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New developments in Al and neuroscience are revitalizing the quest to understanding
natural intelligence, offering insight about how to equip machines with human-like
capabilities. This paper reviews some of the computational principles relevant for
understanding natural intelligence and, ultimately, achieving strong Al. After reviewing
basic principles, a variety of computational modeling approaches is discussed.
Subsequently, | concentrate on the use of artificial neural networks as a framework for
modeling cognitive processes. This paper ends by outlining some of the challenges that
remain to fulfill the promise of machines that show human-like intelligence.

Keywords: natural intelligence, strong Al, cognition, artificial neural networks, machine learning

1. INTRODUCTION

Understanding how mind emerges from matter is one of the great remaining questions in science.
How is it possible that organized clumps of matter such as our own brains give rise to all of
our beliefs, desires and intentions, ultimately allowing us to contemplate ourselves as well as the
universe from which we originate? This question has occupied cognitive scientists who study the
computational basis of the mind for decades. It also occupies other breeds of scientists. For example,
ethologists and psychologists focus on the complex behavior exhibited by animals and humans
whereas cognitive, computational and systems neuroscientists wish to understand the mechanistic
basis of processes that give rise to such behavior.

The ambition to understand natural intelligence as encountered in biological organisms can be
contrasted with the motivation to build intelligent machines, which is the subject matter of artificial
intelligence (AI). Wouldn’t it be amazing if we could build synthetic brains that are endowed with
the same qualities as their biological cousins? This desire to mimic human-level intelligence by
creating artificially intelligent machines has occupied mankind for many centuries. For instance,
mechanical men and artificial beings appear in Greek mythology and realistic human automatons
had already been developed in Hellenic Egypt (McCorduck, 2004). The engineering of machines
that display human-level intelligence is also referred to as strong AI (Searle, 1980) or artificial
general intelligence (AGI) (Adams et al,, 2012), and was the original motivation that gave rise to
the field of AI (Newell, 1991; Nilsson, 2005).

Excitingly, major advances in various fields of research now make it possible to attack the
problem of understanding natural intelligence from multiple angles. From a theoretical point
of view we have a solid understanding of the computational problems that are solved by
our own brains (Dayan and Abbott, 2005). From an empirical point of view, technological
breakthroughs allow us to probe and manipulate brain activity in unprecedented ways, generating
new neuroscientific insights into brain structure and function (Chang, 2015). From an engineering
perspective, we are finally able to build machines that learn to solve complex tasks, approximating
and sometimes surpassing human-level performance (Jordan and Mitchell, 2015). Still, these efforts

Frontiers in Computational Neuroscience | www.frontiersin.org 1

December 2017 | Volume 11 | Article 112


https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2017.00112
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2017.00112&domain=pdf&date_stamp=2017-12-07
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m.vangerven@donders.ru.nl
https://doi.org/10.3389/fncom.2017.00112
https://www.frontiersin.org/articles/10.3389/fncom.2017.00112/full
http://loop.frontiersin.org/people/28677/overview

van Gerven

Computational Foundations of Natural Intelligence

have not yet provided a full understanding of natural intelligence,
nor did they give rise to machines whose reasoning capacity
parallels the generality and flexibility of cognitive processing in
biological organisms.

The core thesis of this paper is that natural intelligence
can be better understood by the coming together of multiple
complementary scientific disciplines (Gershman et al.,, 2015).
This thesis is referred to as the great convergence. The advocated
approach is to endow artificial agents with synthetic brains
(i.e., cognitive architectures, Sun, 2004) that mimic the thought
processes that give rise to ethologically relevant behavior in
their biological counterparts. A motivation for this approach
is given by Braitenberg’s law of uphill analysis and downhill
invention, which states that it is much easier to understand a
complex system by assembling it from the ground up, rather than
by reverse engineering it from observational data (Braitenberg,
1986). These synthetic brains, which can be put to use in virtual
or real-world environments, can then be validated against neuro-
behavioral data and analyzed using a multitude of theoretical
tools. This approach not only elucidates our understanding of
human brain function but also paves the way for the development
of artificial agents that show truly intelligent behavior (Hassabis
etal., 2017).

The aim of this paper is to sketch the outline of a research
program which marries the ambitions of neuroscientists to
understand natural intelligence and AI researchers to achieve
strong Al (Figure 1). Before embarking on our quest to build
synthetic brains as models of natural intelligence, we need to
formalize what problems are solved by biological brains. That
is, we first need to understand how adaptive behavior ensues in
animals and humans.

2. ADAPTIVE BEHAVIOR IN BIOLOGICAL
AGENTS

Ultimately, organisms owe their existence to the fact that
they promote survival of their constituent genes; the basic
physical and functional units of heredity that code for
an organism (Dawkins, 2016). At evolutionary time scales,
organisms developed a range of mechanisms which ensure
that they live long enough such as to produce offspring. For
example, single-celled protozoans already show rather complex
ingestive, defensive and reproductive behavior, which is regulated
by molecular signaling (Swanson, 2012; Sterling and Laughlin,
2016).

2.1. Why Do We Need a Brain?

About 3.5 billion years ago, multicellular organisms started to
appear. Multicellularity offers several competitive advantages
over unicellularity. It allows organisms to increase in size without
the limitations set by unicellularity and permits increased
complexity by allowing cellular differentiation. It also increases
life span since an organism can live beyond the demise of a single
cell. At the same time, due to their increased size and complexity,
multicellular organisms require more intricate mechanisms for
signaling and regulation.

NATURAL
INTELLIGENCE

STRONG Al

FIGURE 1 | Understanding natural intelligence and achieving strong Al are
seen as relying on the same theoretical foundations and require the
convergence of multiple scientific and engineering disciplines.

In multicellular organisms, behavior is regulated at multiple
scales, ranging from intracellular molecular signaling all the way
up to global regulation via the interactions between different
organ systems. Hence, the nervous system allows for fast
responses via electrochemical signaling and for slow responses
by acting on the endocrine system. Nervous systems are found in
almost all multicellular animals, but vary greatly in complexity.
For example, the nervous system of the nematode roundworm
Caenorhabditis elegans (C. elegans) is made up of 302 neurons
and 7,000 synaptic connections (White et al., 1986; Varshney
et al,, 2011). In contrast, the human brain contains about 20
billion neocortical neurons that are wired together via as many
as 0.15 quadrillion synapses (Pakkenberg and Gundersen, 1997;
Pakkenberg et al., 2003).

In vertebrates, the nervous system can be partitioned into
the central nervous system (CNS), consisting of the brain and
the spinal cord, and the peripheral nervous system (PNS),
which connects the CNS to every other part of the body. The
brain allows for centralized control and efficient information
transmission. It can be partitioned into the forebrain, midbrain
and hindbrain, each of which contain dedicated neural circuits
that allow for integration of information and generation of
coordinated activity. The spinal cord connects the brain to the
body by allowing sensory and motor information to travel back
and forth between the brain and the body. It also coordinates
certain reflexes that bypass the brain altogether.

The interplay between the nervous system, the body and the
environment is nicely captured by Swanson’s four system model
of nervous system organization (Swanson, 2000), as shown in
Figure 2. Briefly, the brain exerts centralized control on the body
by sending commands to the motor system based on information
received via the sensory system. It exerts this control by way of the
cognitive system, which drives voluntary initiation of behavior,
as well as the state system, which refers to the intrinsic activity
that controls global behavioral state. The motor system can also
be influenced directly by the sensory system via spinal cord
reflexes. Output of the motor system induces visceral responses
that affect bodily state as well as somatic responses that act
on the environment. It is also able to drive the secretion of
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FIGURE 2 | The four system model of nervous system organization. CO, Cognitive system; EN, Environment; ES, Environmental stimuli; MO, Motor system; SE,
Sensory system; SR, Somatic responses; ST, Behavioral state system; VR, Visceral responses; VS, Visceral stimuli. Solid arrows show influences pertaining to the
nervous system. Dashed arrows show interactions produced by the body or the environment! .

hormones that act more globally on the body. Both the body
and the environment generate sensations that are processed by
the sensory system. This closed-loop system, tightly coupling
sensation, thought and action, is known as the perception-action
cycle (Dewey, 1896; Sperry, 1952; Fuster, 2004).

Summarizing, the brain, together with the spinal cord and
the peripheral nervous system, can be seen as an organ that
exploits sensory input such as to generate adaptive behavior
through motor outputs. This ensures an organism’s long-term
survival in a world that is dominated by uncertainty, as a result
of partial observability, noise and stochasticity. The upshot of
this interpretation is that action, which drives the generation of
adaptive behavior, is the ultimate reason why we have a brain
in the first place. Citing Sperry (1952): “the entire output of
our thinking machine consists of nothing but patterns of motor
coordination.” To understand how adaptive behavior ensues, we
therefore need to identify the ultimate causes that determine an
agent’s actions (Tolman, 1932).

