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The Independent Channel (IC) model is a commonly used linear balance control model

in the frequency domain to analyze human balance control using system identification

and parameter estimation. The IC model is a rudimentary and noise-free description

of balance behavior in the frequency domain, where a stable model representation

is not guaranteed. In this study, we conducted firstly time-domain simulations with

added noise, and secondly robot experiments by implementing the IC model in a

real-world robot (PostuRob II) to test the validity and stability of the model in the time

domain and for real world situations. Balance behavior of seven healthy participants

was measured during upright stance by applying pseudorandom continuous support

surface rotations. System identification and parameter estimation were used to describe

the balance behavior with the IC model in the frequency domain. The IC model with

the estimated parameters from human experiments was implemented in Simulink for

computer simulations including noise in the time domain and robot experiments using

the humanoid robot PostuRob II. Again, system identification and parameter estimation

were used to describe the simulated balance behavior. Time series, Frequency Response

Functions, and estimated parameters from human experiments, computer simulations,

and robot experiments were compared with each other. The computer simulations

showed similar balance behavior and estimated control parameters compared to the

human experiments, in the time and frequency domain. Also, the IC model was able

to control the humanoid robot by keeping it upright, but showed small differences

compared to the human experiments in the time and frequency domain, especially at

high frequencies. We conclude that the IC model, a descriptive model in the frequency

domain, can imitate human balance behavior also in the time domain, both in computer

simulations with added noise and real world situations with a humanoid robot. This

provides further evidence that the IC model is a valid description of human balance

control.
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INTRODUCTION

Human balance control helps us to keep our body in an
upright position during daily life activities. In human balance
control several systems are involved, like the sensory systems, the
nervous system, and the muscles, which interact continuously
with each other (Horak, 1997). Visual, proprioceptive (muscle
spindles and Golgi tendon organs) and vestibular cues are
integrated by the nervous system to obtain body orientation
with respect to the visual scene, the support surface and gravito-
inertial space, respectively. The nervous system integrates these
sensory cues to generate a desired torque signal realized by the
muscles. This torque results in a corrective movement to bring
the body toward the desired upright position. The body position
and velocity thus changes and the new body position and velocity
are again sensed by the sensory systems. Thus, balance control
can be described as a closed loop control system (Collins and De
Luca, 1993; Peterka, 2002; van der Kooij et al., 2005).

To describe and understand the interaction between the
underlying systems, human balance control models are useful
(Engelhart et al., 2014). The Independent Channel (IC) model
is a frequently used linear parametric model describing the
interaction between the underlying systems during stance in
a closed loop (Peterka, 2002). In this model the human body
is modeled as a single inverted pendulum and each sensory
system is modeled as a separate feedback channel with a
weighting factor, which reflects the contribution of each sensory
system during stance. Peterka (2002) quantified the changes
in sensory contributions depending on the balancing situation,
showing that changes in sensory contributions, referred to as
sensory reweighting, plays an important role in human balance
control.

The IC model is a simple descriptive model of the balance
behavior and is formulated by a transfer function in the
frequency domain, which allows easy and fast implementation
of parameter estimation (Schoukens et al., 2004). To describe
dynamic balance behavior, a non-parametric approach in
the frequency domain can be used in combination with a
continuous periodic perturbation with specific frequency content
for system identification (Johansson and Magnusson, 1991;
van der Kooij et al., 2005). Fitting the frequency domain
model on the measured balance behavior then provides a
limited set of physiologically interpretable parameters describing
the underlying systems (Peterka, 2002; Kiemel et al., 2011).
Theoretically, however, frequency domain models are a global
description over the whole frequency range and may show small
imperfections at specific frequencies. They may even include
unstable subsystems in the fitting procedure. Furthermore, the IC
model is used on averaged data and therefore in approximately
noise free situations. As noise is inherent in human balance
control, the IC model may not be able to stabilize this noisy
system. In addition, the ICmodelmaymiss some essential details,
as it is a simplified representation of human balance control and
the human body is modeled as a linearized inverted pendulum
(Peterka, 2003). Thus, the IC model may not always be a valid
representation of the human balance behavior in real world
situations.

