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Hierarchical temporal memory (HTM) provides a theoretical framework that models

several key computational principles of the neocortex. In this paper, we analyze an

important component of HTM, the HTM spatial pooler (SP). The SP models how neurons

learn feedforward connections and form efficient representations of the input. It converts

arbitrary binary input patterns into sparse distributed representations (SDRs) using a

combination of competitive Hebbian learning rules and homeostatic excitability control.

We describe a number of key properties of the SP, including fast adaptation to changing

input statistics, improved noise robustness through learning, efficient use of cells, and

robustness to cell death. In order to quantify these properties we develop a set of

metrics that can be directly computed from the SP outputs. We show how the properties

are met using these metrics and targeted artificial simulations. We then demonstrate

the value of the SP in a complete end-to-end real-world HTM system. We discuss the

relationship with neuroscience and previous studies of sparse coding. The HTM spatial

pooler represents a neurally inspired algorithm for learning sparse representations from

noisy data streams in an online fashion.

Keywords: hierarchical temporal memory, spatial pooler, sparse coding, competitive learning, Hebbian learning,

online learning, sparse distributed representations

INTRODUCTION

Our brain continuously receives vast amounts of information about the external world through
peripheral sensors that transform changes in light luminance, sound pressure, and skin
deformations into millions of spike trains. Each cortical neuron has to make sense of a flood of
time-varying inputs by forming synaptic connections to a subset of the presynaptic neurons. The
collective activation pattern of populations of neurons contributes to our perception and behavior.
A central problem in neuroscience is to understand how individual cortical neurons learn to
respond to specific input spike patterns, and how a population of neurons collectively represents
features of the inputs in a flexible, dynamic, yet robust way.

Hierarchical temporal memory (HTM) is a theoretical framework that models a number of
structural and algorithmic properties of the neocortex (Hawkins et al., 2011). HTM networks can
learn time-based sequences in a continuous online fashion using realistic neuron models that
incorporate non-linear active dendrites (Antic et al., 2010; Major et al., 2013) with thousands of
synapses (Hawkins and Ahmad, 2016). When applied to streaming data, HTM networks achieve
state of the art performance on anomaly detection (Lavin and Ahmad, 2015; Ahmad et al., 2017)
and sequence prediction tasks (Cui et al., 2016a).
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The success of HTM relies on the use of sparse distributed
representations (SDRs) (Ahmad and Hawkins, 2016). Such
sparse codes represent a favorable compromise between local
codes and dense codes (Földiák, 2002). It allows simultaneous
representation of distinct items with little interference, while
still maintaining a large representational capacity (Kanerva,
1988; Ahmad and Hawkins, 2015). Existence of SDRs have been
documented in auditory, visual and somatosensory cortical areas
(Vinje and Gallant, 2000; Weliky et al., 2003; Hromádka et al.,
2008; Crochet et al., 2011). HTM spatial pooler (SP) is a key
component of HTM networks that continuously encodes streams
of sensory inputs into SDRs. Originally described in Hawkins
et al. (2011), the term “spatial pooler” is used because input
patterns that share a large number of co-active neurons (i.e., that
are spatially similar) are grouped together into a common output
representation. Recently there has been increasing interest in
the mathematical properties of the HTM spatial pooler (Pietron
et al., 2016; Mnatzaganian et al., 2017) and machine learning
applications based on it (Thornton and Srbic, 2013; Ibrayev et al.,
2016). In this paper, we explore several functional properties of
the HTM spatial pooler that have not yet been systematically
analyzed.

The HTM spatial pooler incorporates several computational
principles of the cortex. It relies on competitive Hebbian learning
(Hebb, 1949), homeostatic excitability control (Davis, 2006),
topology of connections in sensory cortices (Udin and Fawcett,
1988; Kaas, 1997), and activity-dependent structural plasticity
(Zito and Svoboda, 2002). The HTM spatial pooler is designed
to achieve a set of computational properties that support
further downstream computations with SDRs. These properties
include (1) preserving topology of the input space by mapping
similar inputs to similar outputs, (2) continuously adapting to
changing statistics of the input stream, (3) forming fixed sparsity
representations, (4) being robust to noise, and (5) being fault
tolerant. As an integral component of HTM, the outputs of the SP
can be easily recognized by downstream neurons and contribute
to improved performance in an end-to-end HTM system.

The primary goal of this paper is to provide a thorough
discussion of the computational properties of the HTM spatial
pooler and demonstrate its value in end-to-end HTM systems.
The paper is organized as follows. We first introduce the
HTM spatial pooler algorithm. We discuss the computational
properties in detail and then describe a set of metrics to quantify
them. We demonstrate how these properties are satisfied, first
using specific isolated simulations, and then in the context of
an end-to-end HTM system. The main purpose of the paper
is to study the role of the SP as demonstrated by applying
it to HTM systems. In the discussion, we propose potential
neural mechanisms and discuss the relationship to existing sparse
coding techniques.

MODEL

The SP is a core component of HTM networks (Figure 1A). In
an end-to-end HTM system, the SP transforms input patterns
into SDRs in a continuous online fashion. The HTM temporal

memory learns temporal sequences of these SDRs and makes
predictions for future inputs (Cui et al., 2016a; Hawkins and
Ahmad, 2016). A single layer in an HTM network is structured
as a set of mini-columns, each with a set of cells (Figure 1B).
The HTM neuron model incorporates dendritic properties of
pyramidal cells in neocortex (Spruston, 2008), where proximal
and distal dendritic segments on HTM neurons have different
functions (Figure 1C) (Hawkins and Ahmad, 2016). Patterns
detected on proximal dendrites lead to action potentials and
define the classic receptive field of the neuron. Patterns
recognized by a neuron’s distal synapses act as predictions by
depolarizing the cell without directly causing an action potential.

