
ORIGINAL RESEARCH
published: 23 January 2018

doi: 10.3389/fncom.2018.00001

Frontiers in Computational Neuroscience | www.frontiersin.org 1 January 2018 | Volume 12 | Article 1

Edited by:

Paul Miller,

Brandeis University, United States

Reviewed by:

Maxim Volgushev,

University of Connecticut,

United States

Joost Le Feber,

University of Twente, Netherlands

*Correspondence:

Douglas Zhou

zdz@sjtu.edu.cn

Dedicated to

David Cai

Received: 17 August 2017

Accepted: 03 January 2018

Published: 23 January 2018

Citation:

Min B, Zhou D and Cai D (2018)

Effects of Firing Variability on Network

Structures with

Spike-Timing-Dependent Plasticity.

Front. Comput. Neurosci. 12:1.

doi: 10.3389/fncom.2018.00001

Effects of Firing Variability on
Network Structures with
Spike-Timing-Dependent Plasticity

Bin Min 1,2, Douglas Zhou 3* and David Cai 1,2,3*

1Center for Neural Science, Courant Institute of Mathematical Sciences, New York University, New York, NY, United States,
2NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates, 3 School of Mathematical Sciences,

MOE-LSC, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China

Synaptic plasticity is believed to be the biological substrate underlying learning

and memory. One of the most widespread forms of synaptic plasticity,

spike-timing-dependent plasticity (STDP), uses the spike timing information of

presynaptic and postsynaptic neurons to induce synaptic potentiation or depression.

An open question is how STDP organizes the connectivity patterns in neuronal circuits.

Previous studies have placed much emphasis on the role of firing rate in shaping

connectivity patterns. Here, we go beyond the firing rate description to develop a

self-consistent linear response theory that incorporates the information of both firing rate

and firing variability. By decomposing the pairwise spike correlation into one component

associated with local direct connections and the other associated with indirect

connections, we identify two distinct regimes regarding the network structures learned

through STDP. In one regime, the contribution of the direct-connection correlations

dominates over that of the indirect-connection correlations in the learning dynamics; this

gives rise to a network structure consistent with the firing rate description. In the other

regime, the contribution of the indirect-connection correlations dominates in the learning

dynamics, leading to a network structure different from the firing rate description. We

demonstrate that the heterogeneity of firing variability across neuronal populations

induces a temporally asymmetric structure of indirect-connection correlations. This

temporally asymmetric structure underlies the emergence of the second regime. Our

study provides a new perspective that emphasizes the role of high-order statistics of

spiking activity in the spike-correlation-sensitive learning dynamics.

Keywords: STDP, linear response theory, correlation structure, firing variability, synaptic plasticity

INTRODUCTION

Spike-timing-dependent plasticity (STDP) (Markram et al., 1997; Bi and Poo, 1998; Caporale
and Dan, 2008) is one of the major forms of Hebbian learning. In canonical STDP, a synapse is
potentiated (depressed) when the presynaptic spikes precede (follow) the postsynaptic ones. With
this temporally asymmetric learning window, STDP can regulate both the mean rate and variability
of postsynaptic firing (Song et al., 2000), enforce the competition between convergent synaptic
inputs (Song et al., 2000), and support temporal sequence learning (Rao and Sejnowski, 2001).
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While STDP of a single neuron with many synapses has
been well characterized, issues related to the STDP learning
dynamics in recurrent networks are yet to be fully addressed,
in spite of recent progress (Morrison et al., 2007; Clopath
et al., 2010; Gilson, 2010; Kozloski and Cecchi, 2010; Babadi
and Abbott, 2013, 2016; Litwin-Kumar and Doiron, 2014;
Ocker et al., 2015; Zenke et al., 2015; Bi and Zhou, 2016;
Ravid Tannenbaum and Burak, 2016). The role of the low-
order statistical structure (i.e., firing rate) of spiking activity
has been intensively investigated in the learning dynamics in
recurrent networks (Morrison et al., 2007; Kozloski and Cecchi,
2010; Babadi and Abbott, 2013). Though it is known that, as a
correlation-sensitive learning rule, STDP inherently incorporates
the high-order statistics of spiking activity (Morrison et al.,
2008), the role of the high-order statistics of spiking activity
in STDP learning dynamics for recurrent networks remains
largely unknown. In this work, we explore the issue of how
the high-order firing statistics (for example, firing variability)
affect the network connectivity structures learned through STDP
in recurrent networks. We demonstrate that the information
of firing variability is encoded in a linear response kernel that
quantifies how a neuron responds to a weak incoming signal.
By developing a self-consistent linear response theory pioneered
in Pernice et al. (2012), Trousdale et al. (2012), and Helias
et al. (2013), we show that this response kernel, together with
the firing rate, determines the pairwise correlation of spiking
activity. By decomposing the pairwise correlation into one
component associated with local direct connections and the
other associated with indirect connections, we can identify
two distinct dynamical regimes. In the first regime, the local
direct connections dominate over the indirect connections
in determining the learned network structure. This regime
corresponds to those studied in Babadi and Abbott (2013),
Kozloski and Cecchi (2010), and Morrison et al. (2007), where
the connections from neurons of higher firing rate to those
of lower firing rate are strengthened whereas the connections
with the opposite situation are weakened. The other is a regime
in which the indirect connections dominate over the direct
connections in learning dynamics. In this second regime, the
connections from neurons of higher firing rate and higher
firing variability to those of lower firing rate and lower firing
variability are weakened whereas the connections with the
opposite situation (i.e., connections from neurons of lower
firing rate and lower firing variability to those of higher firing
rate and higher firing variability) are strengthened. We find
that there is a temporally asymmetric structure of common-
input-induced spike correlations between different neuronal
populations. This structure is induced by the heterogeneity of
firing variability across neuronal populations, which underlies
this counterintuitive dynamical regime. Our study provides a
theoretical framework for addressing the question of how the
high-order statistics of spiking activity affect network structures
learned through STDP. Using this framework, we demonstrate
how the introduction of heterogeneity of firing variability across
different neuronal populations can give rise to counterintuitive
network connectivity structures in a plastic neuronal
network.

METHODS

Model
Themodel we used here is the current-based leaky integrate-and-
fire (LIF) model with finite synaptic time constant. It is the same
as that in Babadi and Abbott (2013).

τm
dVi

dt
= (Vr − Vi)+ Ii, (1)

dIi

dt
= − Ii

τs
+

NE ,NI
∑

j=1

wijsj(t)+
µext,i

τs
+ σext,i

τs

√
τmξi(t), (2)

where τm = 20 ms is the membrane time constant, Vr = −60
mV is the resting potential, τs = 5 ms is the synaptic time
constant, wij is the synaptic strength from neuron j to neuron
i and sj(t) is the spike train of neuron j. The parameters µext,i

and σ 2
ext,i are the mean and variance of the external input,

respectively, and ξi is the white noise satisfying 〈ξi〉 = 0 and
〈ξi(t)ξj(t′)〉 = δijδ(t − t′). Every time when the membrane
potentialVi crosses the thresholdVth = −40mV, neuron iwould
emit a spike and Vi would be reset to Vr.