In this study, we evaluated the validity of the IC model
(i.e., a frequency domain model) by testing the model in time
domain simulations with added noise and in a real world
environment with the humanoid robot PostuRob II (Hettich
et al., 2014) to show the functionality of a frequency domain
model in the time domain and in real world situations. The robot
has human-like anthropometrics, pneumatic muscle actuation
and noisy and inaccurate sensors. The human IC model was
used to control the robot, i.e., to generate a torque command
based on the weighted sensory information. Comparing the
robot’s balance behavior to human balance behavior in similar
experimental conditions is an important validation of the
model. The real world environment may provide additional
insight into human balance control and the robustness of the
model.

MATERIALS AND METHODS

Independent Channel Model
The IC model (see Figure 1) describes the aforementioned
process of balance control in the form of a simplified descriptive
linear model. The model consists of a single inverted pendulum
(body dynamics: BD) controlled by a feedback mechanism with
a PD controller (neural controller: NC) and a time delay (TD).
The sensory integrationmechanism consists of a weighted sum of
the sensory contributions, where the weights always sum to unity
(Peterka, 2002). The first contribution is the relative orientation
of the body to the feet (BF), sensed by the proprioceptive
system (Wp). The proprioceptive signal BF refers here to an
abstract internal representation of body orientation with respect
to the feet instead of the ankle joint angle itself (Peterka, 2002;
Mergner, 2010). The second is the body orientation with respect
to the space vertical (BS), sensed by the vestibular system
(Wves). The third is the visual surround orientation relative
to the body (VB), sensed by the visual system (Wvis). The
weighted signals are summed with a low-pass filtered positive
force feedback (FF; Peterka, 2003), which accounts for a relatively
good compensation of body lean at low frequencies. Together
they provide an error signal as feedback into the PD controller
(see Figure 1). In the time delay (TD) all delays in the loop
are lumped, including muscle activation, neural delays, and
processing time.

Study Design
To validate the IC model, three steps were performed
(Figure 2A). First, human balance behavior of healthy
participants was obtained in human experiments using
support surface rotations in space (SS) and body-in-space sway
(BS) measurements (Figure 2B). SS rotations evoke body sway
through changes of the body angle relative to the feet (BF)
sensed by proprioception and the resulting sensory conflict with
the body angle in space (BS) sensed by the vestibular system
and by vision in a stationary visual surround (Figure 2B). The
human balance behavior was analyzed in the frequency domain
using system identification techniques. Parameter estimation
was performed using the IC model (Peterka, 2002) resulting in
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FIGURE 1 | Schematic representation of the human balance control (adapted from Peterka, 2003). The human body is represented by an inverted pendulum (body

dynamics, BD) controlled by the neuromuscular controller producing a torque (T). The neuromuscular controller consists of the neural controller (NC), represented by a

PD controller, a lumped time delay (TD) and the sensory feedback “channels” with their weighting factors [i.e., for proprioception (Wp), vision (Wvis), and vestibular

system (Wves)] and force feedback (FF). The external perturbation is a support surface (SS) rotation around the ankle joint axis. It changes the orientation of the feet in

space relative to the horizontal (FS) and therefore changes the body angle with respect to the feet (BF, sensed by proprioception). This results in a conflict between the

proprioceptive information and the information sensed by the vestibular system [i.e., body angle in space relative to the gravitational vertical (BS)] and vision [i.e., the

visual surround orientation relative to the body (VB)] and evokes a change of the body angle in space (BS).

FIGURE 2 | Flowchart of the study set up and the experimental set up. (A) First, a human experiment (1) was performed using support surface rotations [SS(t)] as
shown by the experimental set up (B), in which the SS is rotated around the ankle joint axis. This rotation changes the feet orientation in space (FS) relative to the

earth horizontal. Based on the body sway responses, BS(t), the Frequency Response Function [FRF, SSSBS(f)] was calculated, which allowed to estimate the control

parameters (p) that described the balance behavior. These parameters were then implemented into the models used for the computer simulations and the robot

experiments (2) using the same perturbation signal as in the human experiment. BS(t) obtained from the simulations and robot experiments was again used for system

identification and parameter estimation and for describing the balance behavior in terms of FRFs and estimated parameters. Finally, balance behavior obtained from

computer simulations and robot experiments were compared with balance behavior obtained from the human experiments, using the time series, FRFs, and

estimated parameters.

parameters describing the underlying human balance control
system.