InHTM theory, different cells within amini-column represent
this feedforward input in different temporal contexts. The SP
models synaptic growth in the proximal dendritic segments.
Since cells in a mini-column share the same feedforward classical
receptive field (Buxhoeveden, 2002), the SP models how this
common receptive field is learned from the input. The SP
output represents the activation of mini-columns in response
to feedforward inputs. The HTM temporal memory models a
cell’s distal dendritic segments and learns transitions of SDRs
by activating different sets of cells depending on the temporal
context (Hawkins and Ahmad, 2016). The output of HTM
temporal memory represents the activation of individual cells
across all mini-columns.

The SP models local inhibition among neighboring mini-
columns. This inhibition implements a k-winners-take-all
computation (Majani et al., 1988; Makhzani and Frey, 2015). At
any time, only a small fraction of the mini-columns with the most
active inputs become active. Feedforward connections onto active
cells are modified according to Hebbian learning rules at each
time step. A homeostatic excitatory control mechanism operates
on a slower time scale. The mechanism is called “boosting” in
Hawkins et al. (2011), because it increases the relative excitability
of mini-columns that are not active enough. Boosting encourages
neurons with insufficient connections to become active and
participate in representing the input.

Each SP mini-column forms synaptic connections to a
population of input neurons. We assume that the input neurons
are arranged topologically in an input space. We use xj to denote
the location of the jth input neuron and binary variable zj to
denote its activation state. The dimensionality of the input space
depends on applications. For example, the input space is two-
dimensional if the inputs are images and one-dimensional if the
inputs are scalar numbers. A variety of encoders are available to
deal with different data types (Purdy, 2016). The output neurons
are also arranged topologically in a different space; we denote the
location of the ith SP mini-column as yi.

We use HTM neuron models in the SP (Figure 1B). A
complete description of the motivation and supporting evidence
for this model can be found in Hawkins and Ahmad (2016). In
thismodel, the learning rule is inspired by neuroscience studies of
activity-dependent synaptogenesis (Zito and Svoboda, 2002). The
synapses for the ith SPmini-column are located in a hypercube of
the input space centered at xci with an edge length of γ . Each SP
mini-column has potential connections to a fraction of the inputs
in this region. We call these “potential” connections because a
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FIGURE 1 | HTM spatial pooler. (A) An end-to-end HTM system consists of an encoder, the HTM spatial pooler, the HTM temporal memory, and an SDR classifier.

(B) The HTM spatial pooler converts inputs (bottom) to SDRs (top). Each SP mini-column forms synaptic connections to a subset of the input space (gray square,

potential connections). A local inhibition mechanism ensures that a small fraction of the SP mini-columns that receive most of the inputs are active within the local

inhibition radius (shaded blue circle). Synaptic permanences are adjusted according to the Hebbian rule: for each active SP mini-column, active inputs (black lines) are

reinforced and inactive inputs (dashed lines) are punished. (C) An HTM neuron (left) has three distinct dendritic integration zones, corresponding to different parts of

the dendritic tree of pyramidal neurons (right). The SP models the feedforward connections onto the proximal dendrite. (D) The excitability of a SP mini-column

depends on its past activation frequency.

synapse is connected only if its synaptic permanence is above the
connection threshold. The set of potential input connections for
the ith mini-column is initialized as,

5i = { j | I(xj;x
c
i , γ ) and Zij < p} (1)

I(xj;x
c
i , γ ) is an indicator function that returns one only if xj is

located within a hypercube centered at xci with an edge length of
γ . Zij ∼ U(0, 1) is a random number uniformly distributed in
[0, 1], p is the fraction of the inputs within the hypercube that are
potential connections. The potential connections are initialized
once and kept fixed during learning.

We model each synapse with a scalar permanence value and
consider a synapse connected if its permanence value is above a
connection threshold. We denote the set of connected synapses
with a binary matrixW,

Wij =

{

1 if Dij ≥ θc
0 otherwise

(2)

where Dij gives the synaptic permanence from the jth input to
the ith SP mini-column. The synaptic permanences are scalar

values between 0 and 1, which are initialized to be independent
and identically distributed according to a uniform distribution
between 0 and 1 for potential synapses.

Dij =

{

U(0, 1) if j ∈ 5i

0 otherwise
(3)

The connection threshold θc is set to be 0.5 for all experiments,
such that initially 50% of the potential synapses are connected.
Performance of the SP is not sensitive to the connection threshold
parameter.

Neighboring SP mini-columns inhibit each other via a local
inhibition mechanism. We define the neighborhood of the ith SP
mini-column yi as

Ni = { j |
∥

∥yi−yj
∥

∥ < φ, j 6= i} (4)

where
∥

∥yi − yj
∥

∥ is the Euclidean distance between the mini-
column i and j. Since local inhibition occurs among neighboring
mini-columns, the parameter φ controls the inhibition radius.
Local inhibition is important when the input space has topology,
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that is, when neighboring input neurons represent information
from similar sub-regions of the input space. The inhibition radius
is dynamically adjusted to ensure local inhibition affects mini-
columns with inputs from the same region of the input space.
That is, φ increases if the average receptive field size increases.
Specifically, φ is determined by the product of the average
connected input spans of all SP mini-columns and the number
of mini-columns per input. If SP inputs and mini-columns have
the same dimensionality, φ = γ initially. In practice we also
deal with input spaces that have no natural topology, such as
categorical information (Purdy, 2016). In this case there is no
natural ordering of inputs and we use an infinitely large φ to
implement global inhibition.

Given an input pattern z, the activation of SP mini-columns
is determined by first calculating the feedforward input to each
mini-column, which we call the input overlap

oi = bi
∑

j

Wijzj (5)

where bi is a positive boost factor that controls the excitability of
each SP mini-column.

A SP mini-column becomes active if the feedforward input is
above a stimulus threshold θstim and is among the top s percent of
its neighborhood,

ai =

{

1 if oi ≥ Z (Vi, 100− s) and oi ≥ θstim
0 otherwise

(6)

We typically set θstim to be a small positive number to prevent
mini-columns without sufficient input to become active. Z(X, p)
is the percentile function that returns percentiles of the values in
a data vector X for the percentages p in the interval [0, 100]. Vi

is the overlap values for all neighboring mini-columns of the ith
mini-column.