The network consists of NE excitatory neurons and NI

inhibitory neurons. We use NE = 250, NI = 250. The
connections between these neurons are of the all-to-all type. We
keep the inhibitory-to-excitatory (EI), excitatory-to-inhibitory
(IE) and inhibitory-to-inhibitory (II) synaptic strengths constant
during the entire simulation while the excitatory-to-excitatory
(EE) connections are subject to the STDP learning rule to
be introduced in section “The effect of firing rate and firing
variability on learning dynamics—numerical evidence”. At the
beginning of simulations, the strengths for the EE and IE are
drawn at random from a uniform distribution from 0 mV to
wmax
EE = 1 mV and wmax

IE = 2 mV, respectively, and the strengths
for the EI and II connections are drawn at random from a
uniform distribution from wmax

EI = −4 mV and wmax
II = −4 to

0 mV, respectively.
Based on the mean and variance of external inputs, we divide

the excitatory neurons into three populations in which the αth
(α = 1, 2, 3) population receives the external input of the mean
µ
p
ext,α and standard deviation σ

p
ext,α . The number of neurons in

the αth (α = 1, 2, 3) population is denoted as Nα .

Statistical Properties of a Single LIF
Neuron
We first describe the statistical properties of a single LIF neuron.
The dynamics of a single LIF neuron with finite synaptic
time constant is governed by Equation (1) and the following
equation:

τs
dI

dt
= −I + µ + σ

√
τmξ (t), (3)

where µ and σ are the mean and standard deviation of the
external input respectively, and ξ (t) is the Gaussian white noise
satisfying 〈ξ 〉 = 0 and 〈ξ (t)ξ (t′)〉 = δ(t − t′).
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When τs is much smaller than τm, the mean firing rate r has
the following approximation:

r = F(µ, σ ) =
[

τm
√

π

∫

Vth−Vr−µ

σ
+β

− µ
σ
+β

ex
2
(1+ erf(x))dx

]−1

, (4)

where β = −ς(1/2)
√

τs/(2τm), erf(·) is the error function and
ζ (·) is the Riemann-Zeta function (Fourcaud and Brunel, 2002).

We use a response kernel to characterize how the LIF neuron
ensemble responds to a perturbation. Specifically, we consider
Equation (1) and the following equation:

τs
dI

dt
= −I + µ + σ

√
τmξ (t)+ u(t), (5)

where u(t) is a perturbation. When u(t) is weak, the difference
between the instantaneous firing rate r(t) of neuronal ensemble
that is governed by Equations (1, 5) and the mean firing rate r of
neuronal ensemble that is governed by Equations (1, 3) is small.
Therefore, we can approximate the instantaneous firing rate r(t)
by the mean firing rate r plus a linear response term with respect
to u(t), i.e.,

r(t) = r + (h ∗ u)(t), (6)

where h(τ ) is the linear response kernel of Equations (1, 3) and
the symbol ∗ stands for temporal convolution.

The analytical results for the linear response kernel are
available for the case of zero synaptic time constant (Fourcaud
and Brunel, 2002). Recently, for the case of nonzero synaptic
time constant, the analytical result was derived (Schuecker et al.,
2015). Here, we use the reverse correlation method to compute
it (Dayan and Abbott, 2001; Ostojic et al., 2009). Specifically, we
inject a weak Gaussian white noise signal ξs(t) with correlation
〈ξs(t + τ )ξs(t)〉 = σ 2

s δ(τ ) to the LIF neuron, i.e., adding ξs(t)
on the right hand side of Equation (3). Note that this testing
white noise signal ξs(t) is different from the external noise
input ξ (t) in Equation (3). By using the spike-triggered average
technique, we calculate the response kernel in the following
way:

h(τ ) =
1
NT

∑NT
i=1 ξs(ti − τ )r

σ 2
s

, (7)

where {ti}NT
i=1 is the spike timing of the LIF neuron in the duration

T and the firing rate r is given by Equation (4) (Dayan and
Abbott, 2001). In our simulation, σs = 2 mV and T = 106

ms. We use one realization of ξs(t) and perform the average over
1,000 realizations of external noise input ξ (t).

Linear Response Theory
Here, we describe how we obtain ri and hi(τ ) for i = 1, · · · ,N in
a self-consistent manner for the network described in Equations
(1, 2). By splitting the spike train sj(t) in Equation (2) into the

mean firing rate and its fluctuations, we can rewrite Equation (2)
in the following form:

dIi

dt
= − Ii

τs
+

N
∑

j=1

wijrj +
µext,i

τs
+ σext,i

τs

√
τmξi(t)

+
N

∑

j=1

wij(sj − rj), (8)

where the term
∑N

j=1 wij(sj − rj) can be regarded as

a perturbation. By enforcing the first-order Volterra
approximation of Equations (1, 8), we arrive at Equation (31),
where ri and hi(τ ) are the mean firing rate and response kernel,
respectively, of Equation (1) and the following equation:

dIi

dt
= − Ii

τs
+

N
∑

j=1

wijrj +
µext,i

τs
+ σext,i

τs

√
τmξi(t). (9)

Here, we can observe that, even with the samemean and variance
value of external inputs, different neurons may still have different
mean firing rates due to the randomness of synaptic strengths.
To simplify the self-consistent derivation of mean firing rate, we
make a further assumption that the mean firing rates of single
neurons within the same population are approximated by the
population-averaged mean firing rate. Denote the population-
averaged mean firing rates of the different populations as r

p
α ,

α = 1, 2, 3, I, where I stands for the inhibitory population. Then,
r
p
α is the mean firing rate of the following equations:

τm
dVα

dt
= (Vr − Vα)+ Iα , forα = 1, 2, 3, I, (10)

dIα

dt
= − Iα

τs
+





3
∑

β=1

Nβw
p
αβr

p
β + NIw

p
αIr

p
I



 +
µ
p
ext,α

τs

+
σ
p
ext,α

τs

√
τmξα(t), (11)

where w
p
αβ stands for the average synaptic strength from

Population β to Population α. Therefore, r
p
α can be determined

in the following self-consistent way:

r
p
α = F−1(µ

p
α , σ

p
ext,α), forα = 1, 2, 3, I, (12)

µ
p
α = τs

(

3
∑

β=1

Nβw
p
αβr

p
β + NIw

p
αIr

p
I

)

+ µ
p
ext,α . (13)

The Power Spectrum for the Hawkes
Process
The first derivation of the power spectrum of Hawkes process
(i.e., Equation 31) was carried out by Hawkes (1971a), in which
the Wiener-Hopf theory was used. Here, we follow the method
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in Grytskyy et al. (2013). First, for the spike correlation function
C(τ ), the following equations hold:

C(τ ) ≡ 〈s(t + τ )sT(t)〉 − 〈s(t)〉〈sT(t) (14a)

= 〈(r(t + τ )− r)sT(t)〉 +Dδ(τ ) (14b)

= 〈[h ∗ w(s− r)](t + τ )sT(t)〉 +Dδ(τ ) (14c)