Secondly, the time domain computer simulations using the
IC model with added noise and the estimated parameters from

human experiments were performed. Thirdly, the model was
implemented in the humanoid robot to test the IC model
under real world conditions. To compare the human balance
behavior in the time domain, the same perturbations as in the
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human experiments were used. Again, system identification and
parameter estimation were used to describe the balance behavior
and to estimate the model parameters representing the balance
behavior obtained from the computer simulations and robot
experiments. Finally, the balance behavior obtained from the
computer simulations and robot experiments were compared
with the balance behavior obtained in the human experiments.

Human Experiments
Participants
Seven healthy young participants (5 males, 2 females, age 26.1
± 2.1 years, height: 1.79 ± 0.09m, mass: 77.7 ± 10.8 kg) were
included in the study. The participants gave written informed
consent prior to participation. The protocol was approved by
the medical ethics committee of the Medical Spectrum Twente,
Enschede, the Netherlands and was in accordance with the
Declaration of Helsinki.

Apparatus
A Bilateral Ankle Perturbator (BAP) (Forcelink B.V., Culemborg,
the Netherlands) was used to apply support surface (SS) rotations
around the ankle joint axis (Schouten et al., 2011). The actual
angles of rotation of the SS on the BAP were measured.

The body kinematics of the lower and upper body were
measured in anterior-posterior direction using two draw-
wire potentiometers (Sentech SP2, Celesco, Chatsworth, CA,
United States) by connecting them to the participant’s trunk and
hip. Together with the SS rotation, the body kinematics were
measured using a Matlab interface with a sample frequency of
1,000Hz.

Perturbation Signal
A pseudorandom ternary sequence (PRTS) with 80 states and a
time increment of 0.25 s was generated, resulting in a signal with
a period of 20 s (Davies, 1970; Peterka, 2002). This signal was used
as SS angular velocity of both the left and right SS simultaneously.
Integration of this signal provided the perturbation signal of
the SS rotation with a wide spectral bandwidth where only the
odd harmonics contain signal power (Peterka, 2002; Figure 3).
The even harmonics were not excited by the perturbation and
were used to detect nonlinearities in the output (Pintelon and
Schoukens, 2001). Each trial consisted of six complete repetitions
of the perturbation signal resulting in a trial duration of 2min.
The signal was applied with peak-to-peak amplitudes of 0.5 and
1 degrees.

Procedure
During all experiments the participants stood on the BAP
wearing socks. The participants were instructed to stand with
their arms crossed at chest level and to keep both feet on
the support surface. The perturbations were applied at both
amplitudes during eyes open and eyes closed conditions,
resulting in four trials of 2min each. Before recording, the
participants were given sufficient time to familiarize with the
perturbation (∼10 s). The participants wore a safety harness to
prevent falling, which did not constrain normal body sway and
did not provide support or body orientation information.

Preprocessing
Data analysis was performed with Matlab (The Mathworks,
Natick, MA, United States). Leg and hip angles were calculated
using the potentiometer data and the attachment height of the
potentiometers, resulting in the segment angle of the legs relative
to the vertical and the joint angle of the trunk relative to the legs.
The body-in-space sway (BS), taken as the angular displacement
of the whole body Center of Mass without feet (CoM) relative
to the vertical, was calculated using the leg and hip angles and
body anthropometrics obtained from Winter et al. (1990). The
time series of the body sway and the actual SS rotation were used
for further analysis.

System Identification and Parameter Estimation
The time series of the body sway and SS rotation were segmented
into six data blocks of 20 s (i.e., the length of the perturbation
signal) and were transformed to the frequency domain. The
periodic part of the frequency coefficients was calculated by
averaging the frequency coefficients across the six data blocks.
The Cross Spectral Density (CSD) of the body sway and the
perturbation and the Power Spectral Density (PSD) of the
perturbation were calculated.

To test for nonlinearities in the body sway as response
to the perturbation, the PSD of the body sway on the odd
and even harmonics were calculated. Effect of nonlinearities
within each tested condition was quantified by the percentage
of total body sway power on the even harmonics, where the
perturbation had no power. Thus, a higher percentage indicates
excitation of body sway at frequencies which were not excited
by the perturbation, and therefore more non-linearities. A low
percentage of nonlinearities is a prerequisite for the application
of linear system identification techniques.