Vi = {oj|j ∈ Ni} (7)

s is the target activation density (we typically use s = 2%). The
activation rule (Equations 6–7) implements k-winners-take-all
computation within a local neighborhood. It has been previously
shown that such computation can be realized by integrate-and-
fire neuron models with precise spike timings (Billaudelle and
Ahmad, 2015). In this study, we use discrete time steps to speed
up simulation.

The feedforward connections are learned using a Hebbian
rule. For each active SP mini-column, we reinforce active input
connections by increasing the synaptic permanence by p+,
and punish inactive connections by decreasing the synaptic
permanence by p−. The synaptic permanences are clipped at the
boundaries of 0 and 1.

To update the boost factors, we compare the recent activity
of each mini-column to the recent activity of its neighbors. We
calculate the time-averaged activation level for the each mini-
column over the last T inputs as

ai(t) =
(T − 1) ∗ ai(t − 1)+ ai(t)

T
(8)

where ai(t) is the current activity of the ith mini-column at time
t. T controls how fast the boost factors are updated. Because
the activity is sparse it requires many steps before we can get a
meaningful estimate of the activation level. Typically we choose
T to be 1,000. The time-averaged activation level in Equation (8)
can be approximated by low-pass filtering of the voltage signal
or intracellular calcium concentration. Similar calculations have
been used in previous models of homeostatic synaptic plasticity
(Clopath et al., 2010; Habenschuss et al., 2013).

The recent activity in the mini-column’s neighborhood is
calculated as

< ai(t) >=
1

|Ni|

∑

j∈Ni

aj(t) (9)

Finally, the boost factor bi is then updated based on the difference
between ai (t) and < āi(t) > as shown in Figure 1D.

bi = e−β(āi(t)−<āi(t)>) (10)

Here, β is a positive parameter that controls the strength of the
adaptation effect. The above boosting mechanism is inspired by
studies of homeostatic regulation of neuronal excitability (see
(Davis, 2006) for a review). The mechanism encourages efficient
use of mini-columns by increasing the gain of mini-columns
with sufficiently low average firing rate. The exact formula is not
critical; we chose Equation (10) due to its simplicity.

RESULTS

Properties of the HTM Spatial Pooler
In this section, we describe a set of desirable properties for the
HTM spatial pooler. These properties ensure flexible and robust
representations of input streams with changing statistics, and are
important for downstream neural computations.

The first property of the SP is to form fixed-sparsity
representations of the input. To contribute to further neural
computation, the outputs of the SP have to be recognized by
downstream neurons. A cortical neuron recognizes presynaptic
input patterns by initiating non-linear dendritic spikes (Major
et al., 2013) or somatic action potentials (Bean, 2007), with
thresholds depending on intrinsic cellular properties. It has
been previously shown that recognition of presynaptic activation
patterns is robust and reliable if the presynaptic inputs have a
fixed level of sparsity (Ahmad and Hawkins, 2016). However, if
the sparsity is highly variable, input patterns with high activation
densities would be more likely to cause dendritic spikes or action
potentials in downstream neurons, whereas patterns with low
activation densities would be much harder to detect. This will
contribute to high false positive error for high density patterns
and false negative error for low density patterns. A fixed sparsity
is desirable because it ensures all input patterns can be equally
detected.

A second desirable property is that the system should utilize
all available resources to learn optimal representations of the
inputs. From an information theoretic perspective, neurons that
are almost always active and neurons that do not respond to any
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of the input patterns convey little information about the inputs.
Given a limited number of neurons, it is preferable to ensure
every neuron responds to a fraction of the inputs such that all
neurons participate in representing the input space. The boosting
mechanism in the SP (Equations 8–10) is designed to achieve
this goal. We quantify this property using an entropy metric (see
details below).

A third desirable property is that output representations
should be robust to noise in the inputs. Real-world problems
often deal with noisy data sources where sensor noise, data
transmission errors, and inherent device limitations frequently
result in inaccurate or missing data. In the brain, the responses
of sensory neurons to a given stimulus can vary significantly
(Tolhurst et al., 1983; Faisal et al., 2008; Masquelier, 2013; Cui
et al., 2016b). It is important for the SP to have good noise
robustness, such that the output representation is relatively
insensitive to small changes in the input.

A fourth property is that the system should be flexible and
able to adapt to changing input statistics. The cortex is highly
flexible and plastic. Regions of the cortex can learn to represent
different inputs in reaction to changes in the input data. If the
statistics of the input data changes, the SP should quickly adapt to
the new data by adjusting its synaptic connections. This property
is particularly important for applications with continuous data
streams that has fast-changing statistics (Cui et al., 2016a).

Finally, a fifth property is that the system should be fault
tolerant. If part of the cortex is damaged, as might occur in
stroke or traumatic brain injury, there is often an initial deficit
in perceptual abilities and motor functions which is followed
by substantial recovery that occurs in the weeks to months
following injury (Nudo, 2013). It has also been documented
that the receptive fields of sensory neurons reorganize following
restricted lesions of afferent inputs, such as retinal lesions (Gilbert
and Wiesel, 1992; Baker et al., 2005). The SP should continue to
function in the event of system faults such as loss of input or
output neurons in the network.

Spatial Pooler Metrics
In addition to gauging performance in end-to-end HTM systems,
we would like to quantify the performance of SP as a standalone
component. Since the SP is an unsupervised algorithm designed
to achieve multiple properties, we describe several statistical
metrics that can be directly calculated based on the inputs
and outputs of the SP. Such metrics are particularly useful if
configurations of the SP caused the end-to-end HTM system to
have poor performance.

Metric 1: Sparseness
We define the population sparseness as

st =
1

N

N
∑

i= 1

ati (11)

ati is the activity of the ith mini-column at time step t, N
is the number of SP mini-columns. This metric reflects the
percentage of active neurons at each time step. Since we consider
binary activations (Equation 6), the sparsity is straightforward

to calculate. This metric has the same spirit as other population
sparseness metrics for scalar value activations (Willmore and
Tolhurst, 2001). We can quantify how well the SP achieves a fixed
sparsity by looking at the standard deviation of the sparseness
across time.