= (h ∗ wC)(t)+Dδ(τ ), (14d)

for τ ≥ 0, where s(t) and r(t) are the spike train and the
instantaneous firing rate of Hawkes process, respectively, and
D = diag{r1, · · · , rN}. In Equation (14b), we use the fact that
〈s(t + τ )sT(t)〉 = 〈r(t + τ )sT(t)〉 +Dδ(τ ). In Equation (14c), we
insert the Hawkes process (Equation 31). In Equation (14d), we
take advantage of the definition of spike correlation. Next, define
y(t) = ry(t)+ x(t), where

ry(t) = r+ [h ∗ w(ry − r+ x)](t), (15)

and x(t) is the Gaussian white noise with correlation 〈x(t +
τ )x(t)〉 = Dxδ(τ ). For y(t),

Cy(τ ) ≡ 〈y(t + τ )(yT(t)− rT)〉 (16a)

= 〈[h ∗ w(y− r)+ x](t + τ )(yT(t)− r)〉 (16b)

= (h ∗ wCy)(τ )+ 〈x(t + τ )(rTy (t)− rT)〉
+ 〈x(t + τ )xT(t)〉, (16c)

= (h ∗ wCy)(τ )+Dxδ(τ ), (16d)

for τ ≥ 0. In Equation (16b), we have made use of the definition
of y(t). In Equation (16c), we take advantage of the definition of
Cy(t). In Equation (18), we use the fact that 〈x(t + τ )rTy (t)〉 =
〈x(t + τ )〉〈rTy (t)〉 = 0. By setting Dx = D, we obtain C(τ ) =
Cy(τ ). Therefore, to understand the correlation structure of the
Hawkes process, it suffices to study the correlation structure
of y(t). Define r̂y(ω) as the Fourier transform of ry(t). From
Equation (16b), we have

r̂y = ĥ(ω)w(r̂y + x̂). (17)

Thus, ŷ = r̂y + x̂ = (1− ĥw)−1x̂. By using the Wiener-Khinchin
theorem, we have

Ĉ(ω) = 〈ŷ(ω)ŷT(−ω)〉 (18)

= (1− ĥ(ω)w)−1D(1− wT ĥ(−ω))−1.

This completes the derivation of the power spectrum formula as
discussed in Equation (32).

Population-Averaged Spike Correlation
Assume that there are Nα (α = 1, 2, 3, I) neurons in the αth
population. The spike correlation between population α and
population β is defined as follows:

C
p
αβ (τ ) =

1

NαNβ

∑

i∈α,j∈β

Cij(τ ). (19)

The corresponding spike cross correlation is defined as follows:

C
p,cr
αβ (τ ) = 1

NαNβ

∑

i∈α,j∈β ,i6=j

Cij(τ ). (20)

Note that C
p,cr
αβ (τ ) is used in the caption of Figure 4. Inserting

Equation (16a) into Equation (19), we can obtain

C
p
αβ (τ ) = 1

NαNβ







∑

γ

∑

i∈α,j∈β ,k∈γ

[hi ∗ wikCkj](τ )

+
∑

i∈α,j∈β

Diδijδ(τ )







(21)

=
∑

γ

h
p
αw

p
αγNγCγβ (τ )+

r
p
α

Nα

δαβδ(τ ),

where h
p
α(τ ) stands for the linear response kernel of Population

α. Similar to the result (Equation 18), the population-averaged
power spectrum Ĉp(·) =

(

Ĉ
p
αβ (·)

)

has the following expression:

Ĉp(ω) = (1− ĥp(ω)wp)−1Dp(1− wpT ĥp(−ω))−1, (22)

where hp(·) = diag{hp1(·), h
p
2(·), h

p
3(·), h

p
I (·)}, wp =

(

w
p
αβ

)

and

Dp = diag{rp1/N1, r
p
2/N2, r

p
3/N3, r

p
I /NI}.

Decomposition of Cross Correlation
Structures
Formally, the power spectrum (Equation 18) can be expanded in
the following way:

Ĉ(ω) = D+ĥ(ω)wD+DwT ĥT(−ω)+ĥ(ω)wDwT ĥT(−ω)+· · · .
(23)

Therefore, the cross correlationC(τ ), which is the inverse Fourier
transform of Ĉ(ω) by the Wiener-Khinchin theorem, can be
approximated by Equation (33). The same decomposition can
also be carried out for the population-averaged cross correlation
as discussed previously.

RESULTS

We first present the numerical evidence of the complexity
of mutual interactions between plastic network structures and
spiking activity, as it relates to the effect of high-order statistical
structures implied in the STDP learning dynamics. In particular,
we emphasize the importance of firing variability of spiking
activity for the network structures learned through STDP. This
fact is particularly emphasized by the sharp contrast of learned
network structures between two scenarios (Case I in Figure 1 and
Case II Figure 2); they share the same trend for firing rate change
across different neuronal populations, but have the opposite
trend for their firing variability change. We then develop a self-
consistent linear response theory to account for the effects of both
firing rate and firing variability on learning dynamics and explain
the role observed in our numerical study of high-order statistics
in learning dynamics.
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FIGURE 1 | The effect of firing rate and variability on STDP learning dynamics—Case I. All excitatory neurons receive external inputs with an identical variance (i.e.,

σ
p
ext,α = 15.8 mV for α = 1, 2, 3). Based on the values of mean of external inputs, the excitatory neurons are divided into three populations, in which Population 1

(including neurons labeled by 1–50, purple), Population 2 (including neurons labeled by 51–200, blue) and Population 3 (including neurons labeled by 201–250, black)

receive the largest (µ
p
ext,1 = 40 mV), intermediate (µ

p
ext,2 = 30 mV) and smallest (µ

p
ext,3 = 20 mV) mean, respectively. The initial values of excitatory-to-excitatory

connection strengths are drawn from a uniform distribution ranging from 0 to 1 mV. (A,C) Raster plots before learning and after learning, respectively. (B,D) Firing rates

and coefficients of variation (CVs) of the different populations before learning and after 106 s of learning, respectively. Error bars indicate the standard deviation of

corresponding values within each population. (E) Firing rate dynamics of the different populations during learning. (F) Weight matrix after 106 s of learning. The largest

(i.e., brightest) and the smallest (i.e., darkest) value of the gray bar is 1 and 0 mV, respectively.

