'." frontiers

in Computational Neuroscience

ORIGINAL RESEARCH
published: 11 January 2018
doi: 10.3389/fncom.2017.00119

OPEN ACCESS

Edited by:
Florentin Worgatter,
University of Géttingen, Germany

Reviewed by:

Alexander Galil,

German Primate Center (LG),
Germany

Si Wu,

Beijing Normal University, China

*Correspondence:
Tjeerd V. olde Scheper
tvolde-scheper@brookes.ac.uk

Received: 05 August 2016
Accepted: 22 December 2017
Published: 11 January 2018

Citation:
olde Scheper TV, Meredith RM,
Mansvelder HD, van Pelt J and

van Ooyen A (2018) Dynamic Hebbian
Cross-Correlation Learning Resolves
the Spike Timing Dependent Plasticity
Conundrum.

Front. Comput. Neurosci. 11:119.
doi: 10.3389/fncom.2017.00119

Check for
updates

Dynamic Hebbian Cross-Correlation
Learning Resolves the Spike Timing
Dependent Plasticity Conundrum

Tjeerd V. olde Scheper?*, Rhiannon M. Meredith', Huibert D. Mansvelder?,
Jaap van Pelt’ and Arjen van Ooyen’

! Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit
Amsterdam, Amsterdam, Netherlands, ? Department of Computing and Communication Technologies, Faculty of Technology,
Design and Environment, Oxford Brookes University, Oxford, United Kingdom

Spike Timing-Dependent Plasticity has been found to assume many different forms. The
classic STDP curve, with one potentiating and one depressing window, is only one of
many possible curves that describe synaptic learning using the STDP mechanism. It
has been shown experimentally that STDP curves may contain multiple LTP and LTD
windows of variable width, and even inverted windows. The underlying STDP mechanism
that is capable of producing such an extensive, and apparently incompatible, range of
learning curves is still under investigation. In this paper, it is shown that STDP originates
from a combination of two dynamic Hebbian cross-correlations of local activity at the
synapse. The correlation of the presynaptic activity with the local postsynaptic activity is
arobust and reliable indicator of the discrepancy between the presynaptic neuron and the
postsynaptic neuron’s activity. The second correlation is between the local postsynaptic
activity with dendritic activity which is a good indicator of matching local synaptic and
dendritic activity. We show that this simple time-independent learning rule can give rise to
many forms of the STDP learning curve. The rule regulates synaptic strength without the
need for spike matching or other supervisory learning mechanisms. Local differences
in dendritic activity at the synapse greatly affect the cross-correlation difference which
determines the relative contributions of different neural activity sources. Dendritic activity
due to nearby synapses, action potentials, both forward and back-propagating, as well
as inhibitory synapses will dynamically modify the local activity at the synapse, and the
resulting STDP learning rule. The dynamic Hebbian learning rule ensures furthermore,
that the resulting synaptic strength is dynamically stable, and that interactions between
synapses do not result in local instabilities. The rule clearly demonstrates that synapses
function as independent localized computational entities, each contributing to the global
activity, not in a simply linear fashion, but in a manner that is appropriate to achieve local
and global stability of the neuron and the entire dendritic structure.

Keywords: spike timing-dependent plasticity, dynamic systems, synaptic stability, network stability,
computational modeling
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1. INTRODUCTION

Spike Timing-Dependent Plasticity (STDP) (Bi and Poo, 1998)
is regarded as a major progression toward understanding the
problem of how learning is achieved in biological neuronal
networks. Because STDP gives a synapse-specific, non-tetanic
means of regulating synaptic plasticity, learning in biological
neuronal networks seems reduced to a simple time dependent
rule (Song et al., 2000). As is so often the case, biological
experimental results have shown that STDP appears to be
more complex than initially assumed. It has been shown that
STDP takes different forms during development (Wittenberg and
Wang, 2006), and that there are variations within brain regions
and species (Buchanan and Mellor, 2010; Testa-Silva et al., 2010).
It is frequency, and location dependent (Sjostrom et al., 2001;
Froemke et al., 2010). Inhibition appears to invert the STDP
curve, which seemingly contradicts the Hebbian nature of STDP
(Lamsa et al., 2010). Even the existence of STDP as a valid
learning mechanism has been questioned (Lisman and Spruston,
2010). Different reviews of STDP have emphasized the possible
variations and forms of STDP (Morrison et al., 2008; Sjostrom et
al., 2008; Buchanan and Mellor, 2010), but so far no satisfactory
explanation has been proposed how these different forms may
arise.

We have defined a novel dynamic framework which can
address the STDP conundrum by considering the synapse as an
independent Hebbian entity. It relates the synaptic strength to
the presynaptic and postsynaptic activity as the result of localized
independent postsynaptic dynamics, which is founded on
experimental results (Makino and Malinow, 2011). The localized
dynamics are formed by the presynaptic input, the postsynaptic
response to the input and the presence of postsynaptic activity
due to other processes, such as other synapses and action
potentials. This Dynamic Hebbian Learning model (dynHebb)
demonstrates the cardinal role of local dynamics to synaptic
learning beyond global neural behavior. The dynHebb model
shows that both Hebbian and anti-Hebbian learning depend on
several contributing factors, namely spike timing, the amount
of postsynaptic activity, and adaptation by postsynaptic action
potentials as well as inhibitory input. The mechanism of STDP
learning takes on several dimensions of complexity simply due to
local dynamic interactions, and the relevance of specific activities
and inhibition to the input. Synapses can learn and contribute
to the global neuronal behavior but are also subject to local
rules that determine the effective individual synaptic strength
independently.

The dynHebb model is based on the causal cross-correlation
between pre- and postsynaptic activity as expressed by a
phenomenological activity measure. The model is based on the
following three guiding principles. Firstly, a distinction is made
between local postsynaptic activity at the synapse (henceforth
denoted as Ppost), directly resulting from the presynaptic
activity (denoted as Ppre), and local dendritic activity resulting
from all activity sources in the local dendrite (denoted as
Py). Secondly, the cross-correlation between presynaptic Ppre
and local postsynaptic activity Ppost determines the potential
for synaptic efficacy. This cross-correlation reflects synaptic

depression due to presynaptic activity if little or none local
postsynaptic activity is present. Thirdly, the cross-correlation
of the local postsynaptic activity of the synapse Ppost With the
dendritic activity Py, which has been shown to be essential
for STDP (Kampa et al, 2007). The dendritic activity is
formed by all contributing factors that form this activity, such
as Back-propagating Action Potentials (BAPs), and activities
of other nearby synapses (including the local postsynaptic
activity). The interaction between local postsynaptic activities
are directly responsible for different forms of STDP learning
(Lamsa et al.,, 2010). In the dynHebb model, the three principles
are contributing parts of an autonomous (time-independent)
learning rule from which time dependent STDP learning
emerges. Due to its dynamic nature, the autonomous learning
rule responds in a simple feed-forward manner to the synaptic
input, eliminating the need to go back in time and adjust synaptic
strengths such as is required for the standard STDP model
(Song et al., 2000). The relation between the dynamics of a
single synapse and the postsynaptic dynamics in the dendrite
becomes apparent by different emerging learning behavior. The
presence of BAPs and synaptic inhibition changes the shape of the
single STDP learning rule. The dendritic activity formed by other
sources than the synapse makes a significant contribution to the
learning rule, and can control the synaptic dynamics completely.
Because the model also describes the relation between the
presynaptic activity and the local postsynaptic activity caused
by the synapse, as well as other dendritic activity due to nearby
competing synapses, the mechanism enables the synapse to
respond to input as well as compete with other synapses and tune
itself to the global neuronal activity.