2.2. What Makes us Tick?

In biology, ultimately, all evolved traits must be connected to
an organism’s survival. This implies that, from the standpoint of
evolutionary psychology, natural selection favors those behaviors
and thought processes that provide the organism with a selective
advantage under ecological pressure (Barkow et al., 1992). Since
causal links between behavior and long-term survival cannot be
sensed or controlled directly, an agent needs to rely on other,
directly accessible, ways to promote its survival. This can take the
form of (1) evolving optimal sensors and effectors that allow it
to maximize its control given finite resources and (2) evolving
a behavioral repertoire that maximizes the information gained
from the environment and generates optimal actions based on
available sensory information.

'Figure  modified
permission.

from  http://larrywswanson.com/?page_id=1523  with

In practice, behavior is the result of multiple competing needs
that together provide an evolutionary advantage. These needs
arise because they provide particular rewards to the organism.
We distinguish primary rewards, intrinsic rewards and extrinsic
rewards.

Primary Rewards

Primary rewards are those necessary for the survival of one’s
self and offspring, which includes homeostatic and reproductive
rewards. Here, homeostasis refers to the maintenance of optimal
settings of various biological parameters (e.g., temperature
regulation) (Cannon, 1929). A slightly more sophisticated
concept is allostasis, which refers to the predictive regulation
of biological parameters in order to prevent deviations rather
than correcting them post hoc (Sterling, 2012). An organism can
use its nervous system (muscle signaling) or endocrine system
(endocrine signaling) to globally control or adjust the activities of
many systems simultaneously. This allows for visceral responses
that ensure proper functioning of an agent’s internal organs as
well as basic drives such as ingestion, defense and reproduction
that help ensure an agent’s survival (Tinbergen, 1951).

Intrinsic Rewards

Intrinsic rewards are unconditioned rewards that are attractive
and motivate behavior because they are inherently pleasurable
(e.g., the experience of joy). The phenomenon of intrinsic
motivation was first identified in studies of animals engaging in
exploratory, playful and curiosity-driven behavior in the absence
of external rewards or punishments (White, 1959).

Extrinsic Rewards

Extrinsic rewards are conditioned rewards that motivate behavior
but are not inherently pleasurable (e.g., praise or monetary
reward). They acquire their value through learned association
with intrinsic rewards. Hence, extrinsic motivation refers to
our tendency to perform activities for known external rewards,
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whether they be tangible or psychological in nature (Brown,
2007).

Summarizing, the continual competition between multiple
drives and incentives that have adaptive value to the organism
and are realized by dedicated neural circuits is what ultimately
generates behavior (Davies et al., 2012). In humans, the
evolutionary and cultural pressures that shaped our own intrinsic
and extrinsic motivations have allowed us to reach great
achievements, ranging from our mastery of the laws of nature
to expressions of great beauty as encountered in the liberal arts.
The question remains how we can gain an understanding of how
our brains generate the rich behavioral repertoire that can be
observed in nature.

3. UNDERSTANDING NATURAL
INTELLIGENCE

In a way, the recipe for understanding natural intelligence and
achieving strong Al is simple. If we can construct synthetic
brains that mimic the adaptive behavior displayed by biological
brains in all its splendor then our mission has succeeded. This
entails equipping synthetic brains with the same special purpose
computing machinery encountered in real brains, solving those
problems an agent may be faced with. In practice, of course,
this is easier said than done given the incomplete state of
our knowledge and the daunting complexity of biological
systems.

3.1. Levels of Analysis

The neural circuits that make up the human brain can be seen
as special-purpose devices that together guarantee the selection
of (near-)optimal actions. David Marr in particular advocated
the view that the nervous system should be understood as a
collection of information processing systems that solve particular
problems an organism is faced with (Marr, 1982). His work
gave rise to the field of computational neuroscience and has
been highly influential in shaping ideas about neural information
processing (Willshaw et al., 2015). Marr and Poggio (1976)
proposed that an understanding of information processing
systems should take place at distinct levels of analysis, namely
the computational level, which specifies what problem the system
solves, the algorithmic level, which specifies how the system solves
the problem, and the implementational level, which specifies how
the system is physically realized.

A canonical example of a three-level analysis is prey
localization in the barn owl (Grothe, 2003). At the computational
level, the owl needs to use auditory information to localize
its prey. At the algorithmic level, this can be implemented
by circuits composed of delay lines and coincidence detectors
that detect inter-aural time differences (Jeffress, 1948). At the
implementational level, neurons in the nucleus laminaris have
been shown to act as coincidence detectors (Carr and Konishi,
1990).

Marr’s levels of analysis sidestep one important point, namely
how a system gains the ability to solve a computational problem
in the first place. That is, it is also crucial to understand how

Evolution Sociological

Learning & Development Psychological

,
NS
Y
. J

Computation
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Implementation Physiological

( N\ )
\ J

&

FIGURE 3 | Levels of analysis. Left column shows Poggio’s extension of
Marr’s levels of analysis, emphasizing learning at various timescales. Right
column shows Sun’s levels of analysis, emphasizing individual beliefs and
socio-cultural processes.

an organism (or species as a whole) is able to learn and evolve
the computations and representations that allow it to survive in
the natural world (Poggio, 2012). Learning itself takes place at
the level of the individual organism as well as of the species.
In the individual, one can observe lasting changes in the brain
throughout its lifetime, which is referred to as neural plasticity.
At the species level, natural selection is responsible for evolving
the mechanisms that are involved in neural plasticity (Poggio,
2012). As argued by Poggio, an understanding at the level of
learning in the individual and the species is sufficiently powerful
to solve a problem and can thereby act as an explanation of
natural intelligence. To illustrate the relevance of this revised
model, in the prey localization example it would be imperative
to understand how owls are able to adapt to changes in their
environment (Huo and Murray, 2009), as well as how owls were
equipped with such machinery during evolution.

Sun et al. (2005) propose an alternative organization of
levels of cognitive modeling. They distinguish sociological,
psychological, componential and physiological levels. The
sociological level refers to the collective behavior of agents,
including interactions between agents as well as their
environment. It stresses the importance of socio-cultural
processes in shaping cognition. The psychological level
covers individual behaviors, beliefs, concepts, and skills. The
componential level describes inter-agent processes specified in
terms of Marr’s computational and algorithmic levels. Finally,
the physiological level describes the biological substrate which
underlies the generation of adaptive behavior, corresponding
to Marr’s implementational level. It can provide valuable input
about important computations and plausible architectures at a
higher level of abstraction.

Figure 3 visualizes the different interpretations of levels of
analysis. Without committing to a definitive stance on levels of
analysis, all described levels provide important complementary
perspectives concerning the modeling and understanding of
natural intelligence.
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FIGURE 4 | Example of the Game of Life, where each cell state evolves according to a set of deterministic rules that depend on the states of neighboring cells.
Depicted is a breeder pattern that moves across the universe (here from left to right), leaving behind debris. The breeder produces Gosper guns which periodically
emit gliders; the small patterns that together form the triangular shape on the left-hand side.

3.2. Modeling approaches

The previous section suggests that different approaches to
understanding natural intelligence and developing cognitive
architectures can be taken depending on the levels of analysis one
considers. We briefly review a number of core approaches.

Artificial Life

Artificial life is a broad area of research encompassing various
different modeling strategies which all have in common that they
aim to explain the emergence of life and, ultimately, cognition in
a bottom-up manner (Steels, 1993; Bedau, 2003).

A canonical example of an artificial life system is the cellular
automaton, first introduced by von Neumann (1966) as an
approach to understand the fundamental properties of living
systems. Cellular automata operate within a universe consisting
of cells, whose states change over multiple generations based on
simple local rules. They have been shown to be capable of acting
as universal Turing machines, thereby giving them the capacity to
compute any fixed partial computable function (Wolfram, 2002).

A famous example of a cellular automaton is Conway’s Game
of Life. Here, every cell can assume an “alive” or a “dead” state.
State changes are determined by its interactions with its eight
direct neighbors. At each time step, a live cell with fewer than two
or more than three live neighbors dies and a dead cell with exactly
three live neighbors will become alive. Figure 4 shows an example
of a breeder pattern which produces Gosper guns in the Game of
Life. Gosper guns have been used to prove that the game of life is
Turing complete (Gardner, 2001). SmoothLife (Rafler, 2011), as a
continuous-space extension of the Game of Life, shows emerging
structures that bear some superficial resemblance to biological
structures.

In principle, by virtue of their universality, cellular automata
offer the capacity to explain how self-replicating adaptive
(autopoeietic, Maturana and Varela, 1980) systems emerge from
basic rules. This bottom-up approach is also taken by physicists

who aim to explain life and, ultimately, cognition purely from
thermodynamic principles (Dewar, 2003, 2005; Grinstein and
Linsker, 2007; Wissner-Gross and Freer, 2013; Perunov et al.,
2014; Fry, 2017).

Biophysical Modeling

A more direct way to model natural intelligence is to presuppose
the existence of the building blocks of life which can be used to
create realistic simulations of organisms in silico. The reasoning
is that biophysically realistic models can eventually mimic the
information processing capabilities of biological systems. An
example thereof is the OpenWorm project which has as its
ambition to understand how the behavior of C. elegans emerges
from its underlying physiology purely via bottom-up biophysical
modeling (Szigeti et al., 2014) (Figure 5A). It also acknowledges
the importance of including not only a model of the worm’s
nervous system but also of its body and environment in the
simulation. That is, adaptive behavior depends on the organism
being both embodied and embedded in the world (Anderson,
2003). If successful, then this project would constitute the first
example of a digital organism.