The Effect of Firing Rate and Firing
Variability on Learning
Dynamics—Numerical Evidence
For our numerical experiments, we use the current-based leaky

integrate-and-fire (LIF) neuron model with finite synaptic time

constant (Babadi and Abbott, 2013). The network consists of

250 excitatory neurons and 250 inhibitory neurons (See section

Methods for details). Based on the values of mean and variance

of external inputs, we divide the excitatory neurons into three
populations—Population 1 (denoted as P1, including neurons
indexed from 1 to 50), Population 2 (denoted as P2, including
neurons indexed from 51 to 200) and Population 3 (denoted
as P3, including neurons indexed from 201 to 250). The initial
values of excitatory-to-excitatory (EE) connection strengths are

drawn at random from a uniform distribution ranging from 0
to wmax

EE = 1 mV. During the simulation, the EE connections are
subject to the canonical all-to-all pairwise additive STDP learning
rule (Song et al., 2000; Babadi and Abbott, 2013). Specifically, let
τ = ti − tj, where ti and tj are a pair of spike times of excitatory
neuron i and excitatory neuron j, respectively. This pair of spike
times will affect a change of the synaptic strengthwij from neuron
j to neuron i as follows: wij → wij + L(τ ), where the STDP
learning window L(τ ) is given by

L(τ ) =
{

A+e−τ/τ+ for τ > 0,

−A−e−|τ |/τ− for τ ≤ 0.
(24)

Similarly, for the synaptic strength wji from neuron i to neuron
j, the update is wji → wji + L(−τ ). As in Song et al. (2000)
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FIGURE 2 | The effect of firing rate and variability on STDP learning dynamics—Case II. Different populations receive external inputs with different means as well as

different variances. Population 1 (including neurons labeled by 1–50, purple) receives the smallest mean (µ
p
ext,1 = 27.5 mV) but the largest variance (σ

p
ext,1 = 31.6

mV), Population 2 (including neurons labeled by 51–200, blue) receives an intermediate mean (µ
p
ext,2 = 30 mV) and variance (σ

p
ext,2 = 22.4 mV), and Population 3

(including neurons labeled by 201–250, black) receives the largest mean (µ
p
ext,3 = 32.5 mV) but the smallest variance (σ

p
ext,3 = 11.2 mV). The initial values of

excitatory-to-excitatory connection strengths are drawn from a uniform distribution ranging from 0 to 1 mV. (A,C) Raster plots before learning and after learning,

respectively. (B,D) Firing rates and coefficients of variation (CVs) of the different populations before learning and after 106 s of learning, respectively. Error bars indicate

the standard deviation of corresponding values within each population. (E) Firing rate dynamics of the different populations during learning. (F) Weight matrix after 106

s of learning. The largest (i.e., brightest) and the smallest (i.e., darkest) value of the gray bar is 1 and 0 mV, respectively.

and Babadi and Abbott (2013), we enforce the hard bound to the
value of wij and wji, i.e., set wij (wji) to wmax

EE if wij (wji) > wmax
EE

and 0 if wij (wji) < 0. In this work, we will restrict ourselves
to the balanced case in which A+ = A− = 0.005 wmax

EE and
τ+ = τ− = 20 ms. We characterize spiking activity in the
network by its firing rate and coefficient of variation (CV), where
CV is the ratio of the standard deviation of interspike interval
(ISI) to the mean of ISI. As is well known, for a given neuron
under fixed input conditions, CV is often used as a measure of
firing variability — the larger CV, the more irregular the spiking
activity.

If these populations receive external inputs of different
means but an identical variance, we observe that, as the mean

external input increases, the firing rate increases whereas the CV
decreases. Figure 1B illustrates the corresponding firing statistics
of these populations. For this case, as shown in Figure 1F, the
connections from the populations of higher firing rate to those
of lower firing rate are strengthened after learning whereas the
connections with the opposite situation (i.e., connections from
those of lower firing rate to those of higher firing rate) are
weakened. This result is consistent with results of the previous
studies (Morrison et al., 2007; Kozloski and Cecchi, 2010; Babadi
and Abbott, 2013). Here, STDP is found to act as a firing rate
equalizer, i.e., decreasing the rate of the neuronal populations
of higher firing rate and increasing the rate of the neuronal
populations of lower firing rate. Figure 1E displays an example
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of this behavior. Furthermore, by comparing the firing statistics
before learning (Figure 1B) with that after learning (Figure 1D),
we observe that STDP also acts as a firing variability equalizer,
i.e., decreasing the CV of higher-CV neuronal populations and
increasing the CV of lower-CV neuronal populations. For ease of
discussion below, this case will be termed as Case I.

Next, we consider the case in which both the mean and
variance of external inputs vary across these populations. We
adjust both the mean and variance of external inputs (see the
caption of Figure 2 for the specific values) such that Population
1 has the highest firing rate and the highest CV, Population 2
has an intermediate firing rate and CV, and Population 3 has
the lowest firing rate and the lowest CV. The corresponding
firing statistics of these populations before learning is displayed
in Figure 2B. From Figure 2F, it can be seen clearly that after
learning the connections from Population 1, which has the
highest firing rate, to Population 3, which has the lowest firing
rate, are weakened. We note that this phenomenon still exists
even when the projections from the excitatory populations to the
inhibitory populations become plastic (Supplementary Material).
Furthermore, by comparing Figure 2B with Figure 2D, we
observe that STDP tends to increase the rate of the population
of the highest firing rate and decrease the rate of the population
of the lowest firing rate. That is, STDP is no longer acting as a
firing rate equalizer. However, it still acts as a weak equalizer for
firing variability. This phenomenon cannot be explained solely
by the firing rate theory (Morrison et al., 2007; Kozloski and
Cecchi, 2010; Babadi andAbbott, 2013), in which the connections
from the population of higher firing rate to the population of
lower firing rate should be strengthened and STDP should act
as a firing rate equalizer. In the following, we develop a linear
response theory to characterize the importance of high-order
firing statistics in learning dynamics as illustrated in Figure 2.
For ease of discussion below, the case in Figure 2 will be termed
as Case II.

STDP Learning Dynamics
To characterize the learning dynamics, we consider two
mutually-connected neurons in a recurrent network, say neuron
i and neuron j. The STDP learning rule introduced in the last
section can be simply written in the following weight dynamics:

dwij

dt
= A+x

+
j (t)si(t)− A−x

−
i (t)sj(t), (25)

dx+j
dt

= −
x+j
τ+

+ sj(t), (26)

dx−i
dt

= −x−i
τ−

+ si(t), (27)

where si(t) and sj(t) respectively stand for the spike trains of

neuron i and neuron j. Expressing x+j and x−i as the integral of

sj(t) and si(t), respectively, we can obtain

dwij

dt
=

∫ ∞

−∞
L(τ )sj(t − τ )si(t)dτ . (28)

By assuming that the change of wij(t) is sufficiently slow (Ocker
et al., 2015), sj(t − τ )si(t) can be approximated by Cij(τ ) +
〈

si(t)
〉 〈

sj(t)
〉

where Cij(τ ), defined as
〈

si(t + τ )sj(t)
〉

−
〈

si(t)
〉 〈

sj(t)
〉

,
is the temporal spike cross correlation between neuron i and
neuron j in the recurrent network with a fixed synaptic strength
matrix. Combining the dynamics of wji in Equation (25), we
arrive at the following equations:

dwij

dt
=

∫ ∞

−∞
L(τ )Cij(τ )dτ , (29)

dwji

dt
=

∫ ∞

−∞
L(τ )Cji(τ )dτ . (30)

Note that unlike the scenario studied in Babadi andAbbott (2013)
and Ocker et al. (2015), there is no offset term in Equations
(29, 30). This is due to the balanced condition A+ = A− and
τ+ = τ− in our STDP learning rule. Therefore, to understand the
learning dynamics (Equations 29, 30), it is facilitative to study the
correlation structure in recurrent networks with static couplings.