2. METHODS

In this section, we describe the underlying model of the Dynamic
Hebbian Learning Rule, and its basic properties. In the Results
section 3, we will elaborate in detail on the consequences of the
methods, in particular, the dynamic interactions that permit the
emergence of the learning rules.

2.1. Dynamic Hebbian Learning Rule

We construct a specific learning rule (dynHebb) based on
the comparison between the local postsynaptic activity Ppost
of a given synapse directly resulting from presynaptic activity
Ppre, and the global postsynaptic activity resulting from the
combination of all local sources in the local dendrite Py
(including the Ppose of a given synapse). The negated causal
cross-correlation of presynaptic and postsynaptic activity, Ppre
and Ppogt, is scaled by the dendritic activity Py which ensures
stability of the synaptic strength. This represents the direct
effectiveness of the synapse by relating the presynaptic activity
with the filtered postsynaptic response it has generated. Hence,
the negated causal cross-correlation causes synaptic depression
and this can only be overcome by the potentiation due to
a robust postsynaptic response. This response is based on
the postsynaptic activity generated by the synapse and the
cross-correlation of this activity with the dendritic activity. If
sufficiently large postsynaptic activity is present when the synapse
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is active (i.e., when the cross-correlation terms are not zero),
the synapse becomes potentiating by overcoming the initial
synaptic depression. To avoid unnecessary confusion regarding
the biological interpretation of the activity term, it suffices to
consider it an abstraction similarly to the postsynaptic potential
in functionality.

2.2. Synaptic Activity Model
The change in synaptic weight W in the Synaptic Activity Model
(SAM) is described by the following equations

i aPprePpost
Féyn(t) = m + bPpost + cPpostPa (1)
d Wi(t) ;

d’t = Fyo (1) — eWi(0) (2)

where W;(t) is the synaptic weight of synapse i, Féyn the dynamic
cross-correlation learning rule for the same synapse, Ppre is the
presynaptic activity, Ppost the resulting local postsynaptic activity
of the synapse and P the local dendritic activity.

To encapsulate the contribution of the localized memory that
each synapse contributes to the global dynamics, the second
term in Equation (1) represents the linear local response of the
postsynaptic activity. This term may be considered to provide a
linearly scaled direct response to the input, allowing local activity
to remain after input has died away. To provide suitable functions
for the cross-correlation terms, the synaptic activity is formed
by a descriptive decay function, based on the alpha function
(Koch, 1999) commonly used to model neural potentials. Here,
the activity function uses a set of two second order differential
equations, which allows adaptive response to local activity
patterns instead (olde Scheper et al., 2012). Each of the Ppre, Ppost>
and P, terms are described by Py in

dPx_ ) 2

dt—aQ + B Py (3)
dQ_ 5

Tlt_d)Q +Wyl (4)

where « = 1, B = —1, ¢ is in the range [—2,0), y > 1, W is the
synaptic strength in case of the Ppre, I is the input, Q is the input
variable and P represents the synaptic activity.

The choice of parameter values a = —1, b = 0.3, ¢ =
0.1 and e = —0.001 is not critical, but reflects the relative
contribution of the three terms. Where appropriate, these can
be modified to study specific dynamics, similarly as the « decay
term in the alpha-function. In particular, the parameters a and
¢ and the decay parameter e can be modified to suit specific
learning rates. The advantages of the SAM approach are that
the autonomous model does not require specific detection of a
neural spike and can be modified with parameter W in a feed-
forward manner. Contributing postsynaptic activities can also be
added and scaled, if necessary (olde Scheper et al., 2012). The
SAM is used to connect suitable spiking membrane models, such
as the Hindmarsh-Rose model (Hindmarsh and Rose, 1984) or
the Morris-Lecar model (Izhikevich, 2004), by providing scaled
input I to the pre-synaptic activity Ppre (Equation 4) for which

the weight is unity. Then the post-synaptic local activity Ppost
is determined based on the same spiking model but weighted
Wi, also according to Equation (4). In this paper, we used the
Morris-Lecar model, which is described by

d
CoY = L= gV = Vi) = gaamoe V)V — V)
—gxn(V — Vg) (5)
dn
T AV)(neo(V) — n) (6)
where
1 (V—-Vy)
foo = % {I-I-tanh (%)} (8)
s (V—V3)
AM(V) = A cosh (T) 9

with C = 20 uF/cmz,gL = 2mS/cm?,V; = —50mV, gca =
4mS/cm2, Vo = 100mV, g = SmS/cmZ, Vk = —70mV,
Vi = 0mV, V, = 15mV, V3 = 10mV, V4, = 10mV,
x = 0.1s7!, and I is the applied scaled input I; = K P; (with
K; =60a.u.).

This post-synaptic dendritic activity P; is determined based
on the weighted sum of the post-synaptic local activities (Ppost),
reflecting the relative contributions from each synapse to the total
dendritic activity, so

Pi=) Gi P (10)
i

where G; = [0, 1]. The cross-correlation terms in Equation (1)
are therefore causally related, due to the fact that Ppog is
produced by the same spiking model as Ppre, but weighted. If the
weight is such that the cross-correlation Ppre Ppost is high, this will
depress the synapse, unless the post-synaptic cross-correlation
term PpostPy, and the local linear Ppogt itself can overcome this
effect. Similarly, the post-synaptic dendritic activity is causally
related to the post-synaptic activities forming the second cross-
correlation term. Therefore, the entire dynamic behavior of the
synapse is a direct causal function of its input, in relation to
its output contribution to the local neuronal activity. The post-
synaptic spiking neuron model can then be activated based on
the scaled Pj. Scaling is necessary due to the fact that the spiking
models are based on specific assumptions for their parameter
values. Finally, the weight for the synapse is calculated based on
Equations (1, 2). Note that all equations are first order differential
non-linear equations. These can be simulated using standard
numerical integration methods, where the exact methodology
used is not critical, taking care to minimize numerical error.