Next, the Frequency Response Functions (FRFs) representing
the sensitivity function of the SS rotation to the body sway
were estimated by dividing the CSD of the body sway and the
perturbation by the PSD of the perturbation (Equation 1; Peterka,
2002; van der Kooij et al., 2005). Only the excited frequencies
(i.e., odd harmonics) were analyzed. In case the amount of
nonlinearities is low, the response on the excited frequencies
(i.e., odd harmonics) represents the total balance behavior. The
function is given by

Hexp(f ) = 8SS,BS(f ) · [8SS,SS(f )]
−1 (1)

where8SS,BS andΦSS,SS represent the CSD and PSD, respectively.
The magnitude and phase represent the relation between the
perturbation and body sway per frequency in terms of amplitude
ratio and timing, respectively.

The coherence reflects the amount of body sway evoked
by the perturbation on the excited frequencies, i.e., the linear
response, and decreases with noise and nonlinearities (Pintelon
and Schoukens, 2001). The coherence is given by

γ 2
SS,BS(f ) =

∣

∣8SS,BS(f )
∣

∣

2
[8SS,SS(f )8BS,BS(f )]

−1 (2)

where8BS,BS represents the PSD of the body sway. The coherence
varies between 0 and 1, with a coherence close to one reflecting a
good signal to noise ratio and linear behavior.
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FIGURE 3 | Perturbation signal and the corresponding power spectral density on the odd harmonics with the analyzed frequencies shown in red.

The FRFs and coherences were obtained with nonparametric
analysis and were averaged across the participants for each
condition resulting in four FRFs and coherences (i.e., for the 0.5
and 1 degrees perturbation amplitudes with eyes open and eyes
closed), which were used for further validation.

The IC model was fitted on the estimated balance behavior
during each condition, represented by the FRFs averaged across
participants, using the theoretical transfer function of the IC
model, as presented in Equation (3), to obtain parameters
describing the balance behavior (Peterka, 2003). To characterize
the postural effects evoked by the SS rotation around the ankle
axis, the proprioceptive weight (Wp) was estimated from

Hest(f , p) =
BS(f )

SS(f )
=

Wp · NC · TD · BD

1− FF · NC · TD+ NC · TD · BD
(3)

where NC represents the neural controller, TD the time delay,
BD the body dynamics and FF the force feedback. f represents
the frequency vector and p the model parameters, namely the
mass (m), CoM height (h), moment of inertia (J), proprioceptive
weight (Wp), the reflexive stiffness (KP), the reflexive damping
(KD), time delay (τD), force feedback time constant (τF) and force
feedback gain (KF) (Figure 1). As the sum of the weights equals
one, in case of eyes closed,Wvis is zero andWves can be calculated
by 1 –Wprop. With the eyes open, the sum ofWvis andWves equals
1 –Wprop (see Peterka, 2002), where visual and vestibular weight
cannot be separated mathematically.

The body mass, CoM height and moment of inertia were used
as fixed parameters. The CoM height and moment of inertia
were calculated using the method of Winter et al. (1990). The
model was fitted on the FRFs (0.05–2.05Hz) of the averaged
human experimental data using a nonlinear least-square fit
(Matlab function: lsqnonlin) by minimizing the sum squared

error (E), equation (5), in which more more weight was given
to the low frequencies and the frequencies with higher coherence
(Equation 4).

ε(f , p) =

√

γ 2
SS,BS(f )

1+ f
·

∣

∣

∣

∣

log

(

Hexp(f )

Hest(f , p)

)∣

∣

∣

∣

(4)

E =
1

N
ε(f , p)Tε(f , p) (5)

γ 2
SS,BS represents the averaged coherence between the SS rotation

and body sway, Hexp the averaged experimental or simulated
sensitivity function, Hest the estimated sensitivity function based
on the estimated model parameters (p) and N the number of
frequencies.

The quality of the model fit was represented by the Variance
Accounted For (VAF) (Equation 6) identifying how well the
model describes the observed time series averaged across data
blocks and participants. The VAF is given in percentage; 100%
indicates that the model accounts fully for the experimental data.
A lowerVAF indicates deviations between themodel and the time
series averaged across data blocks and participants.

VAF = 1−

T
∑

t=0.01

∣

∣BSexp,t − BSest,t
∣

∣

2

T
∑

t=0.01

∣

∣BSest,t
∣

∣

2

∗ 100% (6)

where BSexp,t represents the body sway measured in the
experiment and BSest,t represents the body sway obtained from
simulations with the estimated model parameters.