In the following sections, we will follow the linear response
theory proposed in Pernice et al. (2012), Trousdale et al.
(2012), and Helias et al. (2013) and develop a self-consistent
framework for the learning dynamics (Equations 29, 30). To this
end, we first characterize how the firing variability information
is encoded in the linear response kernel for the single LIF
neuron case in section Incorporation of Firing Variability in
Linear Response Kernel. Then, in section Hawkes Process as an
Approximation of an LIF Network Dynamics, we approximate
the LIF network dynamics with a stochastic point process
called Hawkes process in which the instantaneous firing rate
depends on the spiking history of interacting neurons (Hawkes,
1971b). With this Hawkes process approximation, in section
Spike Correlation Structure of Hawkes Process, we discuss the
issue of how firing statistics of spiking activity and network
connectivity structure shape the spike correlation structure of the
LIF network dynamics. In the end, we combine the correlation
structure analysis with the STDP learning dynamics (Equations
29, 30) to arrive at the final learning dynamics (Equations 35, 36),
which explain the observed numerical results, in section Learning
Dynamics with Spike Correlation Decomposition.

Incorporation of Firing Variability in Linear
Response Kernel
For a single LIF neuron described by Equations (1, 3), the
dependence of mean firing rate and CV on input parameters
(mean input valueµ and standard deviation value σ ) is illustrated
in Figures 3A,B, respectively. By using the reverse correlation
method (Dayan and Abbott, 2001; Ostojic et al., 2009) (see
section Methods for details), We also computed the response
kernel h(τ ) that characterizes how the LIF neuron ensemble
responds to a perturbation. We found that response kernel
h(τ ) exhibits an exponential decay profile, A exp{−τ/τeff}2(τ ),
where 2(τ ) is the Heaviside function, provided that fluctuations
of the external input are sufficiently high, i.e., comparable
to the difference between firing threshold and reset voltage
Vth − Vr (for example, σ is about 10 ∼ 30 mV). We can
use two quantities — the integral of response kernel

∫

h(τ )dτ ,
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FIGURE 3 | The dependence of statistical properties of the LIF neuron on the mean µ and the standard deviation σ of external inputs. (A,B) Firing rate and CV of

inter-spike interval (ISI), respectively. (C,D) Integral of response kernel
∫

h(τ )dτ and linear response time constant τeff, respectively.

which is τeffA after the substitution of the exponential form of
h(τ ) = A exp{−τ/τeff}2(τ ), and the decay time constant τeff —
to characterize h(τ ). Figures 3C,D illustrate the dependence of
∫

h(τ )dτ and τeff on µ and σ , respectively. In Figure 3, we can
observe that, for any fixed mean firing rate, when the standard
deviation σ increases, both CV of ISI and τeff increase whereas
∫

h(τ )dτ decreases. Therefore, if there are two neurons with the
same mean firing rate but different firing CVs, both the decay
time constant and the integral of response kernel of these two
neurons will differ from each other. In this sense, the information
of firing variability is incorporated in the linear response
kernel.

Hawkes Process as an Approximation of
an LIF Network Dynamics
In general, the response of a neuron to recurrent spike inputs
is nonlinear. Here, we investigate the asynchronous state, as
shown in Figures 1A, 2A, in which spikes from different neurons
arrive at the synapses of the target neuron at different times.
By considering that the magnitude of a postsynaptic potential
elicited by the firing event of a single presynaptic neuron is in
general small, i.e., the synaptic strength is weak, it is reasonable
to treat the asynchronous recurrent inputs in a linear manner
(Pernice et al., 2012; Trousdale et al., 2012; Helias et al., 2013).
Specifically, by regarding

∑N
j=1 wij(sj − rj) in the LIF neuronal

network as a perturbation, we arrive at the following effective
description:

ri(t) = ri + [hi ∗
N

∑

j=1

wij(sj − rj)](t), (31)

where ri and hi(τ ) are the mean firing rate and response kernel of
the ith neuron that is driven by both the external input and the
mean-driven recurrent input (see section Methods for details),
respectively, and N is the number of neurons in the network.
Note that (i) the mean firing rate ri is determined by the self-
consistent Equations (12, 13); and (ii) the response kernel hi(τ )
is computed based on the single LIF neuron Equations (1, 3)
with the total mean input value µ

p
i in Equation (13) and the

standard deviation value σ
p
ext,i in Equation (12). Equation (31)

can be understood in the following way. On the one hand, given
spike trains sj(t) for j = 1, · · · ,N, Equation (31) provides a
way to evolve the instantaneous firing rate of the ith neuron
ri(t). On the other hand, from Equation (31), the spike train
si(t) can be regarded as being generated by a jump process
with the instantaneous firing rate ri(t). Therefore, we have
obtained a self-consistent stochastic jump process that produces
both the instantaneous firing rate ri(t) and the stochastic spike
train si(t). This stochastic process Equation (31) is a Hawkes
process (Hawkes, 1971b), which has been extensively used in
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the neuroscience literature (Pernice et al., 2012; Trousdale et al.,
2012; Helias et al., 2013). From the discussion above, such a
Hawkes process can be viewed as the first-order (i.e., linear)
Volterra approximation of the LIF network dynamics.

Spike Correlation Structure of Hawkes
Process
For the Hawkes process (Equation 31), its spike correlation has
an explicit analytical form (Hawkes, 1971a). Specifically, the
power spectrum Ĉ(ω), by the Wiener-Khinchin theorem, is the
Fourier transform of spike correlation C(τ ) =

(

Cij(τ )
)

and has
the following form (Hawkes, 1971a) (see section Methods for a
derivation):

Ĉ(ω) =
(

1− ĥ(ω)w)−1D(1− wT ĥT(−ω)
)−1

, (32)

where ĥ(ω) is the Fourier transform of the response kernel
h(τ ) = diag{h1(τ ), · · · , hN(τ )},w is the synaptic strengthmatrix,
andD = diag{r1, · · · , rN}.

To examine the validity of our linear response theory, we
compute the population-averaged cross correlation (see section
Methods for details). We find that our theoretical prediction
of the population-averaged cross correlation is in very good
agreement with the cross correlation measured from our LIF
neuronal network simulation. This agreement is clearly seen
in Figure 4, demonstrating that our linear response theory can
well capture the spike correlation structure of the LIF network
dynamics.

We note that Equation (32) also provides a starting
point to study how network connectivity affects the spike
correlation structure since we can decompose the connections
into direct connections, common inputs, and other higher-order
connections. In particular, the spike correlation has the following
decomposition (see section Methods for a derivation):

C(τ ) = Dδ(τ )+h(τ )wD+DwThT−(τ )+(hwDwT ∗hT−)(τ )+· · · ,
(33)

where h−(τ ) ≡ h(−τ ). Note that the similar decomposition has
been derived in Pernice et al. (2012), Trousdale et al. (2012), Hu
et al. (2013), and Ocker et al. (2015).

The first term on the right hand side (RHS) of Equation (33)
can be obtained by setting the connection strength w in the
Hawkes process (Equation 31) to zero. There is no cross
correlation in this term.