Metric 2: Entropy
Given a dataset of M inputs, the average activation frequency of
each SP mini-column is

P(ai) =
1

M

M
∑

t= 1

ati (12)

The entropy of the ith SP mini-column is given by the binary
entropy function

Si = −P(ai) log2P(ai)− (1− P(ai))log2(1− P(ai)) (13)

If P(ai) equals zero or one, we set Si to zero following convention.
We define the entropy of the spatial pooler as

S =
∑N

i= 1
Si (14)

Since the average sparseness is almost constant in SP, the entropy
is maximized when every SP mini-column has equal activation
frequency. The SP will have low entropy if a small number of
the SP mini-columns are active very frequently and the rest are
inactive. Therefore, the entropy metric quantifies whether the SP
efficiently utilizes all mini-columns.

Metric 3: Noise Robustness
We test noise robustness by measuring the sensitivity of the SP
representation to varying amount of input noise. We denote a
clean input and a noise contaminated input as zi and zi

′(k),
respectively, where k denotes the amount of noise added to the
input. The corresponding SP outputs are denoted as ai and ai

′(k),
respectively. In our simulations, we randomly flip k percent of the
active input bits to inactive, and flip the corresponding number
of inactive input bits to active. This procedure randomizes inputs
while maintaining constant input sparsity. We vary the amount
of noise between 0 and 100%, and measure the fraction of shared
active mini-columns in the SP output, averaged over a set of M
inputs. The noise robustness index is defined as

R =
1

M

M
∑

i=1

1
∫

k= 0

‖ai ◦ ai
′(k)‖0

‖ai‖0
dk (15)

The L0-norm ‖·‖0 gives the number of non-zero bits in a binary
vector; the ◦ operator represents element-wise multiplication.
Note that with binary vectors the L0-norm is identical to the L1-
norm. The noise robustness index measures the area under the
output overlap curve in Figure 2C. The fraction of shared active
mini-columns start at 100% when noise is zero, and decreases
toward 0 as the amount of noise increases. The noise robustness
thus lies between 0 and 1.
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FIGURE 2 | Spatial pooler forms SDRs with fixed sparsity and good noise robustness. (A) We trained SP on a set of 100 randomly generated inputs (top). The input

sparsity varies between 2 to 20%. The sparsity of the SP output lies close to 2% (bottom), despite the large variation of input sparsity. Only the first 200 dimensions of

the input vectors are shown. (B) Entropy before and after learning, averaged across 10 repeated experiments (*p < 10−16, n = 10, paired t-test). The maximum

possible entropy is shown as the black dashed line. (C) The distribution of activation frequency of SP mini-columns. Before learning (left), a significant fraction of the

SP mini-columns (∼30%) are not being used at all, while other mini-columns are active much more frequently. After learning (right), almost every mini-column is active

for 2% of the time, suggesting every SP mini-column participate in representing the input. As a result, the entropy of the distribution is much higher. (D,E) Noise

robustness of SP. We tested SP on noisy inputs during learning. (D) The change of the SP outputs is plotted as a function of the noise level. Before learning, a small

amount of noise will lead to significant change in the SP output (blue), whereas after learning, there is almost no change in the SP output when 50% of the input bits

changed. (E) Average noise robustness before and after learning (*p < 10−16, n = 10, paired t-test).

Metric 4: Stability
Since the SP is a continuously learning system, it is possible
that the representation for a given input changes over time
or becomes unstable. Instability without changes in the
input statistics could negatively impact downstream processes.
We measure stability by periodically disabling learning and
presenting a fixed random subset of the input data. The
stability index is the average fraction of active mini-columns that
remained constant for each input.

Denote the SP output to the ith test input at the jth test point

as a
j
i, the stability index at test point j is given as

T(j) =
1

M

M
∑

i= 1

‖a
j
i ◦ a

j− 1
i ‖0

‖a
j− 1
i ‖0

(16)

M is the number of inputs tested. The stability lies between 0 and
1, and equals 1 for a perfectly stable SP. Note that the superscript j
is the index for test points instead of time steps in Equation (16).
We compute the percentage overlap between the SP outputs to
the same test inputs across consecutive test points. We train the
SP on the entire set of training data between test points.

Simulation Details
We ran a number of different simulations (datasets described
below). We used either a two-dimensional SP with 32× 32 mini-
columns for experiments with topology, or a dimensionless SP
with 1,024 mini-columns for experiments without topology. The
complete set of SP parameters is given in Table 1. The source
code for all experiments are openly available at: https://github.
com/numenta/htmpapers.

TABLE 1 | Parameters for the HTM spatial pooler.

Common parameters Value

Activation density 2%

Connection threshold for synaptic permanence θc 0.5

Synaptic permanence increment p+ 0.1

Synaptic permanence decrement p− 0.02

Boosting strength β 100

Activation frequency duty cycle T 1,000

Stimulus threshold θstim 1

Fraction of potential inputs p 1

PARAMETERS FOR THE ONE-DIMENSIONAL SPATIAL POOLER

(NO TOPOLOGY)

Column dimensions 1,024 × 1

Potential input radius γ ∞

PARAMETERS FOR THE TWO-DIMENSIONAL SPATIAL POOLER

(WITH TOPOLOGY)

Column dimensions 32 × 32

Potential input radius γ 5

We presented each dataset in a streaming online fashion. Each
dataset is presented to the SP in one or more epochs. We define
an epoch as a single pass through the entire dataset in random
order. Note that this definition of epoch is different from batch
training paradigm because the SP receives one input pattern at a
time and does not maintain any buffer of the entire dataset. We
measured SP metrics between epochs on a random subset of the
input data with learning turned off. In practice, the metrics could
also be monitored continuously during learning.
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We used the following datasets:

Random Sparse Inputs
In this experiment we created a set of 100 random inputs with
varying sparsity levels. Each input is a 32 × 32 image where a
small fraction of the bits are active. The fraction of active inputs
is uniformly chosen between 2 to 20%. This dataset employs a SP
with topology and is used in Figures 2, 3.