To clarify the function of the Dynamic Hebbian Learning rule,
in Figure 1 are shown the response of the learning rule due to
a single spiking event at time zero. In Figure 1A is shown the
activity Ppre (black) and Ppost (green) and the negative cross-
correlation of the two (blue, cf. term one in Equation 3). In
Figure 1B is shown the same Ppost as in Figure 1A (green) as well
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FIGURE 1 | (A) Presynaptic activity in black due to a spiking event at time zero, this leads to a local postsynaptic activity (light green). In dark blue is shown the
negated cross-correlation of these two activities. (B) Postsynaptic activity in light green (same as in A) with dendritic activity in gold and cross-correlation of these two
in dark green. (C) The negative first cross-correlation in dark blue, the positive second cross-correlation in dark green and the learning function F({) in red. The pink
shading indicates the relative contributions of depression vs. potentiation. (D) The synaptic weight W(t) in time, due to the decay term —e W;(t) the synaptic strength is
slowly decreasing. (E) Function F(f) over the entire simulation period of 600 s. (F) Synaptic weight W(t) derived from F(¢) in (E).
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as the Py (gold), resulting in the cross-correlation of these two
activities (dark-green, cf. term three in Equation 3). In Figure 1C
is shown the two cross-correlation terms from Figures 1A,B
(blue and dark green), which results in the learning function F(¢)
(red). The synaptic weight W;(t) is then shown in Figure 1D, in
this case, the input leads to a synaptic strengthening. Even though
each individual spiking event has an effect on the model, it does

not necessarily by itself cause a change in synaptic strength,
unless the synapse is in a critical state where previous events
have driven the dynamic system toward the change. A critical
state indicates that the system is near a change in dynamic state,
such as one stable state to another, or to a periodic oscillation.
This is comparable to the recognized critical properties of
neural architectures (Abbott and Rohrkemper, 2007). In fact,
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this property increases the robustness of the system, by not only
depending on specific events, but on those events that contribute
to a change in state, which makes those events relevant to learning
in the synapse.

Finally, in Figurel are shown a single sample run of the
changes in the learning function F(t) (Figure 1E), and the
synaptic weight W;(t) (Figure 1F) over an entire extended
simulation period, demonstrating the adaptation of the synaptic
weight due to temporal sensitivity to cross-correlated input.

2.3. Synaptic Configurations

The dynHebb rule can be applied to synapses in different spatial
configurations. Commonly, two synapses are targeted on the
same postsynaptic compartment (illustrated in Figure 2B) and
are driven singularly to demonstrate the effect of learning in
a single synapse, or by paired periodic pulses with different
frequencies. For example, a typical pair of periods are 200
and 201 ms for at least 60s. This will introduce a beat into
the frequencies (a difference between the two frequencies),
such that every phase difference between the two periods is
contained within the total simulation time. This allows for
convenient analysis of the STDP properties. The dynHebb
learning rule combines the relative contributions of the synapse
and postsynaptic dendrite where the relative difference between
the periods determines the time lag. It is more convenient to
use a systematic, rather than a stochastic approach; the scheme
does not need to have repeated fixed stimulation pairs, as is
required in an experimental setup. The determinism of the
function (Equation 1) ensures that a single event will cause
a very small chance in the synaptic strength. If the learning
strength parameters are chosen suitably small, this will not
be noticeable, unless the stimulation is repeated conform an
experimental approach. A different synaptic configuration is
shown in Figure 7A of a configuration with two excitatory
synapses and one inhibitory synapse. The three synapses are at
different distances from the soma, but close enough to each other
to influence the local dendritic activity. Synapse A is furthest
away, followed by B, and C the nearest to the soma. In subsequent
simulations the first synapse from presynaptic neuron A is
located on the left branch of the “Y;” the second synapse from
presynaptic neuron B is located on the right branch. The third
synapse is located on the base of the “Y;” with the location of the
soma at the bottom. These synapses will then compete to become
the most relevant synapse to cause a postsynaptic activity spike.
The synapses will not simply reach the limit of the neuron, due
to the relative contribution each makes to the total dendritic,
and thus somatic activity. To demonstrate the dynamic nature
of the STDP function, we will compare the effects of the different
locations of the sole inhibitory synapse. In other words, we make
synapse A, B, and C inhibitory in turn, with the other two
excitatory.

2.4. Determination of Relative Spike Timing
To calculate the resulting STDP curves, a standard experimental
approach is used (Verhoog et al, 2013), where the timing
of peak of the presynaptic activity Ppre at sample time ¢ is
subtracted from the timing of the resulting postsynaptic activity

Ppost to provide the relative difference (Ppost(t) — Ppre(t)), and
the corresponding amplitude change between the activity events
provides the relative change in synaptic strength due to this
activity AW;(t) = W;i(t) — Wi(t — 1), where the value of
W; is constant between spiking events. The potential effect of
cumulative increases due to a residual memory (state) in the
synaptic strength at each increase in the phase difference can
easily be mitigated by providing sufficient time between input
pulses to allow transients to die out. The dynHebb learning
rule is not affected by the current state of the synaptic weight
itself, as can be seen from the synaptic rule function Féyn(t). The

linear decay —eW;(t) in Equation (2) slowly decreases the weight,
which can be overcome by occasional activity of the synapse.
Alternatively, this term can be set to zero, if desired, without
compromising the inherent properties of the rule allowing more
persistent activity.

The use of the continuous stimulation protocol with the beat,
does not change the properties of the model. Each individual
stimulus causes a small change in the synaptic strength, which
will persist and become significant if sufficient stimuli occur
before this change decays over time. Therefore, the stimulation
pattern is not responsible for the learning effect, but the dynHebb
rule, and this may be a useful approach for experimentalist as
well.

There is therefore no cumulative increase or decrease in the
synaptic strength caused by the previous input, unless transient
activity causes the cross-correlation terms to be non-zero. This is
one of the main features of the dynHebb rule, allowing activity
patterns to influence synapses only when they are active. When
they are inactive, the presence of dendritic activity does not affect
the rule as such, which guarantees the synaptic stability and
prevents the occurrence of synaptic degradation associated with
high neural activity that may occur with linear and non-linear
learning rules.

3. RESULTS

To demonstrate the dynHebb learning rule, we used a protocol
independent mechanism to determine the relative contribution
of each spiking event to the local dynamics of the synapse.
Synapses were stimulated with an input pulse driving a
modified Morris-Lecar model (Izhikevich, 2004) together with a
postsynaptic dendritic pulse at appropriate varying time delays.
The resulting change in weight for both synapses mirrors the
standard STDP curve for the first synapse and the inverse
curve for the second synapse (Figure 2C, explained in detail
in the section Synaptic Competition). This can be compared
with the reproduced experimental data from Bi and Poo (1998)
(Figure 2A). Additionally are shown, the exponential curves that
are commonly used to describe STDP learning (continuous lines)
as a non-autonomous decay model (Song et al., 2000). These
exponential functions are fitted by AW® = A% exp (%) with
A* =0.86, —0.25 and t* = 19, -34 (Bi, 2002). In Figures 2C,D
are shown the effect of the dynHebb model of the simple
experimental protocol by Bi and Poo (1998), where the synapse
is activated by a 1 Hz frequency with a 1 ms beat. The STDP
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FIGURE 2 | Results from the dynHebb model. (A) STDP in hippocampal experiments demonstrating the standard STDP form (revisualized in blue, after Bi and Poo,
1998). The black lines are fitted exponential functions for comparison (redrawn after Bi, 2002). (B) Scheme of simulation model where two synapses project onto the
same compartment, the presynaptic activity (Ppre) generates local postsynaptic activity (Ppost) which contributes to the dendritic activity (Py). (C) STDP of 1 Hz
stimulated single synapse model. The low change of weight is due to the low activation pattern. (D) Synaptic weight of the 1 Hz stimulated model over time, showing
four distinct stimulation events, and the subsequent change in weights. (E) The dynHebb learning of competing synapses 1 (blue) and 2 (green). (F) Synaptic strength
of both synapses over one entire simulation period, driven by 5 Hz periodic signal with 1 ms beat. Note that the synapses are stimulated every 200 and 201 ms
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diagram in Figure 2C shows the classic STDP curve, without
any further adjustment, although the change in weight is very
small, due to the large gaps between each subsequent activation.
In Figure 2D is shown the synaptic weight change due to the four