The Standard Error of the Mean (SEM) of each parameter
represents the sensitivity of the error (ε, Equation 4) to changes in

Frontiers in Computational Neuroscience | www.frontiersin.org 5 March 2018 | Volume 12 | Article 13

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Pasma et al. Support for IC Control Model

parameters andwas calculated using the diagonal of the estimated
covariance matrix (P) obtained during the parameter estimation
procedure (Ljung, 1999; Equation 7).

∧

P = E(JTJ)
−1

(7)

in which J is the Jacobian (matrix of partial derivatives of each
parameter’s prediction error ε given in Equation 4) and E the
sum squared error. Since the parameters are estimated using the
averaged experimental FRFs, the SEM reflects the precision of
the estimated parameters and not the amount of variation of the
model parameters.

Computer Simulations
The IC model as described in section Independent Channel
Model and Figure 1 was implemented in Simulink, Matlab (The
Mathworks, Natick, MA, United States) with added pink noise
to mimic sensory and motor noise (van der Kooij and Peterka,
2011). The human body was modeled as a single inverted
pendulum and all parameters (Equation 3, Figure 1) were set
to the values found in the human experiments. The same
perturbation signal (section Perturbation Signal) and analyses
(section System Identification and Parameter Estimation) as used
in the human experiments were applied resulting in time series,
FRFs, and estimated parameters describing the balance behavior
simulated by the computer.

Robot Experiments
PostuRob II
To imitate human balance control in a real world situation, the
humanoid robot PostuRob II was used (Hettich et al., 2014).
The robot was constructed with human-like anthropometric
parameters (mass: 51 kg, CoM height above feet: 0.97m, moment
of inertia: 40 kgm2) consisting of trunk, leg, and feet segments
interconnected with two actuated ankle and hip joints (hip joints
were fixed during this study).

The sensory signals of the vestibular system, joint torque,
joint angular position, and velocity were measured using
mechatronic sensors. The technical analog for the vestibular
system are accelerometers and gyrometers, where the signals
are processed to provide body angular velocity and angle with
respect to the gravitational vertical, and linear acceleration
in the sagittal plane (Mergner et al., 2009). In the current
study only the angular orientation with respect to gravity was
used in the robot experiments as the IC model only uses this
signal.

Torque commands were sent to the robot to actuate artificial
pneumatic “muscles” at the ankle joints (Type MAS20, FESTO
AG&Co.KG, Esslingen, Germany). An inner torque control loop
ensured that the actual torque matches the torque commands.
A real time PC with Simulink (Real-Time Windows Target, The
Mathworks Inc., Natick, USA) was used as the control module,
running the compiled IC model.

Apparatus
A custom-built motion platform (Hexapod, Stuart principle;
Mergner et al., 2003) was used to apply SS rotations around

the ankle axis. The same perturbation signals as in the human
experiments were used (see section Perturbation Signal). The
body kinematics of the lower and upper body of the robot
were measured in anterior-posterior direction using an optical
motion capture system with two active markers attached to
the robot’s hip and shoulder, respectively (Optotrak 3020;
Waterloo, Canada). The body kinematics together with the actual
angle of rotation were measured using custom made software
written in LabView (National Instruments, Austin, USA) with
a sample frequency of 100Hz and were stored for further
analysis.

Procedure
The same procedure was performed with the PostuRob II as
in the human experiments; the experiments consisted of four
2-min long trials with SS rotations and different perturbation
amplitudes. Before each trial the parameters estimated from the
human experimental data for each condition were implemented
in the robot. This step was necessary, as the IC model
requires a different set of model parameters for each condition.
The neural controller parameters were corrected to account
for the difference in mass and CoM height between human
participants and the robot. Note that the robot had no visual
sensor. Instead, the artificial vestibular sensor was also used
for the robot experiments to mimic eyes open conditions,
where only the model parameters were adjusted according
to the changes identified in the human participants. Data
were analyzed according to the procedures described in
sections Preprocessing and System Identification and Parameter
Estimation.