Random Bars and Crosses
The random bar dataset consists of 100 pairs of random bars.
Each random bar pair stimuli is a 10 × 10 image, with a
horizontal bar and a vertical bar placed at random locations. The
bars have a length of five pixels. Each random cross stimuli is
a 10 × 10 image with a single cross. The random cross dataset
consists of 100 cross patterns at random locations, where each
cross consists of a horizontal bar and a vertical bar that intersect
at the center. Each bar has a length of five pixels. This dataset is
used in Figures 4A,B.

MNIST
We trained a SP without topology on the MNIST database of
handwritten digits (Lecun et al., 1998). We present the full
training set of 60,000 examples in a single epoch to the SP. We
visually examined the receptive field structures of a subset of
randomly selected SP mini-columns after training. This dataset
is used in Figure 4C.

Fault Tolerance with Topology
For the fault tolerance experiment (Figure 5), we used images of
random bar sets as input. The input space has dimensionality of
32× 32 and each input contains six randomly located horizontal
or vertical bars. Each bar has a length of 7. We used an SP
with a two-dimensional topology and 32 × 32 mini-columns.

We first trained the intact SP on the random bars input until it
stabilized (after 18,000 inputs).We then tested two different types
of trauma: simulated stroke or simulated input lesion. During the
simulated stroke experiment, we permanently eliminated 121 SP
mini-columns that lie in an 11 × 11 region at the center of the
receptive field. For the simulated input lesion experiment, we did
not change the SP during the trauma. Instead, we permanently
blocked the center portion of the input space (121 inputs that lie
in an 11 × 11 region at the center of the input space). For both
experiments, we monitored the recovery of the SP for another
42,000 steps.

NYC Taxi Passenger Count Prediction
In addition to the above artificial datasets, we also tested the SP
in an end-to-end real-world HTM system.We chose the problem
of demand prediction for New York City taxis. The dataset is
publicly available via the New York City Metropolitan Authority.
Full details are described in our previous paper (Cui et al., 2016a).
As described in Figure 1, the input data stream is first converted
to binary representations using a set of encoders (Purdy, 2016).
The SP takes the output of the encoders as input and forms SDRs.
The HTM sequence memory then learns sequences of SDRs
and represents sequences with a sparse temporal code. Finally,
we use a single layer feedforward classification network to map
outputs of HTM sequence memory into real-time predictions for
future inputs. The task is to model a continuous stream within
the context of a real-time application. As such the SP, temporal
memory, and classifier all learn continuously. It is important for
the SP to output robust and efficient representations in order for
the downstream components to learn.

Following Cui et al. (2016a), we aggregated the passenger
counts in New York City taxi rides at 30-min intervals. We
encoded the current passenger count, time of day and day of week

FIGURE 3 | Continuous learning with HTM spatial pooler. SP continuously adapts to the statistics of the input data. SP is trained on a set of random inputs (described

in Figure 2) until it stabilizes. We then switch to a new set of inputs (black dashed line) and monitor the continuous adaptation of SP to the new dataset. (A) Statistical

metrics on SP during continuous learning: top: stability, second row: entropy; third row: noise robustness; fourth row: formation of new synapses; fifth row: removal of

synapses. (B) The entropy decreases right after the change of the input dataset (epoch = 50), and recovers completely after the SP is trained on the new dataset for

long enough time (epoch = 120). The black dashed line showed the theoretical limit for entropy given the sparsity constraint. (C) Distribution of activation frequency of

SP mini-columns right after the change in dataset (left) and after recovery (right). (D) Noise robustness before change (epoch = 49), right after change (epoch = 50),

and after recovery (epoch = 120). (E) The noise robustness decreases right after the change of the input dataset (blue vs. green), and recovers completely after the

SP is sufficiently trained on the new dataset (red).
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FIGURE 4 | Example receptive fields of SP. The receptive fields of SP mini-columns capture statistics of the input data. We define receptive field as the set of inputs

that are connected to a mini-column. (A) Example SP Receptive fields trained on random bar pairs. (B) Example SP receptive fields trained on random crosses. (C)

Example SP receptive fields trained on MNIST dataset.

into binary vectors using scalar and date-time encoders (Purdy,
2016). A SP with global inhibition was trained continuously on
the outputs of encoders and provided input to the HTM sequence
memory (Cui et al., 2016a). To evaluate the role of learning
and boosting in SP, we compared the prediction accuracy in
three scenarios (1) SP without learning or boosting, (2) SP with
learning but not boosting, and (3) SP with both learning and
boosting.

Simulation Results
We first discuss results on the Random Sparse Inputs dataset
with respect to the metrics (Figures 2, 3). The input patterns are
presented repeatedly to the HTM spatial pooler in a streaming
fashion. In our simulation, the population sparsity of the SP is
always close to the target level of 2%, even though the input
sparsity varies widely in the range of 2–20% (Figure 2A). This
is an inherent property of the network due to the use of local
k-winners-take-all activation rules.

We measured the average entropy across all mini-columns
(see section Spatial Pooler Metrics). Since the overall activation
sparsity is fixed in our network, the entropy is maximized
if all mini-columns have the same activation probability. In
this experiment, the entropy increases from 0.1221 ± 0.0013
bits/mini-column to 0.1320 ± 0.0007 bits/mini-column with
training. The difference is highly significant across repeated

experiments with different set of random inputs (p < 10−8,
n = 10, paired t-test). As a reference, the maximum possible
entropy is 0.1345 bits/mini-column with the same sparsity levels.
The increase of entropy is due to efficient use of all mini-
columns. Before learning, a significant fraction of the mini-
columns (∼30%) were not active for any of the input, whereas a
small fraction of the mini-columns were much more active than
others. After learning, almost every mini-column was active for
2% of the time.