stimulations causing small changes in the weight. To demonstrate
the effect of more closely related activation patterns, two nearby
synapses were simulated at 5 Hz with a period difference of
1 ms. The dynHebb learning rule response dynamically to the
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change in configuration, as is shown by synapse 1 (Figure 2E blue
line), which contains data points that cause depression, as well
as potentiation. The synaptic strengths of both synapses do not
change when the two synapses are out of phase and the cross-
correlation terms are zero. The synapses change their relative
strengths when both input and additional dendritic activity are
present due to non-zero cross-correlations. In Figure 2F at about
40s is shown the pre- and postsynaptic activity to become in
phase, resulting in the increase of synaptic strength.

3.1. Synaptic Competition

Synaptic competition is a cardinal feature of STDP learning that
is associated with synaptic pruning. This has been shown to occur
due to repetitive LTD induction in rat hippocampal neurons
(Shinoda et al., 2010) . It has also been demonstrated that, for
short time windows, spines may compete for L-LTP expression
(Govindarajan et al., 2011) and competition was found for
different signaling molecules (Gerkin et al., 2007). It is therefore
expected that any functional learning rule will show input specific
responses for plasticity rules (Feldman, 2000) between nearby
synapses on the basis of postsynaptic activity interactions.

To demonstrate competition in our model, two synapses are
simulated and driven with two periodic signals of 5 Hz (200
ms period) and 4.975 Hz (201 ms period), resulting in a beat
frequency of 0.025 Hz and a total stimulation period of 40s. No
further dendritic activity exists apart from the activity generated
by either of the synapses 1 and 2. Competition can be found
in this situation as interacting synaptic strengths over an entire
simulation period (Figure 2F). The second synapse increases in
strength before the first synapse due to the difference in phase of
the beat.

The subsequent change in phase difference causes the first
synapse to increase in strength and the second synapse to weaken
again (at 42s). Finally, the first synapse will weaken and both
synapses return to their equilibrium state. From this simulation,
the STDP curve can be determined by calculating the time
differences for individual inputs with the postsynaptic response.
The resulting STDP curves of both synapses show that the first
synapse (Figure 2C blue) has the traditional Hebb type STDP
learning curve and the second synapse 2 (Figure 2C green) has
an anti-Hebbian shape due to the fact that the first synapse has
a slightly higher frequency and over time is more often active.
This shows that competing synapses may have different STDP
learning curves simply due to the difference in timing induced
by the presence of postsynaptic activity of other synapses.

3.2. Frequency Dependence

The dynamic interactions that emerge from the dynHebb
learning rule, contribute to more complex behavior of the
synapse. Because firing rate and timing as well as correlation
have been shown to contribute to cortical plasticity (Sjostrom
et al, 2001), different input frequencies are expected to
modify the resulting STDP curve. We demonstrate this in the
dynHebb model by driving the two synapses with different
input frequencies in the absence of further postsynaptic activity
than generated by the synapses themselves. Given an input
frequency of 10 and ~9.9 Hz respectively (with 1 ms difference),

the resulting STDP (Figure 3A) is already different from the
previously described results, where the input frequency was 5
Hz (Figure 2C), due to a significant shift of the STDP curve.
Subsequently, driving the same two synapses with a frequency
of 10 and ~9.8Hz (2ms difference), causes a larger shift of
the STDP curve (Figure 3B). Finally, driven by 10 and ~9.7
Hz (3 ms difference), the two STDP curves have shifted further
(Figure 3C), which demonstrates the effect of relative timing.
This is summarized in Figure 3D where the STDP curves of the
first synapse alone are plotted together. Notice that the STDP
curve of the first synapse has changed due to the difference with
the input period of the second synapse. This nicely illustrates
the importance of the postsynaptic dynamics for the synapse and
how a synapse adapts its own dynamics by relating its received
input with the local postsynaptic dynamics.

3.3. Action Potentials

Another important contribution to the emerging STDP curve
is the presence of postsynaptic action potentials. For this paper,
no particular distinction is made between the different sources
or directions of the action potential, merely the effect such an
event has on the local dendritic activity and, subsequently, on
the local synapse. The insensitivity of the synapse to the source
of the action potential illustrates the relative independence of
the synapse. It only knows about local observable events, but
is influenced by other events further away which affect the
postsynaptic activity to which the synapse adjusts itself. Using
the same configuration as used previously, two synapses are
driven with slightly different frequencies but also an additional
independent postsynaptic activity is added with a separate
related frequency. To demonstrate the relative contribution
of an action potential to the shape of the STDP curve, the
simulated action potential had a frequency that was slightly
higher or lower than the input frequency to either of the two
synapses.

For the first case, synapse 1 was driven with a frequency of
10 Hz, synapse 2 with a frequency of ~9.9 Hz (1 ms difference)
and the action potential was driven by a frequency of ~10.1
Hz (99 ms). When the simulated action potential has a slightly
higher frequency than the two synapses (Figure 4A), there are
several additional LTP windows for either of the two STDP curves
corresponding to the two synapses. Synapse 1 has an additional
LTP maximum at ~+18 ms and synapse 2 has several additional
LTP maxima, at #—3 ms, ~—58 ms and ~+44 ms. When the
action potential frequency is equal to that from synapse one,
the shape of the STDP curve of synapse 1 has not changed,
compared to the simple competition between two synapses
without an additional action potential. The only difference is
that the amplitude of the STDP curve has increased somewhat
(not shown). The STDP curve for synapse 2 has an additional
LTP peak at ~#—4 ms. This gives the appearance that the LTP
window of the STDP curve for synapse 2 is wider than when
the action potential has a higher frequency. Interestingly, when
the frequency of the action potential is further decreased and
becomes the same as that of synapse 2, the resulting STDP curve
is not much different from the STDP curve without an action
potential, apart that the amplitude of the STDP curve is higher
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FIGURE 3 | Frequency dependence of two synapses, STDP curve plots with varying input frequencies for synapse 1 (blue) and synapse 2 (green). (A) Input
frequencies of 10 and ~9.9 Hz (1 ms difference). (B) Input frequencies of 10 and ~9.8 Hz (2 ms difference). (C) Input frequencies of 10 and ~9.7 Hz (3 ms difference).
(D) STDP curves of the first synapse receiving 10 Hz input drawn from (A-C), changes are solely due to the postsynaptic dynamics induced by the second synapse.
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(not shown). This is due to the fact that both synapses provide
postsynaptic activity and the action potential coincides with these
two activities which does not contribute much to the learning
needed of either synapse. Lastly, when the frequency of the action
potential is lowered such that it is smaller than either of the two
synapses at ~9.8 Hz (Figure 4B), the STDP curve for synapse
1 has two additional LTP maxima, at ~—58 and ~+48 ms.
Synapse 2 has now two additional LTD minima at ~—82 and
A+23 ms.