It is a long stretch from the worm’s 302 neurons to the 86
billion neurons that comprise the human brain (Herculano-
Houzel and Lent, 2005). Still, researchers have set out to develop
large-scale models of the human brain. Biophysical modeling
can be used to create detailed models of neurons and their
processes using coupled systems of differential equations. For
example, action potential generation can be described in terms
of the Hodgkin-Huxley equations (Figure 5B) and the flow of
electric current along neuronal fibers can be modeled using cable
theory (Dayan and Abbott, 2005). This approach is used in the
Blue Brain project (Markram, 2006) and its successor, the Human
Brain Project (HBP) (Amunts et al., 2016). See de Garis et al.
(2010) for a review of various artificial brain projects.
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Connectionism

Connectionism refers to the explanation of cognition as arising
from the interplay between basic (sub-symbolic) processing
elements (Smolensky, 1987; Bechtel, 1993). It has close links
to cybernetics, which focuses on the development of control
structures from which intelligent behavior emerges (Rid,
2016).

Connectionism came to be equated with the use of artificial
neural networks that abstract away from the details of biological
neural networks. An artificial neural network (ANN) is a
computational model which is loosely inspired by the human
brain as it consists of an interconnected network of simple
processing units (artificial neurons) that learns from experience
by modifying its connections. Alan Turing was one of the first
to propose the construction of computing machinery out of
trainable networks consisting of neuron-like elements (Copeland
and Proudfoot, 1996). Marvin Minsky, one of the founding
fathers of Al is credited for building the first trainable ANN,
called SNARC, out of tubes, motors, and clutches (Seising, 2017).

Artificial neurons can be considered abstractions of
(populations of) neurons while the connections are taken
to be abstractions of modifiable synaptic connections (Figure 6).
The behavior of an artificial neuron is fully determined by the
connection strengths as well as how input is transformed into
output. Contrary to detailed biophysical models, ANNs make
use of basic matrix operations and nonlinear transformations as
their fundamental operations. In its most basic incarnation, an

ZFigure by K. D. Schroeder, CC BY-SA 3.0, https://commons.wikimedia.org/w/
index.php?curid=26958836. Used with permission.

artificial neuron simply transforms its input x into a response
y through an activation function f, as shown in Figure 6. The
activation function operates on an input activation which is
typically taken to be the inner product between the input x and
the parameters (weight vector) w of the artificial neuron. The
weights are interpreted as synaptic strengths that determine how
presynaptic input is translated into postsynaptic firing rate. This
yields a simple linear-nonlinear mapping of the form

y=f(wx). (1)

By connecting together multiple neurons, one obtains a neural
network that implements some non-linear function y = f(x; 6),
where the f; are nonlinear transformations and 6 stands for
the network parameters (i.e., weight vectors). After training a
neural network, representations become encoded in a distributed
manner as a pattern which manifests itself across all its
neurons (Hinton et al., 1986).

Throughout the course of their history ANNs have fallen in
and out of favor multiple times. At the same time, each next
generation of neural networks has yielded new insights about
how complex behavior may emerge through the collective action
of simple processing elements. Modern neural networks perform
so well on several benchmark problems that they obliterate
all competition in, e.g., object recognition (Krizhevsky et al.,
2012), natural language processing (Sutskever et al., 2014), game
playing (Mnih et al., 2015; Silver et al., 2017) and robotics (Levine
et al,, 2015), often matching and sometimes surpassing human-
level performance (LeCun et al., 2015). Their success relies on
combining classical ideas (Widrow and Lehr, 1990; Hochreiter
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networks implement dynamical systems by feeding back output activity to the input layer, where it is combined with external input.

and Schmidhuber, 1997; LeCun et al., 1998) with new algorithmic
developments (Hinton et al., 2006; Srivastava et al., 2014; He
et al,, 2015; Ioffe and Szegedy, 2015; Zagoruyko and Komodakis,
2017), while using high-performance graphical processing units
(GPUs) to massively speed up training of ANNs on big
datasets (Raina et al., 2009).

Cognitivism

A conceptually different approach to the explanation of cognition
as emerging from bottom-up principles is the view that cognition
should be understood in terms of formal symbol manipulation.
This computationalist view is associated with the cognitivist
program which arose in response to earlier behaviorist theories.
It embraces the notion that, in order to understand natural
intelligence, one should study internal mental processes rather
than just externally observable events. That is, cognitivism asserts
that cognition should be defined in terms of formal symbol
manipulation, where reasoning involves the manipulation of
symbolic representations that refer to information about the
world as acquired by perception.

This view is formalized by the physical symbol system
hypothesis (Newell and Simon, 1976), which states that “a
physical symbol system has the necessary and sufficient means for
intelligent action.” This hypothesis implies that artificial agents,
when equipped with the appropriate symbol manipulation
algorithms, will be capable of displaying intelligent behavior.
As Newell and Simon (1976) wrote, the physical symbol system
hypothesis also implies that “the symbolic behavior of man arises
because he has the characteristics of a physical symbol system.”
This also suggests that the specifics of our nervous system are not
relevant for explaining adaptive behavior (Simon, 1996).

Cognitivism gave rise to cognitive science as well as artificial
intelligence, and spawned various cognitive architectures such as
ACT-R (Anderson et al., 2004) (see Figure 7) and SOAR (Laird,
2012) that employ rule-based approaches in the search for a
unified theory of cognition (Newell, 1991).3

In fact, ACT-R also uses some subsymbolic elements and can therefore be
considered a hybrid architecture.

Visual | o L. Motor
Module [€ Environment Module
»i
Y
» ACT-R Buffers [«
<
Procedural .| Pattern Declarative
Memory ”| Matching Memory
Production
Execution
I
I
FIGURE 7 | ACT-R as an example cognitive architecture which employs
symbolic reasoning. ACT-R interfaces with different modules through buffers.
Cognition unfolds as a succession of activations of production rules as
mediated by pattern matching and execution?.

Probabilistic Modeling

Modern cognitive science still embraces the cognitivist program
but has since taken a probabilistic approach to the modeling of
cognition. As stated by Griffiths et al. (2010), this probabilistic
approach starts from the notion that the challenges faced by
the mind are often of an inductive nature, where the observed
data are not sufficient to unambiguously identify the process that
generated them. This precludes the use of approaches that are
founded on mathematical logic and requires a quantification of
the state of the world in terms of degrees of belief as afforded
by probability theory (Jaynes, 1988). The probabilistic approach
operates by identifying a hypothesis space representing solutions
to the inductive problem. It then prescribes how an agent should
revise her belief in the hypotheses given the information provided

“4Figure modified from http://act-r.psy.cmu.edu/about with permission.
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by observed data. Hypotheses are typically formulated in terms
of probabilistic graphical models that capture the independence
structure between random variables of interest (Koller and
Friedman, 2009). An example of such a graphical model is shown
in Figure 8.

Belief updating in the probabilistic sense is realized by solving
a statistical inference problem. Consider a set of of hypotheses
H that might explain the observed data. Let p(h) denote our
belief in a hypothesis h € H, reflecting the state of the world,
before observing any data (known as the prior). Let p(x | h)
indicate the probability of observing data x if & were true (known
as the likelihood). Bayes’ rule tells us how to update our belief
in a hypothesis after observing data. It states that the posterior
probability p(h | x) assigned to h after observing x should be

p(x | Wp(h)
h _ _ PETWPAY
P = s o [ () @

where the denominator is a normalizing constant known as the
evidence or marginal likelihood®. Importantly, it can be shown
that degrees of belief are coherent only if they satisfy the axioms
of probability theory (Ramsey, 1926).

The beauty of the probabilistic approach lies in its generality.
It not only explains how our moment-to-moment percepts
change as a function of our prior beliefs and incoming sensory
data (Yuille and Kersten, 2006) but also places learning, as
the construction of internal models, under the same umbrella
by viewing it as an inference problem (MacKay, 2003). In
the probabilistic framework, mental processes are modeled
using algorithms for approximating the posterior (Koller and
Friedman, 2009) and neural processes are seen as mechanisms
for implementing these algorithms (Gershman and Beck, 2016).

The probabilistic approach also provides a basis for making
optimal decisions under uncertainty. This is realized by
extending probability theory with decision theory. According
to decision theory, a rational agent ought to select that action
which maximizes the expected utility (von Neumann and
Morgenstern, 1953). This is known as the maximum expected
utility (MEU) principle. In real-life situations, biological (and
artificial) agents need to operate under bounded resources,
trading off precision for speed and effort when trying to attain
their objectives (Gigerenzer and Goldstein, 1996). This implies
that MEU calculations may be intractable. Intractability issues
have led to the development of algorithms that maximize a
more general form of expected utility which incorporates the
costs of computation. These algorithms can in turn be adapted
so as to select the best approximation strategy in a given
situation (Gershman et al., 2015). Hence, at the algorithmic level,
it has been postulated that brains use approximate inference
algorithms (Andrieu et al., 2003; Blei et al, 2016) such as to
produce good enough solutions for fast and frugal decision
making.