RESULTS

Time Series
Figure 4 shows the time series of the averaged body sway
for the human experiments, computer simulations, and robot
experiments for each condition. Sway responses of computer
simulations and robot experiments followed the general pattern
of the human sway responses. The VAFs between the human
experiments and the computer simulations (“VAFS”) were in the
range of 94.1–98.7% for all conditions and in the range of 62.9–
79.0% for the robot experiments (“VAFR”; Table 1). For both
the computer simulations and the robot experiments, the VAF
tended to increase with increasing perturbation amplitude and
was higher in eyes closed, as compared to eyes open conditions.
Computer simulations and robot experiments were robust with
respect to the noise and the inaccuracies, and control stability was
maintained throughout all conditions.

Frequency Response Functions
Figure 5 shows the FRFs with the corresponding coherence
for each condition of the human experiments, together with
those obtained from the computer simulations and the robot
experiments. In general, the pattern of the FRFs and the
changes across conditions were similar in humans, computer
simulations, and robot experiments. Simulations and the robot
experiments showed some differences in the magnitude as
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FIGURE 4 | Time series of support surface rotation and body sway for the four conditions investigated in the human experiments, computer simulations, and robot

experiments. The four conditions refer to the two amplitudes (0.5 and 1 degrees peak-to-peak perturbation amplitude) and the eyes open (EO; left) and eyes closed

(EC; right) condition. The data are shown for the human experiments, averaged across participants (solid black lines) presented by the mean value with standard

deviation (shaded), the computer simulations (dash-dotted gray lines), and the robot experiments (dotted gray lines).

TABLE 1 | Differences between human experiments and computer simulations or robot experiments per experimental condition given for the time series and estimated

parameters.

Computer simulation vs. human experiment Robot experiment vs. human experiment

0.5 1 0.5 1 0.5 1 0.5 1

EO EO EC EC EO EO EC EC

Time series

Variance Accounted For (VAF, %) 94.2 97.2 94.1 98.7 63.2 62.9 69.2 79.0

Estimated parameters

Relative mean difference (%) 16.9 14.6 13.3 10.7 27.3 26.3 19.8 13.6

Data are presented for the four conditions with perturbation amplitude of 0.5 and 1 degrees peak-to-peak and eyes open (EO) versus eyes closed (EC).

compared to humans with the largest difference between robot
and human experiments at about 0.7Hz. The coherence was
considerably larger in simulations and the robot as compared
to humans, indicating differences in the noise properties. The
percentage power of the body sway on the even harmonics
varied between 1.8 and 7.4% of total body sway power in
the human experiments and therefore did not show strong
nonlinearities.

Estimated Parameters
The quality of the model fits was represented in the time
domain by the VAF. For the human experimental data the
VAF varied between 98.0 and 99.1%, for the simulated data
between 91.9 and 99.0% and for the robot experiments
between 93.4 and 98.3%, indicating only small deviations

between the measured (or simulated) data and the fitted
model.

Figure 6 shows the estimated parameters with the
corresponding SEM of the human experiments, the computer
simulations and the robot experiments. The estimated SEM
values indicating the sensitivity of the fitting error to changes in
the given parameter were low for most parameters. Exceptional
large SEM values stand out in the simulations for the reflexive
stiffness (only eyes closed 0.5 degrees) and the force feedback
time constants, and in the robot experiments for the time delays,
the proprioceptive weight, and the force feedback gain values
obtained for the small perturbation amplitudes (0.5 degrees).

The mean relative differences between the parameters is
presented in Table 1. The differences between the parameters
of the computer simulations and the parameters of the human
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FIGURE 5 | Frequency Response Functions representing the sensitivity functions of the support surface rotation to body sway. The four conditions refer to the two

amplitudes (0.5 and 1 degrees peak-to-peak perturbation amplitude) and the eyes open (EO) and eyes closed (EC) condition. Shown are the magnitude, phase and

coherence for the human experiments (averaged across participants, solid black lines) presented by mean values with standard deviations (shaded) and

correspondingly for computer simulations (dash-dotted gray lines) and robot experiments (dotted gray lines).

experiments were in the range of 10.7–16.9%. The differences
between the parameters of the robot experiments and the
human experiments were in the range of 13.6–27.3%. Again, the
differences decrease with increasing perturbation amplitude and
with closing the eyes.

Overall, the estimated parameters of the human experiments,
the computer simulations, and robot experiments are comparable
for all conditions. Clear differences were found in the
force feedback time constant and gain, which also show a
large SEM. Furthermore, the reflexive stiffness, and reflexive
damping showed a larger difference between the human
experiments and the robot experiments compared to the other
parameters.