Figures 2D,E demonstrate noise robustness as a function of
SP learning. Before learning, a small change in the input will
cause a large change in the SP output, suggesting high noise
sensitivity (Figure 2D, blue). After learning, the noise robustness
gradually improves. After 40 repetitions of the dataset, there is
no change on the SP output even if 40% of the active input bits
are changed. The average noise robustness index (Equation 15)
correspondingly improves from 0.254 ± 0.004 to 0.652 ± 0.007
(Figure 2E, p < 10−16, n = 10, paired t-test). The improved
noise robustness is due to the Hebbian learning rules. A set
of SP mini-columns forms reliable connections to active input
neurons during learning. The same set of SP mini-columns can
be activated even if some of the input neurons are affected by
noise after learning.

To test whether the SP can adapt to changing inputs, we
train the SP until it stabilizes on one set of inputs. We then
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FIGURE 5 | Recovery of HTM spatial pooler after damage and input lesion. During the simulated stroke, a fraction of SP mini-columns that are connected to the

center region of the input space is killed. During the simulated retinal lesion, the center portion of the input space is blocked while the spatial pooler and its feedforward

inputs are kept intact. (A) The number of SP mini-columns connected to each input bits before trauma (left), right after trauma (middle), and after recovery (right). The

simulated stroke experiment is shown at the top and the simulated retinal lesion experiment is shown at the bottom. (B) Growth and elimination of synapses during the

recovery process for the simulated stroke (top) and retinal lesion (bottom) experiment. (C) Receptive field centers of all SP mini-columns before trauma (left), right after

trauma (middle), and after recovery (right). (D) Number of mini-columns connected to the center region [green square in (C) in this figure] and a neighboring region

(blue square) during the recovery process. The recovery is very fast for the retinal lesion experiment (bottom), and slower for the simulated stroke experiment (top).

present a completely different input dataset (Figure 3A).
Right after we switch to a new dataset, the entropy and
noise robustness drops sharply (Figures 3B,D). At this
point a large fraction of the SP mini-columns are not
responsive to any input in the new dataset (Figure 3C,
left). Once learning resumes the SP quickly adapts to the
new input dataset and the performance metrics recover
back to the levels before the change (Figures 3B,D). The
SP adapts to the new dataset by first forming many more
new synapses (Figure 3A, fourth row) and then pruning
unnecessary connections later (Figure 3A, fifth row). This
shows that the SP can learn a new dataset even after learning
has stabilized. Note that due to the boosting rule, which
encourages reuse of all mini-columns, the original dataset will be
forgotten.

The SP achieves these properties by continuously adapting
feedforward connections to the input data. To illustrate how
receptive field structures of SP are shaped by the input data, we
trained the SP on the Random Bars dataset. In this experiment,
the training data consists of either pairs of randomly generated
bars, or a single cross at a random location.

We plot example receptive fields from a random subset of
SP mini-columns in Figure 4. For this dataset the receptive
field typically contains horizontal and vertical bar structures
at random locations (Figure 4A). Each SP mini-column
responds to more than one bar in order to achieve the
target activation frequency of 2%. When trained on the
random cross data stream, the resulting receptive field
consists of cross structures that resemble statistics of the
inputs (Figure 4B). The results are largely unaffected by
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the number of mini-columns in the network. The resulting
receptive field depends on the ratio of synaptic permanence
decrement and increment (p−/p+). If we increase p− to
0.05, most of the receptive field contains single bar segment
when trained on the random bar pairs dataset (data not
shown).

We trained the SP on the MNIST dataset. In this case
the receptive field contains digit-like structures (Figure 4C).
Although some receptive fields clearly detect single digits, others
are responsive to multiple digits. This is because individual SP
mini-columns do not behave like “grandmother cells”—they are
not meant to detect single instances of the inputs. Instead a single
input is collectively encoded by a set of SP mini-columns. When
trained on complex natural datasets, we expect to see a diversity
of receptive structures within the SP, which may not resemble
specific input instances.

We also tested the SP’s ability to represent mixed or
ambiguous inputs. After training the SP on the datasets used
in Figure 4, we compared the average distance between pairs
of random inputs vs. a mixture of the pair. In general, the SP
representation for a merged input has a greater similarity to
the SP representation of the original inputs than to a random
input. As an example, for the random crosses dataset, the average
overlap between the representation of two random inputs is
about 6.5. If we create a merged input the overlap between its
SP representation and the representation of the individual inputs
jumps to about 42. Thus, the SP representation of merged inputs
retains significant similarity to the representation of the original
inputs.

Fault Tolerance
We evaluated whether the HTM spatial pooler has the ability
to recover from lesion of the afferent inputs (input lesion
experiment) or damage to a subset of the SP mini-columns
(stroke experiment).

In the stroke experiment, the center portion of the input space
becomes much less represented right after the trauma because
the corresponding SPmini-columns are eliminated. The network
partially recovers from the trauma after a few hundred epochs,
with each epoch consisting of 100 inputs. During the recovery
process, SP mini-columns near the trauma region shift their
receptive field toward the trauma region and start to represent
stimuli near the center (Figure 5C, Supplementary video 1). The
network forms many more new synapses in the center, which
is accompanied by loss of synapses in the non-trauma region
(Figure 5B, top). There is a clear recovery on the coverage of the
trauma region (Figure 5D, bottom).

In the input lesion experiment, the center portion of the
input space is blocked. Since there is no change on the SP
mini-columns or the associated synaptic connections, there is
no immediate change on the input space coverage (Figure 5A,
bottom) or the receptive field center distributions (Figure 5C,
bottom). However, the SP mini-columns quickly reorganize their
receptive field within a few epochs. The SP mini-columns that
respond to the center inputs starts to respond to inputs on
the surrounding, non-damaged areas (Figure 5C, Supplementary

video 2). Almost all the connections to the lesion region are lost
after the reorganization (Figure 5B, bottom).

These demonstrate the fault tolerance and flexibility of
the SP. The fixed sparsity and the homeostasis excitability
control mechanism of the SP ensure that the input space is
efficiently represented by all SP (undamaged) mini-columns. It
is interesting to note that the different recovery speeds from the
two simulations coincide with experimental studies. It has been
reported that after focal binocular retinal lesions, the receptive
field sizes increases within a fewminutes for cortical neurons that
lie near the edge of the retinal scotoma (Gilbert andWiesel, 1992).
In contrast, if part of the cortex is damaged, the recovery is partial
and occurs on a much slower time scale (Nudo, 2013).