Summarizing, by appealing to Bayesian statistics and decision
theory, while acknowledging the constraints biological agents

SBeliefs over continuous quantities can be expressed by replacing summation with
integration.

D@

M

FIGURE 8 | Example of a probabilistic graphical model capturing the statistical
relations between random variables of interest. This particular plate model
describes a smoothed version of latent Dirichlet allocation as used in topic
modeling (Blei et al., 2003). Here, « and B are hyper-parameters, 6, is the
topic distribution for document m, ¢y is the word distribution for topic k, znm is
the topic for the n-th word in document m and wmp, is a specific word. Capital
letters K, M and N denote the number of topics, documents and words,
respectively. The goal is to discover abstract topics from observed words. This
general approach of inferring posteriors over latent variables from observed
data is common to the probabilistic approach.

are faced with, cognitive science arrives at a theory of bounded
rationality that agents should adhere to. Importantly, this
normative view dictates that organisms must operate as Bayesian
inference machines that aim to maximize expected utility. If
they do not, then, under weak assumptions, they will perform
suboptimally. This would be detrimental from an evolutionary
point of view.

3.3. Bottom-up Emergence vs. Top-down

Abstraction

The aforementioned modeling strategies each provide an
alternative approach toward understanding natural intelligence
and achieving strong AI. The question arises which of these
strategies will be most effective in the long run.

While the strictly bottom-up approach used in artificial life
research may lead to fundamental insights about the nature of
self-replication and adaptability, in practice it remains an open
question how emergent properties that derive from a basic set of
rules can reach the same level of organization and complexity as
can be found in biological organisms. Furthermore, running such
simulations would be extremely costly from a computational
point of view.

The same problem presents itself when using detailed
biophysical models. That is, bottom-up approaches must either
restrict model complexity or run simulations for limited periods
of time in order to remain tractable (O'Reilly et al., 2012).
Biophysical models additionally suffer from a lack of data. For
example, the original aim of the Human Brain Project was to
model the human brain within a decade (Markram et al., 2011).
This ambition may be hard to realize given the plethora of
data required for model estimation. Furthermore, the resulting
models may be difficult to link to cognitive function. Izhikevich,
reflecting on his simulation of another large biophysically
realistic brain model (Izhikevich and Edelman, 2008), states:
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“Indeed, no significant contribution to neuroscience could be
made by simulating one second of a model, even if it has the size
of the human brain. However, I learned what it takes to simulate
such a large-scale system®.”

Connectionist models, in contrast, abstract away from
biophysical details, thereby making it possible to train large-
scale models on large amounts of sensory data, allowing
cognitively challenging tasks to be solved. Due to their
computational simplicity, they are also more amenable to
theoretical analysis (Hertz et al., 1991; Bishop, 1995). At the
same time, connectionist models have been criticized for their
inability to capture symbolic reasoning, their limitations when
modeling particular cognitive phenomena, and their abstract
nature, restricting their biological plausibility (Dawson and
Shamanski, 1994).

Cognitivism has been pivotal in the development of intelligent
systems. However, it has also been criticized using the argument
that systems which operate via formal symbol manipulation
lack intentionality (Searle, 1980)7. Moreover, the representational
framework that is used is typically constructed by a human
designer. While this facilitates model interpretation, at the
same time, this programmer-dependence may bias the system,
leading to suboptimal solutions. That is, idealized descriptions
may induce a semantic gap between perception and possible
interpretation (Vernon et al., 2007).

The probabilistic approach to cognition is important given its
ability to define normative theories at the computational level.
At the same time, it has also been criticized for its treatment of
cognition as if it is in the business of selecting some statistical
model. Proponents of connectionism argue that computation-
level explanations of behavior that ignore mechanisms associated
with bottom-up emergence are likely to fall short (McClelland
etal., 2010).

The different approaches provide complementary insights
into the nature of natural intelligence. Artificial life informs
about fundamental bottom-up principles, biophysical models
make explicit how cognition is realized via specific mechanisms
at the molecular and systems level, connectionist models show
how problem solving capacities emerge from the interactions
between basic processing elements, cognitivism emphasizes the
importance of symbolic reasoning and probabilistic models
inform how particular problems could be solved in an optimal
manner.

Notwithstanding potential limitations, given their ability to
solve complex cognitively challenging problems, connectionist
models are taken to provide a promising starting point for
understanding natural intelligence and achieving strong Al They
also naturally connect to the different modeling strategies. That
is, they connect to artificial life principles by having network
architectures emerge through evolutionary strategies (Real et al.,
2016; Salimans et al., 2017) and connect to the biophysical level
by viewing them as (rate-based) abstractions of biological neural
networks (Dayan and Abbott, 2005). They also connect to the

SFrom: https://www.izhikevich.org/human_brain_simulation/why.htm
7Intentionality or “aboutness” refers to the quality of mental states as being
directed toward an object or state of affairs.

computational level by grounding symbolic representations in
real-world sensory states (Harnad, 1990) and connect to the
probabilistic approach through the observation that emergent
computations effectively approximate Bayesian inference (Gal,
2016; Orhan and Ma, 2016; Ambrogioni et al., 2017; Mandt et al.,
2017). It is for these reasons that, in the following, we will explore
how ANNS, as canonical connectionist models, can be used to
promote our understanding of natural intelligence.

4. ANN-BASED MODELING OF COGNITIVE
PROCESSES

We will now explore in more detail the ways in which ANNs can
be used to understand and model aspects of natural intelligence.
We start by addressing how neural networks can learn from data.

4.1. Learning

The capacity of brains to behave adaptively relies on their ability
to modify their own behavior based on changing circumstances.
The appeal of neural networks stems from their ability to mimic
this learning behavior in an efficient manner by updating network
parameters @ based on available data D = (z0,. .., 2Ny,
allowing the construction of large models that are able to solve
complex cognitive tasks.

Learning proceeds by making changes to the network
parameters 6 such that its output starts to agree more and more
with the objectives of the agent at hand. This is formalized by
assuming the existence of a cost function [7(#) which measures
the degree to which an agent deviates from its objectives. J
is computed by running a neural network in forward mode
(from input to output) and comparing the predicted output with
the desired output. During its lifetime, the agent obtains data
from its environment (sensations) by sampling from a data-
generating distribution pgai,. The goal of an agent is to reduce
the expected risk

T*0) = Exnpy,, [6(2.0)] (3)

where ¢ is the incurred loss per datapoint z. In practice, an
agent only has access to a finite number of datapoints which the
agent experiences during its lifetime, yielding a training set D.
This training set can be represented in the form of an empirical
distribution p(z) which equals 1/N if z is equal to one of the N
examples and zero otherwise. In practice, the aim therefore is to
minimize the empirical risk

j(o) = ]Ezfv[? [E(L 0)] (4)

as an approximation of J*. In reality, the brain is thought to
optimize a multitude of cost functions pertaining to the many
objectives it aims to achieve in concert (Marblestone et al., 2016).

Risk minimization can be accomplished by making use of a
gradient descent procedure. Let 6 be the parameters of a neural
network (i.e., the synaptic weights). We can define learning as a
search for the optimal parameters #* based on available training
data D such that

0* = argmoinjw). (5)
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A convenient way to approximate 8™ is by measuring locally the
change in slope of 7(f) as a function of # and taking a step in the
direction of steepest descent. This procedure, known as gradient
descent, is based on the observation that if 7 is defined and
differentiable in the neighborhood of a point @, then 7 decreases
fastest if one goes from @ in the direction of the negative gradient
—VpJ(#). In other words, if we use the update rule

0 <60 —cVepT0) (6)
with small enough learning rate € then # is guaranteed to
converge to a (local) minimum of 7 (0)8. Importantly, the
gradient can be computed for arbitrary ANN architectures
by running the network in backward mode (from output
to input) and computing the gradient using automatic
differentiation procedures. This forms the basis of the widely
used backpropagation algorithm (Widrow and Lehr, 1990).

One might argue that the backpropagation algorithm fails to
connect to learning in biology due to implausible assumptions
such as the fact that forward and backward passes use the
same set of synaptic weights. There are a number of responses
here. First, one might hold the view that backpropagation is
just an efficient way to obtain effective network architectures,
without committing to the biological plausibility of the learning
algorithm per se. Second, if biologically plausible learning is the
research objective then one is free to exploit other (Hebbian)
learning schemes that may reflect biological learning more
closely (Miconi, 2017). Finally, researchers have started to
put forward arguments that backpropagation may not be that
biologically implausible after all (Roelfsema and van Ooyen,
2005; Lillicrap et al., 2016; Scellier and Bengio, 2017).

4.2. Perceiving

One of the core skills any intelligent agent should possess is
the ability to recognize patterns in its environment. The world
around us consists of various objects that may carry significance.
Being able to recognize edible food, places that provide shelter,
and other agents will all aid survival.