For the second term on the RHS of Equation (33), the
corresponding component with respect to the correlation
between neuron i and neuron j is hi(τ )wijrj. This involves firing
rate rj of presynaptic neuron j, the connection strength wij from
neuron j to neuron i and the linear response kernel hi(τ ) of
postsynaptic neuron i. Therefore, this component corresponds to
the correlation induced by the direct connection from neuron j to
neuron i. Similarly, the component hj(−τ )wjiri (the third term on
the RHS of Equation 33), corresponds to the correlation induced
by the direct connection from neuron i to neuron j. Combining
these two terms, we obtain the spike correlation induced by
direct connections between neuron i and neuron j. For ease of
discussion below, we denote these terms as Cdi

ij (t).

We next discuss the terms associated with the indirect
connections. For the fourth term on the RHS of Equation (33),
the corresponding component with respect to the correlation
between neuron i and neuron j is

∑

k wikrkwjk[hi ∗ h−j](τ ). This
involves the firing rate rk of neuron k, the connection strengths
wαk and the response kernels hα(·) for α = i, j. Therefore, this
term corresponds to the correlation induced by the common
inputs from neuron k to both neuron i and neuron j. As we have
demonstrated above, hα(·), α = i, j, exhibits an exponential decay
profile, which will be expressed as Bα exp(−t/τα)2(t). Then, this
component becomes

∑

k

BiBj
τiτj

τi + τj
wikrkwjk

{

exp(−t/τi) for t ≥ 0,

exp(t/τj) for t < 0.
(34)

For ease of discussion below, we denote this term as Cco
ij (t),

the remaining higher-order terms in Equation (33) as Chi
ij (t),

and the summation of Cco
ij (t) and Chi

ij (t) as the indirect term

Cin
ij (t). We can observe from Equation (34) that, if there is a

difference between response time constants τi and τj, C
co
ij (t) will

show an asymmetric property with respect to the axis t = 0.
More precisely, if we assume τi > τj, C

co
ij (t) > Cco

ij (−t) for

any t > 0. This asymmetry can be understood intuitively as
follows. When there is a common input from neuron k into
both neurons i and j, the neuron with the smaller response time
constant (neuron j) will respond more rapidly than the neuron
with the larger response time constant (neuron i) on average.
Therefore, there is a higher likelihood that neuron j will fire
before neuron i. In terms of the spike correlation, this implies that
Cco
ij (t) > Cco

ji (t) = Cco
ij (−t) for any t > 0. We note that, as shown

in Equation (34), the common inputs from both excitatory and
inhibitory neurons into neuron i and neuron j induce a positive
spike correlation between neuron i and neuron j. Therefore, if
there is a significant difference between τi and τj, there will be
a substantial asymmetry between the positive-t component of
Cco
ij (t) and the corresponding negative-t component. This will

have a profound impact on the structure of Cij(t) as discussed
below.

Now we study how different connectivity patterns affect
the cross correlation structure between different neuronal
populations for Cases I and II in Figures 1, 2. As an example, we
pick neuron i from Population 3 and neuron j from Population 1.
Note that, for Case I in Figure 1, neuron i (j) has a lower (higher)
firing rate and a higher (lower) firing variability. Whereas, for
Case II in Figure 2, neuron i (j) has a lower (higher) firing rate
and a lower (higher) firing variability.

For Case I in Figure 1, we find that the net mean inputs to
neuron j in Population 1 and neuron i in Population 3 are 31.45
and 11.55 mV, respectively. Note that the external mean inputs
µ
p
ext,j andµ

p
ext,i are 40 and 20mV, respectively. Since the net mean

input is the summation of external mean input and recurrent
input, the net recurrent inputs to neuron j and neuron i are−8.55
mV and−8.45 mV, respectively. This means the overall recurrent
inputs to both neurons are inhibitory. In Case I, the standard
deviation values for both neurons are 15.81 mV. With these net
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FIGURE 4 | Population-averaged cross correlation—comparison between theoretical prediction and numerical results. (A–F) Normalized population-averaged cross

correlation between the different populations. Note that C
p,cr
αβ

for α,β = 1, 2, 3 is defined in Equation (20) and r
p
α for α = 1, 2, 3 is computed with Equations (12, 13) in

a self-consistent way. The black dots are the cross correlation measured from a simulation of the LIF neuronal network with a static weight matrix. The red dashed line

is the theoretical prediction of our linear response theory.

mean input values and standard deviation values, we compute
the response kernel by using the reverse correlation method (see
section Methods for more details). We find that

∫

hj(t)dt >
∫

hi(t)dt and τj < τi, which is evident in Figures 3C,D. From
the left panels of Figure 5A, we can observe that (i) the positive-t
component of Cdi

ij (t) is larger than the corresponding negative-

t component; and (ii) the positive-t component of Cin
ij (t) is

slightly smaller than the corresponding negative-t component.
To further understand how different connectivity patterns shape
Cin
ij (t), we split C

in
ij (t) into the common-input correlation Cco

ij (t)

and the higher-order-connection correlationChi
ij (t). It can be seen

clearly from the right panels of Figure 5A that the positive-t
component of Chi

ij (t) is smaller than the corresponding negative-t

component whereas the positive-t component of Cco
ij (t) is larger

than the corresponding negative-t component. A combination
of these two facts yields a small difference between the

positive-t component of Cin
ij (t) and the corresponding negative-t

component. We note that the asymmetry of Cco
ij (t) with respect

to the axis t = 0 exhibited in the top right panel of Figure 5A is a
consequence of τj < τi.

For Case II in Figure 2, we find that the net mean inputs

to neuron j in Population 1 and neuron i in Population 3 are

15.58 and 20.50 mV, respectively. Note that the external mean

inputs µ
p
ext,j and µ

p
ext,i are 27.5 and 32.5 mV, respectively. Since

the net mean input is the summation of external mean input and

recurrent input, the net recurrent inputs to neuron j and neuron

i are−11.92 and−12.00 mV, respectively. This means the overall

recurrent inputs to both neurons also are inhibitory. In Case II,

the standard deviation values for neuron j and neuron i are 31.6

and 11.1 mV, respectively. With these net mean input values and
standard deviation values, we compute the response kernel by
using the reverse correlation method (see section Methods for
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FIGURE 5 | Decomposition of the spike cross correlation between neurons from the different populations before learning. Here, we choose neuron i from Population 3

and neuron j from Population 1. The connection strengths wij and wji are fixed at 0.5 mV. The top left, top right, bottom left and bottom right panels of both

(A,B) correspond to the correlations associated with direct connections, common inputs, indirect connections, and higher-order connections, respectively.

