, parameter
λ was set to 0.15 for LAYER1 and LAYER2, and to 0.1 for
LAYER3 to LAYER5. Training this model with a large dataset
was technically difficult because it demanded a huge memory.
Therefore, 1.0 × 104 images were randomly chosen from the
ILSVRC2012 dataset as training images. To learn the bases for the
current layer, for every training image, 200 patches of the same
size were randomly selected from this layer.

Calculating the Modulation Index
For each layer, every element in every feature map was treated
as a model “neuron,” or unit, in that layer. For example, in the
first convolution layer of AlexNet, there were 55 × 55 ×

96 = 290400 units, where the first two numbers corresponded
to the dimensions of the feature map and the third number
corresponded to the number of filters.

In CNN, the response of a unit was the value after the linear
rectifier activation function, which was always non-negative. In
SHMAX, the unit response was calculated according to Equation
(1) based on learned bases A, which was also non-negative. The
modulation index of a unit was defined as the difference in its
responses to the CM and SM image pair generated from the
same natural image divided by their sum, then averaged over
all CM–SM pairs. If the unit did not respond to either the CM
image or the SM image in a CM–SM pair, then this pair was
excluded in calculating the modulation index for the unit. The
PMI was defined as the mean modulation index of a set of units,
for example, all units in a layer of a model, with respect to a
set of images. If a unit did not respond to any image in the
dataset, it was excluded in calculating the PMI. Unless otherwise
indicated, PMI was calculated over all CM–SM pairs across all
texture families.
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FIGURE 11 | Effect of training images on modulation. (A) Comparison of PMIs in different layers of SHMAX and SmCNN trained on natural and SM images. The error

bars indicate standard deviation over 10 trials with different initial parameters. (B) The correlations of different groups of statistics in CM and SM images. Each dot

corresponds to a pair of images. (C) The cartoon illustrates why the position-related statistics in the CM and SM images were highly correlated. A 2D Fourier

component of the original image is shown on the left, and, after phase shuffling, it becomes a component of the SM image, which is shown on the right. The Gabor

filter represents a linear V1-like filter that was applied to the images to calculate responses. Correlations of these responses across locations on CM and SM images

were highly correlated because they were insensitive to phase shuffling. (D) The cartoon illustrates why scale-related statistics in CM and SM images were less

correlated. In calculating scale-related statistics, different Fourier components with different scales were used, with phases randomized independently, which led to

less correlation of these statistics between CM and SM images.

RD between Two Sequences of Orders
Let X and Y denote two sequences of orders (two permutations
of 1–n). For every number xi inX, denote its index in Y by fY (xi).
RD between X and Y is defined as

Dn (X,Y) =
∑n

i=1

∣

∣

∣

∣

log

(

i

fY (xi)

)
∣

∣

∣

∣

. (2)

It can be proved that RD is a valid distance. To show this,
the distance defined in Equation (2) must satisfy the following
conditions:

1. Dn (X,Y) ≥ 0 (non-negativity)
2. Dn (X,Y) = 0 ⇐⇒ X = Y (identity of indiscernibles)
3. Dn (X,Y) = Dn (Y ,X) (symmetry)
4. Dn (X,Z) ≤ Dn (X,Y) + Dn (Y ,Z) (triangle inequality),

where X,Y are two arbitrary permutation sequences of 1–n.
It is obvious that the first condition holds. The second

condition is proved as follows.

• If Dn (X,Y) = 0, then for all i ∈ {1, 2, . . . , n}, log
(

i
fY (xi)

)

= 0

and i
fY (xi)

= 1, which indicates xi = yi according to the

definition of fY (xi). In other words, X = Y .
• If X = Y , obviously Dn (X,Y) = 0.