Biological agents are faced with the problem that they need
to be able to recognize objects from raw sensory input (vectors
in R"). How can a brain use the incident sensory input to learn
to recognize those things that are of relevance to the organism?
Recall the artificial neuron formulation y = f(w'x). By learning
proper weights w, this neuron can learn to distinguish different
object categories. This is essentially equivalent to a classical model
known as the perceptron (Rosenblatt, 1958), which was used to
solve simple pattern recognition problems via a simple error-
correction mechanism. It also corresponds to a basic linear-
nonlinear (LN) model which has been used extensively to model
and estimate the receptive field of a neuron or a population of
neurons (van Gerven, 2017).

8In practice, it is more efficient to iterate over subsets of datapoints, known as mini-
batches, in sequence. That is, training is organized in terms of epochs in which
all datapoints are processed by iterating over mini-batches. Note that, whenever
we are not processing all data points in parallel, we are not exactly following the
gradient. Therefore, any such procedure is known as stochastic gradient descent.

Single-layer ANNs such as the perceptron are capable of
solving interesting learning problems. At the same time, they
are limited in scope since they can only solve linearly separable
classification problems (Minsky and Papert, 1969). To overcome
the limitations of the perceptron we can extend its capabilities by
relaxing the constraint that the inputs are directly coupled to the
outputs. A multilayer perceptron (MLP) is a feedforward network
which generalizes the standard perceptron by having a hidden
layer that resides between the input and the output layers. We
can write an MLP with multiple output units as

y = g(WE(Vx)) (7)
where V denotes the hidden layer weights and W denotes the
output layer weights. By introducing a hidden layer, MLPs gain
the ability to learn internal representations (Rumelhart et al.,
1986). Importantly, an MLP can approximate any continuous
function to an arbitrary degree of accuracy, given a sufficiently
large but finite number of hidden neurons (Cybenko, 1989;
Hornik, 1991).

Complex systems tend to be hierarchical and modular
in nature (Simon, 1962). The nervous system itself can be
thought of as a hierarchically organized system. This is
exemplified by Felleman & van Essen’s hierarchical diagram of
visual cortex (Felleman and Van Essen, 1991), the proposed
hierarchical organization of prefrontal cortex (Badre, 2008),
the view of the motor system as a behavioral control
column (Swanson, 2000) and the proposition that anterior and
posterior cortex reflect hierarchically organized executive and
perceptual systems (Fuster, 2001). Representations at the top
of these hierarchies correspond to highly abstract statistical
invariances that occupy our ecological niche (Quian Quiroga
et al., 2005; Barlow, 2009). A hierarchy can be modeled by
a deep neural network (DNN) composed of multiple hidden
layers (LeCun et al., 2015), written as

Yy = fir (Wi f (W -+ £ (Wix) -+ +)

= fp(x) ®)
where W is the weight matrix associated with layer I Even
though an MLP can already approximate any function to an
arbitrary degree of precision, it has been shown that many classes
of functions can be represented much more compactly using thin
and deep neural networks compared to shallow and wide neural
networks (Bengio and LeCun, 2007; Bengio, 2009; Le Roux and
Bengio, 2010; Delalleau and Bengio, 2011; Mhaskar et al., 2016).

A DNN corresponds to a stack of LN models, generalizing the
concept of basic receptive field models. They have been shown
to yield human-level performance on object categorization
tasks (Krizhevsky et al,, 2012). The latest DNN incarnations
are even capable of predicting the cognitive states of other
agents. One example is the prediction of apparent personality
traits from multimodal sensory input (Gugliitiirk et al., 2016).
Deep architectures have been used extensively in neuroscience
to model hierarchical processing (Selfridge, 1959; Fukushima,
1980, 2013; Riesenhuber and Poggio, 1999; Lehky and Tanaka,
2016). Interestingly, it has been shown that the representations
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encoded in DNN layers correspond to the representations that
are learned by areas that make up the sensory hierarchies of
biological agents (Giiglii and van Gerven, 2015, 2017a; Gugli
etal., 2016). Multiple reviews discuss this use of DNNs in sensory
neuroscience (Cox and Dean, 2014; Kriegeskorte, 2015; Robinson
and Rolls, 2015; Marblestone et al., 2016; Yamins and DiCarlo,
2016; Kietzmann et al., 2017; Peelen and Downing, 2017; van
Gerven, 2017; Vanrullen, 2017).

4.3. Remembering

Being able to perceive the environment also implies that agents
can store and retrieve past knowledge about objects and events
in their surroundings. In the feedforward networks considered in
the previous section, this knowledge is encoded in the synaptic
weights as a result of learning. Memories of the past can
also be stored, however, in moment-to-moment neural activity
patterns. This does require the availability of lateral or feedback
connections in order to enable recurrent processing (Singer,
2013; Maass, 2016). Recurrent processing can be implemented by
a recurrent neural network (RNN) (Jordan, 1987; Elman, 1990),
defined by

Yn = f(WYn—l + an) 9)

such that the neuronal activity at time # depends on the activity at
time n—1 as well as instantaneous bottom-up input. RNNs can be
interpreted as numerical approximations of differential equations
that describe rate-based neural models (Dayan and Abbott, 2005)
and have been shown to be universal approximators of dynamical
systems (Funahashi and Nakamura, 1993)°. Their parameters can
be estimated using a variant of backpropagation, referred to as
backpropagation through time (Mozer, 1989).

When considering perception, feedforward architectures may
seem sufficient. For example, the onset latencies of neurons
in monkey inferior-temporal cortex during visual processing
are about 100 ms (Thorpe and Fabre-Thorpe, 2001), which
means that there is ample time for the transmission of just
a few spikes. This suggests that object recognition is largely
an automatic feedforward process (Vanrullen, 2007). However,
recurrent processing is important in perception as well since
it provides the ability to maintain state. This is important
in detecting salient features in space and time (Joukes et al,
2014), as well as for integrating evidence in noisy or ambiguous
settings (O'Reilly et al., 2013). Moreover, perception is strongly
influenced by top-down processes, as mediated by feedback
connections (Gilbert and Li, 2013). RNNs have also been used to
model working memory (Miconi, 2017) as well as hippocampal
function, which is involved in a variety of memory-related
processes (Willshaw et al., 2015; Kumaran et al., 2016).

A special kind of RNN is the Hopfield network (Hopfield,
1982), where W is symmetric and U 0. Learning in a
Hopfield net is based on a Hebbian learning scheme. Hopfield
nets are attractor networks that converge to a state that is a local

® The ability of simple RNNs to integrate information over time remains limited,
which led to the introduction of various extensions that perform more favorably in
this regard (Hochreiter and Schmidhuber, 1997; Cho et al., 2014; Neil et al., 2016;
Wu et al., 2016).

minimum of an energy function. They have been used extensively
as models of associative memory (Wills et al., 2005). It has even
been postulated that dreaming can be seen as an unlearning
process which gets rid of spurious minima in attractor networks,
thereby improving their storage capacity (Crick and Mitchison,
1983).

4.4. Acting

As already described, the ability to generate appropriate actions
is what ultimately drives behavior. In real-world settings, such
actions typically need to be inferred from reward signals r;
provided by the environment. This is the subject matter of
reinforcement learning (RL) (Sutton and Barto, 1998). Define
a policy n(s,a) as the probability of selecting an action a
given a state s. Let the return R = Y 72, y'rsq1 be the total
reward accumulated in an episode, with y a discount factor that
downweighs future rewards. The goal in RL is to identify an
optimal policy 7 * that maximizes the expected return

7" =argmaxE[R | 7]. (10)
o

Reinforcement learning algorithms have been crucial in training
neural networks that have the capacity to act. Such networks
learn to generate suitable actions purely by observing the
rewards entailed by previously generated actions. RL algorithms
come in model-free and model-based variants. In the model-
free setting, optimal actions are learned purely based on the
reward that is gained by performing actions in the past. In
the model-based setting, in contrast, an explicit model of the
environment is used to predict the consequences of actions that
are being executed. Importantly, model-free and model-based
reinforcement learning approaches have clear correspondences
with habitual and goal-directed learning in neuroscience (Daw,
2012; Buschman et al., 2014).

Various model-free reinforcement learning approaches have
been used to develop a variety of neural networks for
action generation. For example, Q-learning was used to
train networks that play Atari games (Mnih et al, 2015)
and policy gradient methods have been used to play board
games (Silver et al., 2017) and solve problems in (simulated)
robotics (Silver et al., 2014; Schulman et al., 2015), effectively
closing the perception-action cycle. Evolutionary strategies
are also proving to become an useful approach for solving
challenging control problems (Salimans et al., 2017). Similar
successes have been achieved using model-based reinforcement
learning approaches (Schmidhuber, 2015; Mujika, 2016; Santana
and Hotz, 2016).

Another important ingredient required for generating optimal
actions is recurrent processing, as described in the previous
section. Action generation must depend on the ability to integrate
evidence over time since, otherwise, we are guaranteed to act
suboptimally. That is, states that are qualitatively different can
appear the same to the decision maker, leading to suboptimal
policies. Consider for example the sensation of a looming object.
The optimal decision depends crucially on whether this object
is approaching or receding, which can only be determined by
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taking past sensations into account. This phenomenon is known
as perceptual aliasing (Whitehead and Ballard, 1991).