3.4. Inhibition

The dynHebb learning rule employs cross-correlation to combine
the input activity with the local postsynaptic dynamics. Synaptic
inhibition affects the amount of postsynaptic activity and
therefore will influence the STDP curve depending on the
timing of the inhibitory input. Additionally, the occurrence
of a simultaneous action potential can modify the STDP
curve further. To demonstrate these interacting activities, a
different configuration has been used. In a single compartment,
one excitatory synapse is driven using a fixed frequency.
A nearby inhibitory synapse is driven using a different
frequency. An optional postsynaptic action potential can also
be included, and subsequently, the resulting STDP curves
are determined (Figure5). The excitatory synapse is driven
using a frequency of 5 Hz (200 ms) and the inhibitory
synapse with a frequency of ~4.98 Hz (201 ms) (Figure 5A-C

left column). Alternatively, the excitatory synapse can be
driven by a frequency of ~4.98 Hz (201 ms) and the
inhibitory synapse by 5 Hz (200 ms) (Figure 5D-F right
column).

We first regard the STDP curves of the excitatory synapse
without any further postsynaptic activity, such as an action
potential, but with inhibition (Figures 5A,D). The presence of
the inhibitory activity causes the curve to be shifted, widened
and inverted. The normally Hebbian STDP curve has become
an anti-Hebbian curve and the LTP window is larger. Similarly,
the presence of inhibition has caused the anti-Hebbian curve
to become inverted as well, also the LTP window has widened
and the curve has shifted (Figure 5D). If the postsynaptic action
potential is included when the excitatory synapse has a higher
frequency than the inhibitory synapse, the shape of the STDP
curve changes yet again. When the action potential occurs at a
frequency of ~5.025 Hz (199 ms), a second LTP window appears
at ~+12 ms (Figure 5B). If the frequency of the action potential
is changed to ~4.95 Hz (202 ms), the single LTP maximum has
significantly increased but is less wide (Figure 5C). Adding a
postsynaptic action potential when the inhibitory synapse has
a higher frequency than the excitatory synapse, a similar but
mirrored STDP curve is found. A second LTP window may also
appear at ~—6 ms (Figure 5E). This second LTP window may
disappear again with the lower frequency of the action potential
in that case (Figure 5F).
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FIGURE 4 | Effect of postsynaptic action potential on synapses. (A) STDP curve with postsynaptic action potential with frequency ~10.1 Hz (99 ms) and two
competing synapses, synapse 1 has an input frequency of 10 Hz (100 ms) and synapse 2 has an input frequency of ~9.9 Hz (101 ms). (B) STDP curve with
postsynaptic action potential with frequency ~9.8 Hz (102 ms) and two competing synapses, synapse 1 has an input frequency of 10 Hz (100 ms) and synapse 2 has
an input frequency of ~9.9 Hz (101 ms). (C) STDP plot, revisualized after Wittenberg and Wang (2006), showing a shifted LTP window and two LTD windows,
stimulation frequency was 5 Hz. (D) Single compartment simulation of two synapses, one stimulated at 5Hz, one at 4.9 Hz and a BAP at 4.78 Hz. It results in a shifted
LTP window and two LTD windows in the STDP curve. Also shown are two harmonic peaks at +43.35 and —47.3 ms that are not in the experimental data.
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3.5. Changing Shape of Postsynaptic
Activity during Development

During development, due to the changing properties of channel
dynamics such as NMDA-channels, the shape of the postsynaptic
EPSP changes (Quinlan et al., 1999; Wittenberg and Wang, 2006;
Meredith et al., 2007; Sjostrom et al., 2008). In particular, the
width of the EPSP becomes smaller, probably due to a change in
decay times. We will use the competing synapse configuration to
study the effect of different widths of the EPSP by changing the
decay rate such that in the young neuron simulation, the EPSP is
higher than in the mature neuron simulation. Subsequently, we
will add input noise onto the synaptic inputs and compare the
results.

For the simulation of a mature neuron, the STDP window
has fairly narrow windows (Figure 6A). The comparable STDP
curve for the young neuron simulation, with halved decay rates,
has much higher STDP windows (Figure 6B). It is immediately
obvious that wider EPSPs will lead to larger cross-correlation
windows and therefore to a higher STDP window. The increase
in amplitude is caused by the overall higher activity in the
postsynaptic compartment. We subsequently add a 20% input
noise onto the adult and young neuron simulations. This results
in a significant number of event that are mis-timed and the STDP

window becomes less well defined as the cross-correlation is less
relevant for the adult neuron (Figure 6C). Lastly, we also add a
20% input noise onto the young neuron simulation. In this case,
the STDP windows are still fairly effective and can successfully be
used to train the neuron on noisy input which results in a stable
network (Figure 6D).

3.6. Competing Synapses at the Local

Dendrite

To demonstrate the inherent stability of the dynHebb learning
rule, we simulate three synapses (Figure7A), which are all
excitatory. Each synapse has its own frequency, and the resulting
postsynaptic activity is therefore a combination of the cross-
correlated inputs. In Figure 7B is shown the resulting dynamic
synaptic strength. The synapse furthest from the soma shows
the least variability (green) due to the relative independence of
this particular synapse. The synapse nearest, on the other hand,
may vary a lot when the other two have a relatively strong
(or weak) effect on its own cross-correlation (red). Changing
the input frequencies will not cause the synapses to explode or
disappear over time. The resulting postsynaptic activity is shown
in Figure 7C, which shows a simple regular output pattern. This
can be readily compared to the presynaptic input activities in
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FIGURE 5 | Inhibition and the STDP curve. A single excitatory synapse and a single inhibitory synapse interact by modifying the postsynaptic activity. A postsynaptic
action potential causes further adaptation. Shown is the STDP curve from the excitatory synapse. Left column (A-C) STDP curve of excitatory synapse driven by 5 Hz
(200 ms) input with ~4.98 Hz (201 ms) inhibitory input. In (A,D) no further postsynaptic activity. In (B,E) an additional postsynaptic action potential at ~5.025 Hz

Figure 7D, where the raster plot shows the correlation patterns
of the three input synapses and the postsynaptic activity.
Conversely, in Figures 8A-C (left column), is shown the
resulting post-synaptic voltage of the Morris-Lecar neuron when
the sole inhibitory synapse is A (Figure 8A), B (Figure 8A),
and C (Figure 8C). As expected, based on the relative distance,
inhibitory synapse A is too far away to affect the excitatory
activity patterns of B and C. Similarly, inhibitory synapse B
suppresses the entire post-synaptic neuron, where A is not strong
enough to compensate for B. Lastly, the proximal inhibitory
synapse C suppresses the activity, except when distal excitatory
synapses A and B correlate to overcome the inhibition. In all
cases the synapses where activated with the same frequency,

independent of their inhibitory or excitatory nature (A = 5 Hz,
B = 5.025 Hz, and C = 4.9 Hz). In Figure 8D-F (right column)
are shown the corresponding changes in synaptic weight due to
the competition in the three synapses. Here, synapse A is shown
blue, B is green and C is gold.