The third condition holds because of the following:
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In the above reasoning, we used the fact that
{fY (x1) , fY (x2) , . . . , fY (xn)} is also a permutation sequence of
1–n. The fourth condition is proved as follows.
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In the above reasoning, we used the facts: yfY (xi) = xi,
{fY (x1) , fY (x2) , . . . , fY (xn)} is a permutation sequence of 1–n,
and |x| +

∣

∣y
∣

∣ ≥
∣

∣x+ y
∣

∣. Therefore, RD is a valid distance (or
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FIGURE 12 | Classification accuracies of the AlexNet control models on the ImageNet test set. (A) Performance vs. PMI for AlexNet control 1 and AlexNet control 2.

(B) Performance vs. lifetime sparseness for AlexNet control 1 and AlexNet control 2. For control model 1, with higher PMI, the performance decreases. For control

model 2, within a wide range of PMI, the performances are similar. These results indicate that high PMI is not a sign of a better model in terms of classification

performance.

metric). The smaller the RD between two sequences, the more
consistent the sequences are.

The permutation test can be used to determine whether
two sequences are consistent. First, a large number of random
permutations of 1–n are generated. The RD values between them
are then calculated. These distances constitute a distribution of
the null hypothesis that two sequences are inconsistent. The
percent of distances in the distribution smaller than the distance
between the two tested sequences is the P-value of the test.

Fitting the Modulations of Top Layer Units
Using Image Statistics
The aim here was to predict the PMIs in LAYER5 of the
models to a pair of CM–SM images based on the statistics
of the corresponding natural image used to generate the CM
image (Figure 4). The statistics of each image consisted of 1,104
parameters, which were grouped as follows (Freeman et al.,
2013; Okazawa et al., 2015): (1) marginal statistics (including
skewness and kurtosis); (2) spectral statistics (average energy
in sub-bands); (3) correlations of linear filter responses at
neighboring locations; (4) correlations of linear filter responses at
neighboring scales; and (5) correlations of energy filter responses
at neighboring orientations, (6) neighboring locations, and (7)
neighboring scales. Each parameter was transformed by taking its
signed square root followed by z-score normalization such that its
mean was zero and its standard deviation was one (Freeman et al.,
2013). The number of parameters was too large for predicting a
set of unit PMIs with respect to a pair of CM–SM images, as there
were only 1,000 image pairs. Principal component analysis (PCA)
was then performed on different groups of parameters separately,
and the first several components were selected to cover more
than 90% of the variance, usually 4–12 components. Finally,
74 parameters were obtained that made linear fitting feasible
(Figure 4A).

To compute the contributions of different groups of
parameters to the PMI, a procedure known as averaging-over-
orderings was followed (Gromping, 2007). The contribution
of a particular group of parameters was measured by the
difference in R2 of the linear fitting between a model
with this group of parameters and a model without it.
Since the difference depended on the order in which
this group of parameters was added, differences for all
possible orders of additions were computed and the
results were averaged to obtain the final contribution.
The averaged difference was divided by the R2 of the full
model to obtain the percentage contribution of this group of
parameters.

Calculation of Response Sparseness
Four types of unit response sparseness were calculated
based on the responses of the units to 2000 images
randomly selected from the ILSVRC2012 dataset
(Russakovsky et al., 2015). The definition of the lifetime
sparseness of a unit was as follows (Willmore et al.,
2011):

S = 1−
(E[r])2

E[r2]
, (3)

where the expectation was taken across all test images and r
denotes the response of the unit. The non-firing sparseness
of a unit was simply the frequency with which that unit did
not respond. The lifetime kurtosis of a unit was the fourth
standardized moment across its response to all natural images
(Vinje and Gallant, 2000). Unlike the aforementioned three types
of sparseness, which were defined for single units, population
sparseness was defined for a population of units, usually all
units in one layer of a deep learning model. For each input
image, it was calculated according to Equation (3), but the
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expectation was taken across all units (Willmore and Tolhurst,
2001).