A key ability of biological organisms which requires recurrent
processing is their ability to navigate in their environment, as
mediated by the hippocampal formation (Moser et al., 2015).
Recent work shows that particular characteristics of hippocampal
place cells, such as stable tuning curves that remap between
environments, are recovered by training neural networks on
navigation tasks (Kanitscheider and Fiete, 2016). The ability to
integrate evidence also allows agents to selectively sample the
environment, such as to maximize the amount of information
gained. This process, known as active sensing, is crucial for
understanding perceptual processing in biology (Yarbus, 1967;
Regan and Noé, 2001; Friston et al., 2010; Schroeder et al., 2010;
Gordon and Ahissar, 2012). Active sensing, in the form of saccade
planning, has been implemented using a variety of recurrent
neural network architectures (Larochelle and Hinton, 2010;
Gregor et al,, 2014; Mnih et al., 2014). RNNs that implement
recurrent processing have also been used to model various other
action-related processes such as timing (Laje and Buonomano,
2013), sequence generation (Rajan et al, 2015) and motor
control (Sussillo et al., 2015).

Recurrent processing and reinforcement learning are also
essential in modeling higher-level processes, such as cognitive
control as mediated by frontal brain regions (Fuster, 2001;
Miller and Cohen, 2001). Examples are models of context-
dependent processing (Mante et al., 2013) and perceptual
decision-making (Carnevale et al., 2015). In general, RNNs that
have been trained using RL on a variety of cognitive tasks
have been shown to yield properties that are consistent with
phenomena observed in biological neural networks (Song et al.,
2016; Miconi, 2017).

4.5. Predicting

Modern theories of human brain function appeal to the idea that
the brain can be viewed as a prediction machine, which is in the
business of continuously generating top-down predictions that
are integrated with bottom-up sensory input (Lee and Mumford,
2003; Yuille and Kersten, 2006; Clark, 2013; Summerfield and
de Lange, 2014). This view of the brain as a prediction machine
that performs unconscious inference has a long history, going
back to the seminal work of Alhazen and Helmholtz (Hatfield,
2002). Modern views cast this process in terms of Bayesian
inference, where the brain is updating its internal model
of the environment in order to explain away the data that
impinge upon its senses, also referred to as the Bayesian
brain hypothesis (Jaynes, 1988; Doya et al., 2006). The same
reasoning underlies the free-energy principle, which assumes that
biological systems minimize a free energy functional of their
internal states that entail beliefs about hidden states in their
environment (Friston, 2010). Predictions can be seen as central
to the generation of adaptive behavior, since anticipating the
future will allow an agent to select appropriate actions in the
present (Schacter et al., 2007; Moulton and Kosslyn, 2009).
Prediction is central in model-based RL approaches since
it requires agents to plan their actions by predicting the
outcomes of future actions (Daw, 2012). This is strongly

related to the notion of preplay of future events subserving
path planning (Corneil and Gerstner, 2015). Such preplay has
been observed in hippocampal place cell sequences (Dragoi
and Tonegawa, 2011), giving further support to the idea
that the hippocampal formation is involved in goal-directed
navigation (Corneil and Gerstner, 2015). Prediction also allows
an agent to prospectively act on expected deviations from optimal
conditions. This focus on error-correction and stability is also
prevalent in the work of the cybernetic movement (Ashby,
1952). Note further that predictive processing connects to the
concept of allostasis, where the agent is actively trying to predict
future states such as to minimize deviations from optimal
homeostatic conditions. It is also central to optimal feedback
control theory, which assumes that the motor system corrects
only those deviations that interfere with task goals (Todorov and
Jordan, 2002).

The notion of predictive processing has been very influential
in neural network research. For example, it provides the
basis for predictive coding models that introduce specific
neural network architectures in which feedforward connections
are used to transmit the prediction errors that result from
discrepancies between top-down predictions and bottom-up
sensations (Rao and Ballard, 1999; Huang and Rao, 2011). It
also led to the development of a wide variety of generative
models that are able to predict their sensory states, also referred
to as fantasies (Hinton, 2013). Such fantasies may play a role
in understanding cognitive processing involved in imagery,
working memory and dreaming. In effect, these models aim to
estimate a distribution over latent causes z in the environment
that explain observed sensory data x. In this setting, the most
probable explanation is given by

z*

argmax p(z | x)
z

arg mzax[p(x | z)p(z)] . (11)

Generative models also offer a way to perform unsupervised
learning, since if a neural network is able to generate predictions
then the discrepancy between predicted and observed stimuli can
serve as a teaching signal. A canonical example is the Boltzmann
machine, which is a stochastic variant of a Hopfield network that
is able to discover regularities in the training data using a simple
unsupervised learning algorithm (Hinton and Sejnowski, 1983;
Ackley et al., 1985). Another classical example is the Helmholtz
machine, which incorporates both bottom-up and top-down
processing (Dayan et al., 1995). Other, more recent examples of
ANN-based generative models are deep belief networks (Hinton
et al., 2006), variational autoencoders (Kingma and Welling,
2014) and generative adversarial networks (Goodfellow et al.,
2014). Recent work has started to use these models to predict
future sensory states from current observations (Lotter et al.,
2016; Mathieu et al., 2016; Xue et al., 2016).

4.6. Reasoning

While ANNs are now able to solve complex tasks such as acting in
natural environments or playing difficult board games, one could
still argue that they are “just” performing sophisticated pattern
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recognition rather than showing the symbolic reasoning abilities
that characterize our own brains. The question of whether
connectionist systems are capable of symbolic reasoning has a
long history, and has been debated by various researchers in
the cognitivist (symbolic) program (Pinker and Mehler, 1988).
We will not settle this debate here but point out that efforts
are underway to endow neural networks with sophisticated
reasoning capabilities.

One example is the development of “differentiable computers”
that learn to implement algorithms based on a finite amount
of training data (Graves et al, 2014; Weston et al, 2015;
Vinyals et al, 2017). The resulting neural networks perform
variable binding and are able to deal with variable length
structures (Graves et al., 2014), which are two objections that
were originally raised against using ANNs to explain cognitive
processing (Fodor and Pylyshyn, 1988).

Another example is the development of neural networks
that can answer arbitrary questions about text (Bordes et al.,
2015), images (Agrawal et al., 2016) and movies (Tapaswi et al.,
2015), thereby requiring deep semantic knowledge about the
experienced stimuli. Recent models have also been shown to be
capable of compositional reasoning (Johnson et al., 2017; Lake
et al.,, 2017; Yang et al., 2017), which is an important ingredient
for explaining the systematic nature of human thought (Fodor
and Pylyshyn, 1988). These architectures often make use of
distributional semantics, where words are encoded as real vectors
that capture word meaning (Mikolov et al., 2013; Ferrone and
Zanzotto, 2017).

Several other properties characterize human thought
processes, such as intuitive physics, intuitive psychology,
relational reasoning and causal reasoning (Kemp and
Tenenbaum, 2008; Lake et al., 2017). Another crucial hallmark
of intelligent systems is that they are able to explain what they
are doing (Brachman, 2002). This requires agents to have a
deep understanding of their world. These properties should be
replicated in neural networks if they are to serve as accurate
models of natural intelligence. New neural network architectures
are slowly starting to take steps in this direction (e.g., Louizos
et al., 2017; Santoro et al., 2017; Zhu et al., 2017).

5. TOWARD STRONG Al

We have reviewed the computational foundations of natural
intelligence and outlined how ANNs can be used to model
a variety of cognitive processes. However, our current
understanding of natural intelligence remains limited and
strong Al has not yet been attained. In the following, we
will touch upon a number of important topics that will be of
importance for eventually reaching these goals.

5.1. Surviving in Complex Environments

Contemporary neural network architectures tend to excel at
solving one particular problem well. However, in practice, we
want to arrive at intelligent machines that are able to survive in
complex environments. This requires the agent to deal with high-
dimensional naturalistic input, be able to solve multiple tasks

depending on context, and devise optimal strategies to ensure
long-term survival.

The research community has embraced these desiderata by
creating virtual worlds that allow development and testing of
neural network architectures (e.g., Todorov et al., 2012; Beattie
etal., 2016; Brockman et al., 2016; Kempka et al., 2016; Synnaeve
et al., 2016)19. While most work in this area has focused on
environments with fully observable states, reward functions with
low delay, and small action sets, research is shifting toward
environments that are partially observable, require long-term
planning, show complex dynamics and have noisy and high-
dimensional control interfaces (Synnaeve et al., 2016).