4. DISCUSSION

Donald Olding Hebb’s thesis on synaptic plasticity can be
explicitly expressed as the change in synaptic efficacy in
proportion to the degree of correlation between pre- and
postsynaptic activity (Hebb, 1949). The Hebbian learning rule has
been demonstrated in computer simulations to be reliable and

Frontiers in Computational Neuroscience | www.frontiersin.org

10

January 2018 | Volume 11 | Article 119


https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

olde Scheper et al.

Dynamic Hebbian Cross-Correlation Resolves STDP

A r T T T T T r r r
= o7t R
o5 E
0.25f | —
W , . , , ; , . . ,
%0 a0 30 20 10 0 10 20 30 0 50
A Time (ms)
T T T T T r T T r
.
= ' ]
o
a | . |
051 ; ]
.o
N o "
Ofp- veepen omg gy - p 2t LI R Y P P A SR Sppw Y A
£ i Ao
-0 ; ]
-1k 3 °
Y
L L L L H L L L L

-3 40 -30 -20

A Time (ms)

FIGURE 6 | Change in EPSP shape during development of two competing synapses. (A) STDP curves for relative shorter EPSP shape, comparable to adult, without
noise. (B) STDP curves with relative wider EPSP shape, comparable to young neuron, without noise. (C) STDP curves for relative shorter EPSP shape with added
20% input noise. (D) STDP curves for relative longer EPSP shape with added 20% input noise.

B 1 T T T T T T T T T
B 0.75 i B
< .
. e
0.5F ! B
e
0.25F * i * B
T
i .
_____ H " %e,
ofsmsmesnsnrmnnnr o . . ®eesesccscscesesod
o [
teeeel,, . : et
., . :
~0.25 ®eqe ! 4
W , , , , ; . A A ,
50 -40 -30 -20 -10 0 10 20 30 40 50
A Time (ms)
T T T T T T T T T
‘
B 151 | L
o
1 4
osf o 4
- mms mom MR M i o ees _op-- —e_ —e-
TR i teen
LT I ; R
~0.5F | B
af ]
L L L L HEL L L s

-1
50 ~40 -30 -20 40

A Time (ms)

50

effective in determining synaptic strengths and appears to have
a solid foundation in experimental biology (Bi and Poo, 1998;
Meredith et al., 2007). However, beyond curve fit models of the
STDP rule, commonly expressed as two exponential decay curves
(Song et al., 2000), it has not been demonstrated that the causal
correlation property of synaptic plasticity is valid, and is effective
as a learning mechanism as may have been assumed. Indeed, the
focus on spiking models and synaptic STDP models based on
curve fit approximations has detracted from this cardinal aspect
of learning. A lot of effort has been put into ephemeral problems
associated with the modeling rather than the STDP mechanism
itself and its relevance to learning in biology (Morrison et al.,
2008). In particular, extensive spike sorting algorithms have been
defined to resolve the issue of timing relevance of pre-after-post
vs. post-after-pre spiking patterns which are, in effect, an STDP
version of supervised learning. Biochemical synaptic processes
are autonomous and dynamically complex, from which time
based activity emerges (olde Scheper, 2008). The dynHebb model
eliminates explicit time which makes it possible to determine the
relative temporal contributions of synapses to network learning
in a consistent and independent manner. The independence of
the model, with regards to explicit time windows, allows greater
flexibility and adaptability for simulating different synaptic input
types, if wishing to simulate their STDP curve ranges. The
lack of an explicit time window does not force the synapse to
behave to discrete pairing windows but rather works on the
causal correlation of synaptic activity in a dynamic manner.

Therefore, the model clearly demonstrates that time dependent
processes do not require an intrinsic clock or event detection
but are sensitive to temporal codes simply due to deterministic
autonomous dynamic behavior.

The development of a phenomenological learning rule
appears to be somewhat contrary to current interpretations
of synaptic plasticity modeling. In particular, various models
have been published to attempt to explain STDP in terms of
biochemical processes (e.g., Sjostrom et al, 2001; Graupner
and Brunel, 2012). In this paper, we do not claim to explain
the biophysics of STDP, but attempt to provide a mechanistic
approach, which is not simplistic, but powerful enough to address
the main criticisms that STDP modeling attracts (Shouval et
al., 2010). Specifically, the dynHebb model allows a minimal
model with sufficient, and necessary, complexity to allow
comprehension of the key concepts, without specific biochemical
interpretations that form the basis of many arguments about
interpretation.

4.1. The Dynamic Hebbian

Cross-Correlation rule

The dynamic Hebbian cross-correlation learning rule is a
conceptual activity measure that is not bound to any biophysical
feature beyond the implied causality imposed by the synaptic
chemical organization. Even though different interpretations
have been given to specific roles and functions of biophysical
elements, such as calcium and neurotransmitter receptors
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FIGURE 7 | Synaptic competition at the dendrite. (A) Three simulated synapses compete to activate the postsynaptic neuron. Each of the synapses can be chosen to
be excitatory or inhibitory, here is shown the configuration with the distal synapses as excitatory. The distances dA, dB, and dC indicate the relative attenuation of the
activation for each contributing synapse. (B) Synaptic strength variation due to three competing excitatory synapses a small distance from each other. (C) Detail of the
postsynaptic response due to three excitatory inputs. The response is dynamically stable. (D) Raster plot of the three presynaptic input patterns (A, B, and C) where all
are excitatory, and the resulting postsynaptic response. Notice that the resulting post-synaptic pattern is dynamically stable and not merely the sum of the inputs.

| AT

(Clopath et al., 2010; Graupner and Brunel, 2012), the relative
importance of those specific elements to the entire complex
system is still contentious. We argue, therefore, that the synaptic
learning is based on dynamic nonlinear interactions between
biophysical systems and that attributing specific STDP properties
to chosen biophysical elements is an over-interpretation of the
available data. To encompass the entire dynamics, it is more
suitable to a phenomenological interpretation that allows the
high level STDP dynamics to be described. Similar approaches
have been previously employed extensively in neuromodeling
(Koch, 1999), indeed the classical STDP model curve is a
phenomenological curve fitted to the data (Song et al., 2000).
The interaction between the depression due to input and
potentiation due to postsynaptic activity dynamically determines
the amplitude and width of the STDP windows. For a single

synapse, with no further postsynaptic activities than the dendritic
pulse it generated, the emerging shape is the well known Hebbian
STDP learning window. As we will show, variations in timing,
amplitude and width of the STDP curve are solely due to the
relative difference in cross-correlation timing pre-synaptically vs.
post-synaptically. Electrical properties of individual synapses and
morphological properties of dendrites may result in different
variations of the STDP window. If other synapses are near
enough to affect the local dendritic activity near the synapse
under investigation, they can have a significant effect on the
STDP curve of that synapse. Additionally, other waves of activity,
such as Back-propagating Action Potentials (BAP) and dendritic
activities, will also affect the postsynaptic activity of the synapse.
This can be determined by examining well known properties of
STDP as described below.
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4.2. Synaptic Competition