The Spatial Pooler in a Real-World Streaming

Analytics Task
In this section we evaluate the role of the SP in an end-to-end
real-world HTM system. We consider the problem of real-time
prediction of the number of taxi passenger in New York City
(Figure 6A, see section Methods). We have previously shown
that HTM systems with a fixed pre-trained SP achieves state-
of-the-art performance on this task (Cui et al., 2016a). Here
we consider the role of learning in the SP and evaluate three
scenarios: using a randomly initialized SP without learning,
allowing SP learning but without boosting (boost strength set to
0), and using a SP with both continuous learning and boosting
(boost strength set to 100).

We fed the inputs in a single pass to mimic the scenario
of real-time online prediction. The time-averaged prediction
error for the three cases is plotted as a function of training
time (Figure 6B). At the beginning of learning, the prediction
error rapidly decreases, representing the initial learning phase
of the system. The occasional increases in error reflect real
world changes that correspond to events and holidays (e.g.,
Thanksgiving, Christmas, New York City Marathon, etc.).

The SP with both learning and boosting achieves the best
performance throughout the prediction task. The SP with
learning but without boosting is roughly comparable to a random
static SP. This suggests the importance of both continuous
Hebbian learning and homeostatic excitability control. The
difference in performance can be understood by observing the
distribution of activation frequency across SP mini-columns.
Without the homeostatic excitability control, a large fraction of
the SP mini-columns are not being used at all (Figure 6C). It
is more error-prone for the HTM sequence memory to learn
transitions of such ill-behaved SDRs.

DISCUSSION AND CONCLUSIONS

In this paper, we described properties of the HTM spatial pooler,
a neurally inspired algorithm for learning SDRs online. Inspired
by computational principles of the neocortex, the goal of the
HTM spatial pooler is to create SDRs and support essential neural
computations such as sequence learning andmemory. Themodel
satisfies a set of important properties, including tight control
of output sparsity, efficient use of mini-columns, preserving
similarity among inputs, noise robustness, fault tolerance, and
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FIGURE 6 | The role of the HTM spatial pooler in an online prediction task. (A) A complete HTM system is used for predicting the NYC taxi passenger count.

(B) Prediction error with an untrained random SP (blue), a SP with continuous learning but without boosting (green), and a SP with both continuous learning and

boosting (red). (C) Distribution of activation frequency of SP mini-columns. A large fraction of SP mini-columns are not being used for an untrained SP or for a SP

without boosting. In contrast, almost all mini-columns are active for about 2% of the time when boosting is enabled.

fast adaptation to changes. These properties are achieved using
competitive Hebbian learning rules and homeostatic excitability
control mechanisms. We demonstrate the effectiveness of SP
in an end-to-end HTM system on the task of streaming data
prediction. The HTM spatial pooler leads to a flexible sparse
coding scheme that can be used in practical machine learning
applications.

Relationship with Other Sparse Coding
Techniques
The SP learns SDRs for inputs. It is related to the broad class
of sparse coding techniques, which uses activation of a small
set of neurons to encode each item. One theory of sparse
coding suggests that sparse activations in sensory cortices reduce
energy consumption of the brain while preserving most of the
information (Földiák, 2002; Olshausen and Field, 2004). Early
studies of sparse coding explicitly optimize a cost function
that combines low reconstruction error and high sparseness

(Olshausen and Field, 1996a, 1997). When applied to natural
images, these techniques lead to receptive fields that resemble
those of V1 neurons (Olshausen and Field, 1996a; Lee et al.,
2006), suggesting that the functionality of early sensory neurons
can be explained by the sparse coding framework. Sparse coding
has been implemented previously with biologically plausible local
learning rules. Földiák showed that a neural network could learn
a sparse code using Hebbian forward connections combined
with a local threshold control mechanism (Földiák, 1990). It has
been recently shown that such learning rules can be derived
analytically (Hu et al., 2014).

Many of the properties we analyzed in this paper have also
been discussed in previous studies of sparse coding. It has
been shown that sparse representations are naturally robust to
noise and can be used for robust speech recognition (Sivaram
et al., 2010; Gemmeke et al., 2011), robust face recognition
(Wright et al., 2009) and super resolution image reconstruction
(Yang et al., 2010). Online sparse coding and dictionary learning
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techniques have been proposed in previous studies in order
to handle dynamic datasets (Mairal et al., 2010). It is known
that representations learned from traditional sparse coding
techniques have low entropy, as the probability distribution of
activity of an output unit is peaked around zero with heavy
tails (Olshausen and Field, 1996b). In this study we found that
although the entropy is low compared to dense representations, it
increases with training in the HTM spatial pooler. This is because
the homeostatic excitability control mechanism encourages
neurons in the SP to have similar activation frequencies, thus
increasing the representational power of the network.

Most previous studies propose the goal of sparse coding
is to avoid information loss, reduce energy consumption, and
form associative memory with minimum cross talk (Olshausen
and Field, 2004). A commonly used criterion is how well one
can reconstruct the inputs given the sparse activations and
a set of learned basis vectors. Although these studies explain
receptive structure in primary visual cortex and lead to practical
machine learning algorithms for feature selection (Gui et al.,
2016) and data compression (Pati et al., 2015), the purpose
of neural computation is more than preserving information.
In this paper, we take a different perspective and ask how
computational properties of theHTM spatial pooler contribute to
downstream cortical processing in the context of HTM systems.
Instead of reconstruction error, we define the performance of
SP in terms of a set of properties, including population entropy,
noise robustness, stability, and fault tolerance. It is important
to perform a multi-dimensional assessment of the SP in order
to ensure that it forms robust SDRs that capture topological
properties of the input space. We demonstrated that the HTM
spatial pooler achieves these properties and that these properties
contribute to improved performance in an end-to-end system. It
is important to note that no single metric is sufficient to ensure
SP is behaving properly. For example, one can achieve good noise
robustness by always using a small set of SP mini-columns, but
that will give bad entropy. It is easy to achieve high entropy by
using a random output at each time step, but that will cause bad
stability. It is important to consider all the metrics together. As
a result, the learning algorithm of SP cannot be easily derived by
optimizing a single objective function.