A particular challenge in these naturalistic environments is
that networks need to be able to exhibit continual (life-long)
learning (Thrun and Mitchell, 1995), adapting continuously
to the current state of affairs. This is difficult due to the
phenomenon of catastrophic forgetting (McCloskey and Cohen,
1989; French, 1999), where previously acquired skills are
overwritten by ongoing modification of synaptic weights. Recent
algorithmic developments attenuate the detrimental effects of
catastrophic forgetting (Kirkpatrick et al., 2015; Zenke et al.,
2015), offering a (partial) solution to the stability vs. plasticity
dilemma (Abraham and Robins, 2005). Life-long learning is
further complicated by the exploration-exploitation dilemma,
where agents need to decide on whether to accrue either
information or reward (Cohen et al., 2007). Another challenge
is the fact that reinforcement learning of complex actions is
notoriously slow. Here, progress is being made using networks
that make use of differentiable memories (Santoro et al., 2016;
Pritzel et al, 2017). Survival in complex environments also
requires that agents learn to perform multiple tasks well.
This learning process can be facilitated through multitask
learning (Caruana, 1997) (also referred to as learning to
learn Baxter, 1998 or transfer learning Pan and Fellow,
2009), where learning of one task is facilitated by knowledge
gained through learning to solve another task. Multitask
learning has been shown to improve convergence speed and
generalization to unseen data (Scholte et al., 2017). Finally,
effective learning also calls for agents that can generalize to cases
that were not encountered before, which is known as zero-shot
learning (Palatucci et al., 2009), and can learn from rare events,
which is known as one-shot learning (Fei-Fei et al., 2006; Vinyals
et al,, 2016; Kaiser and Roy, 2017).

While the use of virtual worlds allows for testing the
capabilities of artificial agents, it does not guarantee that the
same agents are able to survive in the real world (Brooks, 1992).
That is, there may exist a reality gap, where skills acquired
in virtual worlds do not carry over to the real world. In
contrast to virtual worlds, acting in the real world requires
the agent to deal with unforeseen circumstances resulting from
the complex nature of reality, the agent’s need for a physical
body, as well as its engagement with a myriad of other
agents (Anderson, 2003). Moreover, the continuing interplay
between an organism and its environment may itself shape
and, ultimately, determine cognition (Gibson, 1979; Maturana

105ee SHRDLU for an early example of such a virtual world (Winograd, 1972).
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and Varela, 1987; Brooks, 1996; Edelman, 2015). Effectively
dealing with these complexities may not only require plasticity
in individual agents but also the incorporation of developmental
change, as well as learning at evolutionary time scales (Marcus,
2009). From a developmental perspective, networks can be
more effectively trained by presenting them with a sequence
of increasingly complex tasks, instead of immediately requiring
the network to solve the most complex task (Elman, 1993).
This process is known as curriculum learning (Bengio et al,
2009) and is analogous to how a child learns by decomposing
problems into simpler subproblems (Turing, 1950). Evolutionary
strategies have also been shown to be effective in learning to solve
challenging control problems (Salimans et al., 2017). Finally, to
learn about the world, we may also turn toward cultural learning,
where agents can offload task complexity by learning from each
other (Bengio, 2014).

As mentioned in section 2.2, adaptive behavior is the result
of multiple competing drives and motivations that provide
primary, intrinsic and extrinsic rewards. Hence, one strategy
for endowing machines with the capacity to survive in the real
world is to equip neural networks with drives and motivations
that ensure their long-term survival'l. In terms of primary
rewards, one could conceivably provide artificial agents with
the incentive to minimize computational resources or maximize
offspring via evolutionary processes (Stanley and Miikkulainen,
2002; Floreano et al., 2008; Gauci and Stanley, 2010). In terms
of intrinsic rewards, one can think of various ways to equip
agents with the drive to explore the environment (Oudeyer,
2007). We briefly describe a number of principles that have
been proposed in the literature. Artificial curiosity assumes
that internal reward depends on how boring an environment
is, with agents avoiding fully predictable and unpredictably
random states (Schmidhuber, 1991, 2003; Pathak et al., 2017). A
related notion is that of information-seeking agents (Bachman
et al, 2016). The autotelic principle formalizes the concept
of flow where an agent tries to maintain a state where
learning is challenging, but not overwhelming (Csikszentmihalyi,
1975; Steels, 2004). The free-energy principle states that an
agent seeks to minimize uncertainty by updating its internal
model of the environment and selecting uncertainty-reducing
actions (Friston, 2009, 2010). Empowerment is founded on
information-theoretic principles and quantifies how much
control an agent has over its environment, as well as its ability
to sense this control (Klyubin et al., 2005a,b; Salge et al., 2013).
In this setting, intrinsically motivated behavior is induced by
the maximization of empowerment. Finally, various theories
embrace the notion that optimal prediction of future states drives
learning and behavior (Der et al.,, 1999; Kaplan and Oudeyer,
2004; Ay et al., 2008). In terms of extrinsic rewards, one can think

""The notion of wanting agents was already present in the writings of Thurstone
(1923), who wrote: “My main thesis is that conduct originates in the organism
itself and not in the environment in the form of a stimulus. [...] All mental life
may be looked upon as incomplete behavior which is in the process of being
formed. [...] Perception is the discovery of the suitable stimulus which is often
anticipated imaginally. The appearance of the stimulus is one of the last events
in the expression of impulses in conduct. The stimulus is not the starting point for
behavior.”

of imitation learning, where a teacher signal is used to inform
the agent about its desired outputs (Schaal, 1999; Duan et al.,
2017).

5.2. Bridging the Gap between Artificial

and Biological Neural Networks

To reduce the gap between artificial and biological neural
networks, it makes sense to assess their operation on similar
tasks. This can be done either by comparing the models at
a neurobiological level or at a behavioral level. The former
refers to comparing the internal structure or activation patterns
of artificial and biological neural networks. The latter refers
to comparing their behavioral outputs (e.g., eye movements,
reaction times, high-level decisions). Moreover, comparisons
can be made under changing conditions, i.e., during learning
and development (Elman et al, 1996). As such, ANNs can
serve as explanatory mechanisms in cognitive neuroscience
and behavioral psychology, embracing recent model-based
approaches (Forstmann and Wagenmakers, 2015).

From a psychological perspective, ANNs have been compared
explicitly with their biological counterparts. Connectionist
models were widely used in the 1980 to explain various
psychological phenomena, particularly by the parallel distributed
processing (PDP) movement, which stressed the parallel
nature of neural processing and the distributed nature of
neural representations (McClelland, 2003). For example, neural
networks have been used to explain grammar acquisition (Elman,
1991), category learning (Kruschke, 1992) and the organization
of the semantic system (Ritter and Kohonen, 1989). More
recently, deep neural networks have been used to explain
human similarity judgments (Peterson et al.,, 2016). With new
developments in cognitive and affective computing, where
neural networks become more adept at solving high-level
cognitive tasks, such as predicting people’s (apparent) personality
traits (Gugliitiirk et al., 2016), their use as a tool to explain
psychological phenomena is likely to increase. This will also
require embracing insights about how humans solve problems at
a cognitive level (Tenenbaum et al., 2011).

ANNSs have also been related explicitly to brain function.
For example, the perceptron has been used in the modeling
of various neuronal systems, including sensorimotor learning
in the cerebellum (Marr, 1969) and associative memory in
cortex (Gardner, 1988), sparse coding has been used to
explain receptive field properties (Olshausen and Field, 1996),
topographic maps have been used to explain the formation of
cortical maps (Obermayer, 1990; Aflalo, 2006), Hebbian learning
has been used to explain neural tuning to face orientation (Leibo
et al,, 2017), and networks trained by backpropagation have
been used to model the response properties of posterior parietal
neurons (Zipser and Andersen, 1988). Neural networks have
also been used to model central pattern generators that drive
behavior (Duysens and Van de Crommert, 1998; Ijspeert, 2008)
as well as the perception of rhythmic stimuli (Torras i Genis,
1986; Gasser, Eck and Port, 1999). Furthermore, reinforcement
learning algorithms used to train neural networks for action
selection have strong ties with the brain’s reward system (Schultz
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etal., 1997; Sutton and Barto, 1998). It has been shown that RNN’s
trained to solve a variety of cognitive tasks using reinforcement
learning replicate various phenomena observed in biological
systems (Song et al., 2016; Miconi, 2017). Crucially, these efforts
go beyond descriptive approaches in that they may explain
why the human brain is organized in a certain manner (Barak,
2017).

Rather than using neural networks to explain certain observed
neural or behavioral phenomena, one can also directly fit neural
networks to neurobehavioral data. This can be achieved via
an indirect approach or via a direct approach. In the indirect
approach, neural networks are first trained to solve a task
of interest. Subsequently, the trained networK’s responses are
fitted to neurobehavioral data obtained as participants engage
in the same task. Using this approach, deep convolutional
neural networks trained on object recognition, action recognition
and music tagging have been used to explain the functional
organization of visual as well as auditory cortex (Giiglii and
van Gerven, 2015, 2017a; Gugla et al., 2016). The indirect
approach has also been used to train RNNs via reinforcement
learning on a probabilistic categorization task. These networks
have been used to fit the learning trajectories and behavioral
responses of humans engaged in the same task (Bosch et al,
2016). Mante et al. (2013) used RNNs to model the population
dynamics of single neurons in prefrontal cortex during a
context-dependent choice task. In the direct approach, neural
networks are trained to directly predict neural responses. For
example, Mcintosh et al. (2016) trained convolutional neural
networks to predict retinal responses to natural scenes, Joukes
et al. (2014) trained RNNss to predict neural responses to motion
stimuli, and Gii¢lii and van Gerven (2017b) used RNNs to
predict cortical responses to naturalistic video clips. This ability
of neural networks to explain neural recordings is expected
to become increasingly important (Sompolinsky, 2014; Marder,
2015), given the emergence of new imaging technology where
the activity of thousands of neurons can be measured in
parallel (Ahrens et al., 2013; Churchland and Sejnowski, 2016;
Lopez et al., 2016; Pachitariu et al., 2016; Yang and Yuste, 2017).
Better understanding will also be facilitated by the development
of new data analysis techniques to elucidate human brain
function (Kass et al., 2014)'2, the use of ANNSs to decode neural
representations (Schoenmakers et al., 2013; Guglitirk et al,
2017), as well as the development of approaches that elucidate
the functioning of ANNSs (e.g., Nguyen et al., 2016; Kindermans
etal., 2017; Miller, 2017)13.