The apparent change in STDP learning rule induced by the
difference in external input timings has also been reported
to occur experimentally in CAl pyramidal neurons where the
external input timing at local synapse determines the sign of
STDP learning (Kwag and Paulsen, 2009). The competition of
the synapses illustrates an important feature of the dynHebb
model and its implications for STDP learning. The crux is the

interaction between the local dynamics of the synapse itself with
the global or wider local dynamics of nearby synapses and the
neuronal local state as expressed by an action potential in the
dendrite.

It has been suggested that different STDP windows may be
specific for different cell types, such as in the dorsal cochlear
nucleus (Tzounopoulos et al., 2004) where Hebbian and anti-
Hebbian type STDP windows have been found for different
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cell types. In such cases, postsynaptic activity may induce
both Hebbian and anti-Hebbian STDP windows depending on
the local postsynaptic dynamics due to interactions of various
sources of activity. Multi-synaptic activation can readily skew
the expected results depending on the local flow of currents.
This can be seen in the example of the competing synapses
where synapse 2 (Figure 2C green line) has an anti-Hebbian
STDP window due to the competing activity of synapse 1. It
was also shown experimentally that the location of synapses
within the dendritic tree is relevant to the form of the STDP
learning rule (Froemke et al, 2010). This is predicted by
the dynHebb learning rule, as in more distal areas of the
dendritic tree, more complex postsynaptic interactions are
possible when BAPs contribute significantly less to the STDP
learning rule. The proximal synapse is therefore still largely
influenced by the relatively strong contribution of the BAP to
the postsynaptic activity. Experimental results that describe the
loss of temporal contrast due to dopaminergic modulation of
STDP (Zhang et al., 2009) can thus be explained by changes
in the responsiveness of the competing cross-correlation based
depression and potentiation. Furthermore, it has been shown that
integration of synaptic input is governed by local recruitment of
NMDA receptor channels (Larkum et al., 2009), demonstrating
the importance of local interaction at the postsynaptic site for
learning.

4.3. Frequency Dependence

The results on frequency dependence show that the dynHebb
correlation learning rule also applies to harmonics. For the input
frequencies around 10 Hz, the shape of the STDP curve at
£100 ms (e.g., Figure 3A) is comparable to the curve around
the origin. It is possible for the harmonic curves to have
somewhat different shapes due to differences in timing of the
harmonic input with the postsynaptic activity. This has already
been shown in both simulations as well as experimental data
(Meredith et al., 2007; Clopath et al., 2010, supplement) and it
has been suggested that resonance may have a functional role in
neuronal communication (Izhikevich et al., 2003). The oscillatory
control of STDP in mushroom bodies in the locust may well
be a fundamental facet of neuronal network function in many
species (Kwag and Paulsen, 2009). Additionally, the importance
of harmonics in STDP is relevant to the reported variability of
STDP learning rules whose synaptic location on the dendrite
modifies the STDP curve (Letzkus et al., 2006; Froemke et al,,
2010).

The existence of heterosynaptic plasticity has been shown
in various experiments (Morrison et al., 2007; Abraham, 2008).
In particular, the change in one synapse appears to prevent
a corresponding change in other synapses (Abraham, 2008)
and depends on conditioning frequencies (Wang and Wagner,
1999), which cause a significant shift of the STDP window in
heterosynaptic plasticity. This is comparable to the apparent shift
in the STDP window in the model of two competing synapses
where the activity of one synapse prevents the second synapse
to become potentiated at the same timings and the difference
in input frequency causes a temporal shift of the STDP window
(Verhoog et al., 2013).

Additionally, the dendritic organization of cortical input in
vivo has been shown to be organized locally which allows
the integration of spatially distributed input (Jia et al., 2010).
The dynHebb model demonstrates that local interactions of
competing synapses can readily result in this type of integration
by combining temporal information from spatially separate
synapses.

4.4, Action Potentials

The frequency and relative timing dependent nature of the
contribution of the action potential to STDP has been shown
to occur widely (Sjostrom et al., 2008). A typical example is
the malleability of the CA1-CA3 synapse, as has been shown by
Wittenberg and Wang (2006) (Figure 4C) . They demonstrated
that with increased timing differences of the BAP other than
1 ms, varying amounts of plasticity can be shown, including
multiple LTD windows. Without the quantitative data, we can
only compare qualitatively these experimental results, to a
simulation of the single compartment model with two synapses
and an action potential (Figure4D), which is the provided
interpretation of the experiment (Wittenberg and Wang, 2006).
They result in a STDP curve with a single time shifted LTP
window with two LTD windows and two additional resonance
peaks. It was produced with one synapse stimulated at 5 Hz, one
synapse stimulated at 4.9 HZ (204 ms) and an action potential
at 4.78 Hz (209.1 ms). It may be concluded that the interaction
of the different sources of activity can readily result in different
STDP curves where local synaptic properties determine the exact
shape of the curve in combination with the timing differences of
those sources at the synapse.

These results illustrate the need for synapses to receive global
input from the neuron itself to scale the synaptic input and to
receive input from other synapses but not to be overwhelmed
by the total postsynaptic activity. Interaction between synapses
via the postsynaptic activity generated by other synapses and
action potentials permits a wide range of possible behaviors of the
STDP learning curve. Using local synaptic rules which integrate
the information from other sources ensures stability of both the
neuron and the network (Marder and Goaillard, 2006; Sjostrom
et al.,, 2008).

4.5. Inhibition

The clear effect of the interaction of the synaptic inhibition with
the STDP learning rule is that the associated excitatory input
in the synapse should be weakened, rather than strengthened,
whenever the inhibitory input occurs after the excitatory input.
Additionally, the synapse should be strengthened whenever
the inhibitory input precedes the excitatory input. Synaptic
inhibition, therefore, not only controls the activity level of the
neuron, but also directs the type of learning of nearby excitatory
synapses in the target neuron. Experimental results of STDP in
the striatum demonstrate the existence of a switch from anti-
Hebbian to Hebbian type STDP learning curves in the presence
of GABA-ergic blockers (Fino et al., 2005, 2009, 2010; Pawlak and
Kerr, 2008). This finding has been suggested to be a more generic
property of neuronal networks than previously has been assumed
and may readily explain the function of inhibition in synaptic
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integration and spike timing found in CA1 (Lamsa et al., 2010).
Furthermore, synaptic pruning due to repetitive LTD induction
found in rat hippocampal neurons (Shinoda et al., 2010) could
well be explained by this dynamic role of inhibition on already
existing synaptic connectivity.