Changing Sparseness of SHMAX
For each of the three control experiments (Figures 6B, 7B, 8B,
9B), we only changed the sparseness of a particular layer, that
is, LAYER3, LAYER4, or LAYER5. This was achieved by setting
different λ values in equation (1) for sparse coding in the present
big layer (λ was fixed at default values in preceding layers). In the
experiments, 0.01, 0.02, 0.05, 0.1, 0.25, 0.35, and 0.45 were used
for λ. For every setting, 10 models were trained starting from
different initial values.

Changing Sparseness of AlexNet
To control the population response sparseness of units in the j-th
layer of AlexNet, a regularization term was added to the original
loss function Lorig

minimize Lorig + λ

∣

∣

∣

∣rj

∣

∣

∣

∣

1
, (4)

where rj denotes the responses of units in the j-th convolution
layer after the linear rectifier activation function, and λ

is a balancing parameter. In two control experiments
(Figures 6C, 7C, 8C, 9C), the sparseness of LAYER 2 and
then LAYER 4 was changed. For LAYER 2, λ varied among
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 10} × 10−10; and, for
LAYER 4, it varied among {0.01, 0.03, 0.1, 0.3, 1, 3, 10} ×

10−10. For every setting, five models were trained starting from
different initial values. The classification performances of these
sparseness-controlled models on the ImageNet dataset are
presented in Figure 12.

The sparse activity in the baseline AlexNet is mainly
introduced by the rectified linear activation function. A control
model was constructed by replacing this function in AlexNet
with the sigmoid activation function f (x) = 1

1+exp(−x)
, which

does not introduce as much sparse activity as the rectified
linear function. But training such a model on the ImageNet
dataset is difficult due to the notorious gradient vanishing
effect (Hochreiter, 1991). This difficulty is alleviated by adding
a batch normalization layer (Ioffe and Szegedy, 2015) after
each convolution layer. Five models were trained starting from
different initializations and each of them achieved roughly 51%
of top-1 error rate.

Changing RF Size
To investigate the effect of RF size on a baseline (single-chain)
model, the feature maps of two consecutive layers were separated
into two sets (e.g., the lower layer was split into set b and set c) and
two parallel paths in these layers were constructed (Figure 10A).
Different kernel sizes were used in these sets such that the RF
size of units in set a was equal to that of units in set b, but larger
than that of units in set c, as illustrated in Figure 10A (right).
Paddings were used to ensure that the two sets of feature maps
in the second stage of the parallel paths were of the same size,
which was necessary for constructing subsequent layers. This
approach was applied to three pairs of layers in SHMAX, namely,

LAYER2 and LAYER3, LAYER3 and LAYER4, and LAYER4
and LAYER5, and two pairs of layers in SmCNN, i.e., LAYER1
and LAYER2, and LAYER3 and LAYER4. Other settings and the
training schemes remained the same as those for the baseline
models.

Statistical Testing
Except where noted, all statistical tests for the differences of
modulation in two conditions were one-tailed unpaired t-
tests. Because each layer of the models had a large number
of units (usually hundreds of thousands), trivial differences
between two layers would become significant using a standard
t-test. To rectify this problem, a random sampling t-test (RST)
approach was employed. For comparing the mean modulation
indices of two groups of units (Figure 2, left) or the mean
modulation index of one group with zero (Figure 2, right),
100 units from the groups were repeatedly sampled 500 times
and standard t-tests were performed each time; then the P-
values were averaged to obtain the final P value. This random
sampling procedure simulated electrode recordings in the
brain.

Analysis of the significance of the modulation for each unit
(Figure 2, left, red curves) was computed using a randomization
test (Freeman et al., 2013). The labels of all CM images and
SM images were randomly shuffled, and the modulation index
of each unit was computed. This procedure was repeated
1 × 104 times. Then, the fraction of the resulting null
distribution that was larger than the original modulation index
for that unit was computed. If this fraction was smaller
than 0.05, the unit showed a significant positive modulation
index.
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