5.3. Next-Generation Artificial Neural

Networks
The previous sections outlined how neural networks can be made
to solve challenging tasks and provide explanations of neural and

12But see Jonas and Kording (2017) for a critical appraisal of the informativeness
of such techniques.

13These techniques aim to overcome the interpretability problem raised by Mozer
and Smolensky (1989), who state: ”One thing that connectionist networks have in
common with brains is that if you open them up and peer inside, all you can see is
a big pile of goo.”

behavioral responses in biological agents. In this final section, we
consider some developments that are expected to fuel the next
generation of ANNs.

First, a major driving force in neural network research
will be theoretical and algorithmic developments that inform
why ANNs work so well in practice, what their fundamental
limitations are, as well as how to overcome these. From a
theoretical point of view, substantial advances have already been
made pertaining to, for example, understanding the nature of
representations (Anselmi and Poggio, 2014; Lin and Tegmark,
2016; Shwartz-Ziv and Tishby, 2017), the statistical mechanics
of neural networks (Sompolinsky, 1988; Advani et al.,, 2013),
as well as the expressiveness (Pascanu et al., 2013; Bianchini
and Scarselli, 2014; Kadmon and Sompolinsky, 2016; Mhaskar
et al.,, 2016; Poole et al., 2016; Raghu et al., 2016; Weichwald
et al, 2016), generalizability (Kawaguchi et al, 2017) and
learnability (Dauphin et al., 2014; Saxe et al., 2014; Schoenholz
etal., 2017) of DNNs.

From an algorithmic point of view, great strides have been
made in improving training of deep (Srivastava et al., 2014;
He et al., 2015; Toffe and Szegedy, 2015) and recurrent neural
networks (Hochreiter and Schmidhuber, 1997; Pascanu et al.,
2012), overcoming the reality gap (Tobin et al., 2017), adding
modularity to neural networks (Fernando et al., 2017), as
well as on improving the efficacy of reinforcement learning
algorithms (Schulman et al., 2015; Mnih et al., 2016; Pritzel et al.,
2017).

Second, it is expected that as neural network models become
more plausible from a biological point of view, model fit and
task performance will further improve (Cox and Dean, 2014).
This is important in driving new developments in model-
based cognitive neuroscience but also in developing intelligent
machines that show human-like behavior. One example is to
match the object recognition capabilities of extremely deep
neural networks with more biologically plausible RNNs of
limited depth (O’Reilly et al., 2013; Liao and Poggio, 2016) and
achieving category selectivity in a more realistic manner (Peelen
and Downing, 2017; Scholte et al., 2017). Another example is
to incorporate predictive coding principles in neural network
architectures (Lotter et al., 2016). Furthermore, more human-
like perceptual systems can be arrived at by including attentional
mechanisms (Mnih et al., 2014) as well as mechanisms for
saccade planning (Najemnik and Geisler, 2005; Larochelle and
Hinton, 2010; Gregor et al., 2014).

In general, ANN research can benefit from a close interaction
between the AI and neuroscience communities (Yuste, 2015;
Hassabis et al., 2017). For example, neural network research
may be shaped by general guiding principles of brain function
at different levels of analysis (O'Reilly, 1998; Maass, 2016;
Sterling and Laughlin, 2016). We may also strive to incorporate
more biological detail. For example, to obtain accurate models
of neural information processing we may need to embrace
spike-based rather than rate-based neural networks (Brette,
2015)!. Efforts are underway to effectively train spiking neural

While there surely exists neurobiological evidence for temporal coding with
spikes (Segundo et al., 1966; Barrio and Buno, 1990; Bohte, 2004), it remains an
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networks (Maass, 1997; Gerstner and Kistler, 2002; Gerstner
et al,, 2014; O’Connor and Welling, 2016; Huh and Sejnowski,
2017) and endow them with the same cognitive capabilities as
their rate-based cousins (Thalmeier et al., 2015; Abbott et al.,
2016; Kheradpisheh et al., 2016; Lee et al., 2016; Zambrano and
Bohte, 2016).

In the same vein, researchers are exploring how probabilistic
computations can be performed in neural networks (Nessler
et al., 2013; Pouget et al., 2013; Gal, 2016; Orhan and Ma, 2016;
Ambrogioni et al., 2017; Heeger, 2017; Mandt et al,, 2017) and
deriving new biologically plausible synaptic plasticity rules (Brea
and Gerstner, 2016; Brea et al., 2016; Schiess et al., 2016).
Biologically-inspired principles may also be incorporated at a
more conceptual level. For instance, researchers have shown that
neural networks can be protected from adversarial attacks (i.e.,
the construction of stimuli that cause networks to make mistakes)
by integrating the notion of nonlinear computations encountered
in the branched dendritic structures of real neurons (Nayebi and
Ganguli, 2016).

Finally, research is invested in implementing ANNs in
hardware, also referred to as neuromorphic computing (Mead,
1990). These brain-based parallel chip architectures hold the
promise of devices that operate in real time and with very
low power consumption (Schuman et al.,, 2017), driving new
advances in cognitive computing (Modha et al., 2011; Neftci
et al, 2013; Van de Burgt et al, 2017). On a related note,
nanotechnology may 1 day drive the development of new
neural network architectures whose operation is closer to the
molecular machines that mediate the operation of biological
neural networks (Drexler, 1992; Strukov, 2011). In the words
of Feynman (1992): “There’s plenty of room at the bottom.”

6. CONCLUSION

As cognitive scientists, we live in exciting times. Cognitivism
offers an interpretation of agents as information processing
systems that are engaged in formal symbol manipulation. The
probabilistic approach to cognition extends this interpretation
by viewing organisms as rational agents that need to act in the
face of uncertainty under limited resources. Finally, emergentist
approaches such as artificial life and connectionism indicate
that concerted interactions between simple processing elements
can achieve human-level performance at certain cognitive tasks.
While these different views have stirred substantial debate
in the past, they need not be irreconcilable. Surely we are
capable of formal symbol manipulation and decision making
under uncertainty in real-life settings. At the same time, these
capabilities must be implemented by the neural circuits that make
up our own brains, which themselves rely on noisy long-range
communication between neuronal populations.

The thesis of this paper is that natural intelligence can
be modeled and understood by constructing artificial agents

open question if temporal coding is absolutely necessary for the generation of
adaptive behavior. In the end, computing with spikes may have emerged chiefly
to promote efficiency and allow long-distance neuronal communication (Laughlin
and Sejnowski, 2003).

whose synthetic brains are composed of (rate-based) neural
networks. To act as explanations of natural intelligence, these
synthetic brains should show a functional correspondence with
their biological counterparts. To identify such correspondence
we can embrace the rich sources of data provided by
biology, neuroscience and psychology, providing a link to
Marr’s implementational level. At the same time, we can use
sophisticated machinery developed in mathematics, computer
science and physics to gain a better understanding of these
systems. Ultimately, these synthetic brains should be able to
show the capabilities that are prescribed by normative theories
of intelligent behavior, providing a link to Marr’s computational
level.

The supposition that artificial neural networks are sufficient
for modeling all of cognition may seem premature. For
example, state-of-the-art question-answering systems such as
IBM’s Watson (Ferrucci et al., 2010) use ANN technology as
a minor component within a larger (symbolic) framework and
the AlphaGo system (Silver et al., 2017), which learns to play
the game of Go beyond grandmaster level without any human
intervention, combines neural networks with Monte Carlo tree
search. While it is true that ANNs remain wanting when it
comes to logical reasoning, inferring causal relationships or
planning, the pace of current research may very well bring
these capabilities within reach in the foreseeable future. Such
neural networks may turn out to be quite different from
current neural network architectures and their operation may
be guided by complementary yet-to-be-discovered learning
rules.

The quest for natural intelligence can be contrasted with a
pure engineering approach. From an engineering perspective,
understanding natural intelligence may be considered irrelevant
since the main interest is in building devices that do the job.
To quote Edsger Dijkstra, “the question whether machines can
think [is] as relevant as the question whether submarines can
swim.” At the same time, our quest for natural intelligence
may facilitate the development of strong AI given the proven
ability of our own brains to generate intelligent behavior.
Hence, biologically inspired architectures may not only provide
new insights into human brain function but could also
in the long run yield superior curious and perhaps even
conscious machines that surpass humans in terms of intelligence,
creativity, playfulness, and empathy (Boden, 1998; Moravec,
2000; Der and Martius, 2011; Modha et al., 2011; Harari,
2017).
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