4.6. Activity during Development

We suggest that the functional role of the changing EPSPs is
related to the relative unreliability of input in the young neuron.
The young network has lower discerning resolution but has better
reliability in terms of the correct response due to spike timing.
The younger neuron can still be trained even with a high level
of input noise. In the mature neuron, the more narrow EPSPs
result in STDP learning with higher resolution because of the
increased reliability of the input due to the training of the entire
network. This mechanism could be seen as a reliable biological
mechanism for annealing the network into stable and functional
networks with high resolution. A similar phenomenon has been
observed in dissociated cortex cultures, where wide bursting
profiles are predominant in the early stages of growth, and after
3-4 weeks show a short onset, resulting in increased timing
precision of the synchronization between neurons (van Pelt et al.,
2004).

4.7. Local Dendritic Competition

The dynHebb synaptic model can be employed to investigate
interactions between locally competing synapses at the dendrite.
This type of localized competition is most important for
local computation at the dendritic level (olde Scheper, 2008).
Furthermore, this concept is essential to maintain stability of
the network, preventing synapses from “exploding” due to large
increases in synaptic weight, a common issue in modeling
using the classic STDP function. Using a simulation of three
interacting synapses we show the functional dynamic response
over time of competing synapses with and without inhibition at
different distances from each other. The resulting postsynaptic
activity is not the sum of all inputs, as the cross-correlation
of each synapse interacts with the other synapses at the local
level. If all synapses are excitatory, this could readily result in
inherently unstable dynamic states, when each of the synapses
increases the synaptic strength of the other synapses. In the
dynHebb model, this is not possible, because synapses without
input do not change their state, and they are limited in the
sense that for even higher synaptic weight, the local state of the
synapse needs to match the local dendritic activity, which has
naturally a maximum. If we also consider the possibility of adding
inhibitory synapses to this concept, the number of possible
interactions increase even further. When an inhibitory synapse
reduces the local dendritic activity, the excitatory synapses will
gain greater sensitivity to changes. Extending the number of
synapses, the distances between the synapses and the type of
synaptic activity will make this system show more complex and
interesting behaviors. In particular, the ability to match cross-
correlation patterns for different inputs and local activities of
different parts of the dendritic tree. The dynHebb model ensures
that the synapses remain functional, are attuned to their input,

and will not degrade over time, unless negative input correlation
occurs.

4.8. Model Comparison

Although the aim of this paper is not to perform an extensive
comparison of the various models of STDP, but rather to
emphasize the importance of dynamic models, it would be
appropriate to mention some cardinal differences between the
dynHebb model and selected popular models. Firstly, models like
Shouval et al. (2002) and Graupner and Brunel (2012) emphasize
specific biophysical properties to the manifestation of STDP, such
as NMDA receptors and intracellular Calcium signaling. Neither
paper suggests that these are the sole mechanisms involved in
a complex biochemical process, yet by deliberately choosing a
single aspect, the impression is given that the other biophysical
interactions are of secondary importance. By creating a model
that focusses on the dynamic behavior, the dynHebb model
avoids this issue, but still allows expansion of the model with
each of those biophysical aspects in subsequent work. Secondly,
the stability of each of these two models is not ensured when
synapses interact, or when there is a large amount of current
injected, e.g., due to coinciding activities of nearby synapses.
Both models only regard single model synapses, with specific
parameter choices to ensure stability. The dynHebb model is
inherently robust, self-limiting, and allows complex synaptic
interactions. Lastly, both models are based on non-autonomous
equations (i.e., dependent on explicit time), which requires
spike selecting and fixed responses of the synapse based on the
chosen time parameter constants. The dynHebb model causes the
emergence of STDP from the timings of the activity functions,
where different activity functions cause different time responses.

4.9. Experimental Implications

Specific STDP learning rules are often experimentally determined
by experimental protocols (Testa-Silva et al., 2010). These
rules would otherwise not be readily visible in the resulting
experimentally determined synaptic behavior. This is indeed
a sensible requirement when dealing with a noisy, inexact
measurement of a relatively small change in the excitatory
postsynaptic potential. However, the concept relies on several
premises for which there is only scant evidence. Firstly, the
extracellular or presynaptic neural stimulation activates an
unknown number of synapses whose combined postsynaptic
response is assumed to be negligible at the level of the synapse
under investigation. As can be seen from our model results, this
is certainly not the case, nor is this desirable for each individual
synapse. Secondly, the exact timings in experiments are still
tentative given the relatively large margin of error needed to
ensure proper response timings, that are not obscured by the
experimental protocol itself. Lastly, results are obtained from
many different synapses, often in different but identical type
of neurons with no consideration for the huge variability that
must exist for the local dynamics due to different morphologies
and other local properties of the neuron. It is to the skill and
persistence of the experimenter that we must attribute that results
are found at all, despite the large number of obstacles that need
to be overcome.
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Obviously, there is no ready made solution that can easily
simplify the process, however by assuming a methodology
that is more in line with the natural process of synaptic
transmission, rather than adhering to a steady-state approach,
the likelihood of determining significant results can be greatly
increased. The deterministic nature of the dynHebb rule allows
the emergence of the small relative contribution of individual
learning events without the stochastic background noise that
can obscure the event in probability based learning rules. In
our simulations, we employ a continuous stimulation protocol
that does not require instantaneous updates and highlights the
dynamic nature of STDP learning. We can replicate a standard
experimental protocol by activating a specific model synapse
directly and generate a postsynaptic action potential at the soma.
Or, we can activate nearby model synapses to demonstrate the
dynamic interaction at the synaptic level of the postsynaptic
activity induced by different synapses. This will allow further
development of the STDP model using experimental results to
guide the specific interpretation of the Hebbian learning.

5. CONCLUSION

The Dynamic Hebbian Learning model demonstrates that only
local autonomous non-linear interactions govern the STDP
learning rules. The dynamic interactions at the postsynaptic site
modify the default Hebbian STDP curve into many possible
experimentally observed forms. More detailed modeling of the
constraints that determine the shape of the learning curve,
such as local dendritic morphology, networks of neurons,
current flow within the dendrite and second messenger
signaling, will provide a systematic understanding of the STDP
learning mechanism. Awareness of the dynamic cross-correlation
principle will greatly facilitate the interpretation of data and
may lead to the discovery of novel mechanisms involved in
tuning the STDP curve of individual synapses within the
network.

Furthermore, it has been shown that the self-organizing
nature of stable cortical networks itself requires fluctuating
synaptic strengths which results in a purely additive STDP
mechanism. This is based on observed patterns of synaptic
strength in the dynamics of dendritic spines of the rat
hippocampus (Zheng et al., 2013). The robustness imposed
by the dynHebb rule allowing additive dynamics to form the
stable STDP learning which will ensure a stable network due to
fluctuations in the local synaptic dynamics supports this concept
completely.
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