(A) Compared to neuron i, neuron j receives a larger mean and an identical variance of external inputs. This corresponds to Case I in Figure 1. (B) Compared to

neuron i, neuron j receives a smaller mean but a larger variance of external inputs. This corresponds to Case II in Figure 2.

more details). We find that
∫

hj(t)dt <
∫

hi(t)dt and τj > τi,
which is also evident in Figures 3C,D. From the left panels of
Figure 5B, we can observe that (i) the positive-t component
of Cdi

ij (t) is again larger than the corresponding negative-t

component; and (ii) the positive-t component of Cin
ij (t) is much

smaller than the corresponding negative-t component. From the
right panels of Figure 5B, we find that the positive-t components
of both Cco

ij (t) and Chi
ij (t) are smaller than the corresponding
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negative-t components. A combination of these two effects yields
a large difference between the positive-t component of Cin

ij (t) and

the corresponding negative-t component. Note that the fact that
Cco
ij (t) < Cco

ij (−t) for t > 0 in Figure 5B is a consequence of

the inequality τj > τi. In the next section, we will demonstrate
the extent of asymmetry between the positive-t component of
Cin
ij (t) and the corresponding negative-t component underlies the

difference of network structures learned through STDP presented
in Figures 1, 2.

Learning Dynamics with Spike Correlation
Decomposition
Combining the STDP learning dynamics (Equations 29, 30)
with the direct- and indirect-connection decomposition of the
correlation structure in the previous section, we arrive at the
following learning dynamics:

dwij

dt
= Aiwijrj − Ajwjiri + B, (35)

dwji

dt
= Ajwjiri − Aiwijrj − B, (36)

where Aα =
∫ ∞
0 A+ exp{−τ/τ+}hα(τ )dτ for α = i, j and

B =
∫

L(τ )Cin
ij (τ )dτ . In Equations (35, 36), the first and

second terms on the RHS correspond to the effect of direct
connections between neuron i and neuron j, whereas the third
term corresponds to the effect of indirect connections between
neuron i and neuron j. Note that here we have used the balanced
STDP assumption, i.e., A+ = A− and τ+ = τ−.

As argued in Babadi and Abbott (2013), while a linear system
of differential equations such as Equations (35, 36) cannot have
more than two attractors, the hard lower and upper bounds
enforced by the STDP learning rule, i.e., the condition 0 ≤
wij ≤ wmax

EE , can lead to the following two attractors: (wij,wji) =
(wmax

EE , 0) and (wij,wji) = (0,wmax
EE ). For the sake of discussion, we

consider Airj > Ajri below. Then, the line wji = 1
Ajri

(Airjwij+B)

has the slope greater than 1, as illustrated by the black dash line
in Figure 6. If neglecting the indirect connection effect, that is,
setting B = 0, we can observe from Equations (35, 36) that, for
any (wij,wji) pair satisfying Aiwijrj − Ajwjiri > 0, the pair will
converge to (wmax

EE , 0). Whereas, for any (wij,wji) pair satisfying
Aiwijrj − Ajwjiri < 0, the pair will converge to (0,wmax

EE ). This
is illustrated in Figure 6A with the black dash line separating the
two basins. In this case, the size of basin of the attractor (wmax

EE , 0)
is larger than that of the attractor (0,wmax

EE ). Therefore, wij would
bemore likely to be potentiated, whereaswji would bemore likely
to be depressed.

When the indirect connection effect is included, there exist
two distinct regimes depending on the value of B. For the sake of
discussion, we denote the size of basin of (wmax

EE , 0) (i.e., the area
below the lineAiwijrj−Ajwjiri+B = 0) as Sij and the size of basin
of (0,wmax

EE ) (i.e., the area above the line Aiwijrj−Ajwjiri+B = 0)
as Sji. One is a regime in which Sij > Sji. This occurs when
B ≥ 0 or B is negative but small. As illustrated in Figure 6A,
the red line separates the two basins. In this regime, wij would be
more likely to be potentiated whereas wji would be more likely

to be depressed. For neuronal populations, the synapses from
the neuron j’s population to neuron i’s population will have a
higher likelihood to be strengthened. In contrast, the synapses
with the opposite direction will be more likely to be weakened.
The other is a regime in which Sij < Sji. This occurs when B is
sufficiently negative, as indicated by the red line in Figure 6B. In
this regime, wij would be more likely to be depressed whereas wji

would bemore likely to be potentiated. For neuronal populations,
the synapses from neuron i’s population to neuron j’s population
will have a higher likelihood to be strengthened, whereas the
synapses with the opposite direction will be weakened with a
larger probability.

We now examine the cases in Figures 1, 2. For Case I in
Figure 1 and Table 1 displays the corresponding values of Airj,
Ajri, B, Sij, Sji as well as the average connection strengths wij and
wji after 10

6 s of learning. It can be seen clearly that for all the
three (i, j) pairs, namely (i ∈ P2, j ∈ P1), (i ∈ P3, j ∈ P1) and (i ∈
P3, j ∈ P2), Sij > 0.5mV2 > Sji, indicating that wij for all these
three pairs would be strengthened. Indeed, this strengthening is
confirmed by the values of wij presented in Table 1 (i.e., wij >

0.5mV > wji for all three pairs). To evaluate the contribution
of common inputs and higher-order connections separately, we
also include Bco (defined as

∫

L(τ )Cco
ij (τ )dτ ) and Bhi (defined

as
∫

L(τ )Chi
ij (τ )dτ ) in Table 1. We can observe that for all three

pairs Bco > 0 whereas Bhi < 0. Since B = Bco + Bhi, this gives
rise to a negative but small value of B, yielding a regime in which
Sij > Sji. Since the connections from the populations of higher
firing rate to those of lower firing rate are strengthened whereas
the connections with the opposite direction are weakened, the
rate of the populations of lower firing rate will increase whereas
that of the populations of higher firing rate will decrease. The
strengthening of connections from the populations of higher
firing rate to those of lower firing rate leads to the increase of the
mean of total inputs into the populations of lower firing rate. As
illustrated in Figure 3B, when the variance of total inputs is fixed,
the larger the mean total inputs, the smaller the CV. Therefore,
this explains why in Figure 1 the CV of the populations of
lower firing rate, which is larger before learning, decreases after
learning. Therefore, STDP here acts as a weak equalizer for both
firing rate and firing variability, as demonstrated in Figure 1.

For Case II in Figure 2 and Table 2 shows that for all three
(i, j) pairs, namely (i ∈ P2, j ∈ P1), (i ∈ P3, j ∈ P1) and
(i ∈ P3, j ∈ P2), Sij < 0.5 mV2 < Sji and wij < 0.5 mV < wji.
Since the connections from the populations of higher firing rate
to the populations of lower firing rate are weakened whereas
the connections with the opposite direction are strengthened,
the rate of the populations of higher firing rate will increase
further whereas that of the populations of lower firing rate will
decrease further. Meanwhile, the weakening of connections from
the populations of higher firing rate to those of lower firing
rate leads to the decrease of the mean of total inputs into the
populations of lower firing rate. As illustrated in Figure 3B, the
smaller the mean total inputs, the larger the CV. Therefore, the
CV of these populations of lower firing rate, which is smaller
before learning, increases after learning. Note that, in Case II,
those populations of lower firing rate also have the lower firing
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FIGURE 6 | Phase plane analysis of learning dynamics. This learning dynamics has two attractors — (wij ,wji ) = (1, 0) and (wij ,wji ) = (0, 1). The black dashed line

satisfies Aiwijrj − Ajwjiri = 0 while the red line satisfies Aiwijrj − Ajwijri − B = 0. We assume that Airj > Ajri . Therefore, the slope of both the black dashed line and the

red line is greater than 1. Any (wij ,wji ) pair in the area above the red line will converge to (0, 1) whereas any pair in the area below the red line will converge to (1, 0), as

indicated by the blue arrows. Therefore, the area above the red line is the basin of the attractor (0, 1) whereas the area below the red line is the basin of the attractor

(1, 0). Note that wij and wji evolve along the line wij + wji = Const as indicated by the arrows. (A) The size of basin of the attractor (0, 1) is smaller than that of the

attractor (1, 0). In this case, synapses from the neuronal population to which neuron j belongs, to the neuronal population to which neuron i belongs, would be more

likely to be strengthened, whereas the synapses with the opposite direction will be weakened. (B) The size of basin of the attractor (0, 1) is larger than that of the

attractor (1, 0). In this case, synapses from the neuronal population to which neuron j belongs, to the neuronal population to which neuron i belongs, would be more

likely to be weakened, whereas the synapses with the opposite direction will be strengthened.