The Hebbian learning rules of HTM spatial pooler resemble
many previous sparse coding algorithms (Földiák, 1990;
Zylberberg et al., 2011; Hu et al., 2014) and associative memory
models (Willshaw et al., 1969; Hecht-Nielsen, 1990; Bibbig et al.,
1995). There are several differences. First, we include homeostatic
excitability control as a gain modulation mechanism. The role
of homeostasis is to make sure that the distribution of neural
activity is homogeneous. It has been previously proposed that
homeostasis is crucial in providing an efficient solution when
learning sparse representations (Perrinet, 2010). Some models
of synaptic plasticity do include homeostatic components in
the learning rule that control the amount of synaptic weight
change (Clopath et al., 2010; Habenschuss et al., 2013). The
homeostatic excitability regulation mechanism in the SP achieves
a similar effect without directly affecting the synapsemodification
process. Second, we simulate a local inhibition circuit that
implements k-winners-take-all computation to have tight control

over the output sparseness (Figure 7A). This is important when
SP activations are used by downstream neurons with dendrites
that have threshold non-linearities. We do not explicitly model
a continuous time network of excitatory and inhibitory neurons
as in balanced networks (Hansel and Mato, 2013; Denève and
Machens, 2016) but have a similar goal of maintaining a tight
range of sparsity. Finally, we use binary synapses and learning
via synaptogenesis (Zito and Svoboda, 2002). The use of binary
synapses can dramatically speed up the computation. Overall the
HTM spatial pooler algorithm is a suitable candidate for learning
sparse representations online from streaming data.

Potential Neural Mechanisms of Spatial
Pooler
A layer in a HTM system contains a set of mini-columns.
Each mini-column contains cells with the same feedforward
receptive field. The mini-column hypothesis has been proposed
for several decades (Mountcastle, 1997; Buxhoeveden, 2002),
but the utility of mini-columns remains controversial due
to a lack of theoretical benefit (Horton and Adams, 2005).
According to HTM theory cells within the same mini-column
have the same feedforward connections but different lateral
connections, thus representing the same feedforward input in
different temporal contexts (Hawkins and Ahmad, 2016). We
propose the SP models feedforward receptive field learning at
the mini-column level. Experimental studies have shown that
neurons within the same mini-column have almost identical
receptive field locations, sizes and shapes, whereas RFs of neurons

FIGURE 7 | Neural mechanism of HTM spatial pooler. (A) Spatial pooler

requires local inhibition across mini-columns to ensure that a small fraction of

the mini-columns are active at any time. (B) Potential mechanisms to ensure

neurons within the same mini-column share the same feedforward receptive

field. (Left) The green inhibitory neuron controls the receptive fields of

excitatory pyramidal neurons (gray triangles) through a dis-inhibition circuit.

(right) A single (or small number of) excitatory neurons (yellow) controls the

receptive field of excitatory neurons. In both cases, PNs indirectly inhibit other

PNs in the same mini-column through the within mini-column inhibition (blue).
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in neighboring mini-columns can differ significantly (Jones,
2000). This variability cannot be explained by the difference in
feedforward inputs, because the extent of arborization of single
thalamic afferent fibers, which can be as much as 900µm in cats
(Jones, 2000), is significantly more extensive than the dimensions
of minicolumns, which typically have diameters around 20–
60µm (Favorov and Kelly, 1996; Jones, 2000; Buxhoeveden,
2002). It requires dedicated circuitry mechanism to ensure
that cells in the same mini-column acquire the same receptive
field.

We propose two possible neural circuit mechanisms for the
SP and discuss their anatomical support. In the first proposal
(Figure 7B, left), the feedforward thalamic inputs innervate
both excitatory pyramidal neurons as well as an inhibitory
neuron (green). This inhibitory neuron can indirectly activate the
pyramidal neurons through a disynaptic dis-inhibition circuit. It
acts as a “teacher” cell that guides the receptive field formation of
excitatory neurons. There are many distinct classes of inhibitory
neurons in the cortex. Some classes, such as bipolar cells and
double bouquet cells exclusively innervate cells within a cortical
mini-column (Markram et al., 2004; Wonders and Anderson,
2006). It is well-documented that feedforward thalamacortical
input strongly activates specific subtypes of inhibitory neurons
(Gibson et al., 1999; Porter et al., 2001; Swadlow, 2002; Kremkow
et al., 2016). It is possible these inhibitory neurons participate
in defining and maintaining the feedforward receptive field of
cortical mini-columns.

In the second proposal, a single excitatory cell receives
thalamic inputs and innervates all excitatory cells in a mini-
column. This excitatory neuron guides the receptive field
formation of other excitatory cells in the mini-column. A
similar circuit has been observed during early development.
Subplate neurons, a transient population of neurons, receive
synaptic inputs from thalamic axons, establishing a temporary
link between thalamic axons and their final targets in layer IV
(Friauf et al., 1990; Ghosh and Shatz, 1992; Kanold et al., 2003).
It remains to be tested whether a similar circuit exists in adult
brain.

The SP relies on several other neural mechanisms. The
learning rule is based on competitive Hebbian learning. Such

learning can be achieved in the brain via synaptic plasticity
rules such as long-term potentiation (Teyler and DiScenna,
1987), long-term depression (Ito, 1989), or spike-time dependent
plasticity (Song et al., 2000). Homeostatic excitability control
mechanisms, analogous to the SP’s boosting rule, have been
observed in cortical neurons (Davis, 2006). Finally, the k-
winners-take-all computation in the SP can be implemented
using leaky integrate-and-fire neuron models (Billaudelle and
Ahmad, 2015).
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Video 1 | During the recovery process of the stroke experiment, SP mini-columns

near the trauma region shift their receptive field toward the trauma region and start

to represent stimuli near the center.

Video 2 | In the input lesion experiment, the SP mini-columns that respond to the

center inputs start to respond to inputs on the surrounding, non-damaged areas.
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