TABLE 1 | Parameters of learning dynamics (Equations 35, 36) and related quantities for Figure 1.

Airj × 106 Airj × 106 B× 106 Bco
× 106 Bhi

× 106 Sij wij wji

(ms−1) (ms−1) (ms−1
· mV) (ms−1

· mV) (ms−1
· mV) (mV2) (mV) (mV)

(i ∈ P2, j ∈ P1) 1.75 1.22 −0.19 0.47 −0.66 0.54 0.68 0.32

(i ∈ P3, j ∈ P1) 1.12 0.54 −0.18 0.80 −0.98 0.60 0.81 0.19

(i ∈ P3, j ∈ P2) 0.66 0.45 −0.04 0.44 −0.48 0.59 0.70 0.30

TABLE 2 | Parameters of learning dynamics (Equations 35, 36) and related quantities for Figure 2.

Airj × 106 Airj × 106 B× 106 Bco
× 106 Bhi

× 106 Sij wij wji

(ms−1) (ms−1) (ms−1
· mV) (ms−1

· mV) (ms−1
· mV) (mV2) (mV) (mV)

(i ∈ P2, j ∈ P1) 0.92 0.71 −0.15 −0.11 −0.04 0.45 0.45 0.55

(i ∈ P3, j ∈ P1) 1.28 0.63 −0.55 −0.53 −0.02 0.32 0.30 0.70

(i ∈ P3, j ∈ P2) 1.15 0.73 −0.40 −0.45 0.05 0.34 0.32 0.68

variability. This explains why STDP acts as a weak equalizer of
firing variability, instead of firing rate, in Figure 2.

Furthermore, for Case II in Figure 2, by examining the
contribution of common inputs and higher-order connections,
we can find from Table 2 that, compared to Bco, Bhi is negligible
for the pairs (i ∈ P2, j ∈ P1) and (i ∈ P3, j ∈ P1).
Therefore, for these two pairs, it is the contribution of common-
input correlations that yields a large negative value of B
and the corresponding network structures in Figure 2. Note
that the asymmetric property of common-input correlations
arises from the difference of response time constants between
different neurons. As demonstrated in Figure 3, the response
time constant encodes the information of the firing variability of

spiking activity. In this sense, we have established a direct link
between firing variability and learning dynamics by analyzing
the spike correlation structures, and have demonstrated explicitly
how firing variability shapes the network structures learned
through STDP.

DISCUSSION

We have investigated how the high-order statistics of spiking
activity affect the learning dynamics in a plastic LIF neuronal
network. We have developed a self-consistent linear response
theory, which incorporates the information of both firing rate
and firing variability. By decomposing the spike correlation
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structure into the component associated with local direct
connections and that associated with indirect connections,
we have identified two distinct regimes regarding the
network structures learned through STDP. In one regime,
the contribution of the correlation associated with local direct
connections dominates in STDP learning dynamics, leading to
network structures consistent with the previous work (Morrison
et al., 2007; Kozloski and Cecchi, 2010; Babadi and Abbott, 2013).
In the other regime, the contribution of the correlation associated
with indirect connections, instead of local direct connections,
dominates, yielding network structures at variance with the
prediction by the simple firing rate theory. The dominance
of the indirect-connection correlation mainly arises from the
asymmetric common-input correlations, which is induced by
the heterogeneity of firing variability across different neuronal
populations. Therefore, our study highlights the importance of
firing variability of spiking activity for the evolution of plastic
neural networks.

In a series of work (Gilson et al., 2009a,b,c,d, 2010),
the STDP learning dynamics in recurrent networks has been
investigated with Hawkes processes. However, the response
kernel of the Hawkes process used there is identical across
neuronal populations, thus the effect of firing variability was not
addressed. Here, we study the STDP learning dynamics with the
LIF neuron, in which the effect of firing variability is addressed by
varying the mean and variance of external inputs across different
neuronal populations. In Babadi and Abbott (2013), the authors
developed a theory to explain the formation of in- and out-hubs.
However, the effect of firing variability has not been discussed.
Our theory can be viewed as an extension of the work (Babadi and
Abbott, 2013). More recently, motif dynamics have been studied
with linear response theory for one homogeneous population
(Ocker et al., 2015). Instead, our work focuses on the evolution
of connection strengths across different neuronal populations.

We have focused here on the balanced STDP rule. However, it
is straightforward to extend our analysis to the unbalanced case
by including additional terms in learning dynamics (Equations
35, 36). An unbalanced STDP rule can be expected to act as
a loop-generating or loop-eliminating mechanism, depending
on whether the rule is potentiation-dominated or depression-
dominated (Babadi and Abbott, 2013). The neuron model
we used here is the current-based LIF neuron. As we have
demonstrated, the key property of a single neuron model
to have an indirect-connection-dominated regime is that the
firing variability of spiking activity can be encoded in the
time constant of linear response kernel. Therefore, it can be
expected that the indirect-connection-dominated regime can

exist with other neuron models, such as conductance-based
models, exponential integrate-and-fire models or more realistic
Hodgkin-Huxley neurons. The connectivity here is of the all-
to-all type. We can readily extend our self-consistent linear
response theory to the sparsely connected network case. For
larger network size, such as the network of 500 excitatory neurons
and 500 inhibitory neurons, we have also found that there is
an indirect-connection-dominated regime, provided that there
is a significant difference of firing variability between different
neuronal populations. In this work, the input statistics (i.e.,

input means and input variances) are kept constant, indicating
that the circuit we studied receives the same sensory stimuli
during the whole simulation. Under this assumption, the neural
population activity can be simply quantified by mean firing
rate and CV of ISI. It would be very interesting to study the
learning dynamics when the stimulation periods are interleaved
by spontaneous states. Another interesting issue to be addressed
in the future work is how the high-order firing statistics of
spiking activity affect the connectivity structures in a circuit with
more complex learning rules, such as triplet STDP learning rule
(Gjorgjieva et al., 2011).

In conclusion, we have demonstrated that the introduction
of heterogeneity of firing variability across different neuronal
populations can give rise to counterintuitive network structures
in a plastic neural circuit. Our work suggests that the high-order
statistics of spiking activity can play an important role in shaping
the connectivity patterns in our brain.
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