DISCUSSION

In this study we validated the IC model, a commonly used
descriptive model in the frequency domain, in the time domain
using computer simulations with added noise and in the real
world using robot experiments. The results show that both the
computer simulations and robot experiments can reproduce
human balance behavior, where computer simulations described
the human sway responses better compared to the robot. The
model simulations showed that the IC model is stable in the time
domain with added noise, which adds an important aspect to the
descriptive nature of this frequency domain model. Furthermore,
the robot, controlled by the IC model, maintained the desired
upright position, which showed that the IC model is robust
enough to deal with the real-world properties of the robot (i.e.,
human-like anthropometrics, noisy and inaccurate sensors, and
mechanical dead zones).

Experimental Balance Behavior
The experimental balance behavior was estimated using a linear
approach. The low percentage power of the body sway of the
healthy participants at even harmonic frequencies shows that no
considerable nonlinearities that are effective across frequencies
were found within the steady state of one condition. The absence
of such nonlinearities allowed the use of a linear approach by only
analyzing the excited frequencies (i.e., odd harmonics).

A linear model was fitted for each condition of the
experimental data to describe the balance behavior. The high
VAF of the model fits indicate that the model explains the
data well. The estimated parameters obtained from human
experiments are comparable with previous studies and show
sensory reweighting, i.e., a change in the use of sensory
information (e.g., decrease in proprioceptive weight) with
changing perturbation amplitude and sensory condition (i.e.,
with increasing perturbation amplitude and opening the eyes;
Peterka, 2002; Cenciarini and Peterka, 2006; Pasma et al., 2015).
Also an increase in reflexive stiffness was found with increasing
perturbation amplitude, which is in agreement with previous
studies (Peterka, 2002).

Replication of Human Balance Behavior
With Computer Simulations
The results revealed small differences between the time series of
the human experiments and those of the computer simulations.
Small differences between time series, FRFs, and estimated
parameters were expected, as pink noise was implemented in
the computer simulations. Furthermore, we observed that the
IC model described the human responses in the high frequency
range not as accurately as in the low and mid frequency
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FIGURE 6 | Estimated parameters of the Independent Channel model of each condition for the human experiments, computer simulations and robot experiments.

The estimated values are shown together with the Standard Error of the Mean (SEM) representing the reliability of the estimates obtained from fitting. Results of the

four tested conditions [0.5 and 1 degrees peak-to-peak perturbation amplitude with eyes open (EO) and eyes closed (EC)] are shown. The reflexive stiffness and

damping were normalized to the gravitational stiffness (i.e., Center of Mass height multiplied by mass and the gravitational constant g). §SEM values > 190 s; ¶SEM

values > 5.0 × 10−4 rad/Nm.

ranges. This can be explained by the used prediction error
function, which gives more weight to the frequencies with a high
coherence.

These results provide evidence that the IC model, a frequency
domain model, is able and therefore valid to be used to control
a system in the time domain. The stable computer simulations
showed that the frequency domain model does not represent
an unstable subsystem and is able to tolerate physiologically
plausible noise without loss of balance.

Also, the estimated parameters of the human experiments
and the computer simulations are comparable. An exception is
the force feedback time constant, which mainly affects balance
behavior at low frequencies. The large SEM value indicates that
the estimate is less reliable. Due to the length of the perturbation
signal (i.e., 20 s), the perturbation contained little information in
the low frequency range, resulting in the observed low reliability
in the estimates. Notably, however, this parameter had only small
influences on the time series and FRFs.

Replication of Human Balance Behavior
With Robot Experiments
The main purpose of the study was to show the functionality of
the IC model in real world situations using robot experiments.
Similar approaches have been used to test other balance control
concepts, like the Disturbance Estimation and Compensation
concept or the Eigen movement concept (Hettich et al., 2014;
Alexandrov et al., 2017). Here, the IC model was able to control
the robot in the time domain when adjusting the estimated neural
controller parameters (i.e., the reflexive stiffness and damping) to
the mass and weight of the robot. The robot’s control was stable
across conditions and in the presence of manually applied pushes
(results not shown). In response to the pushes, the robot showed
a compliant behavior (relatively small resistance to the push),
which is related to the low loop gain used in the IC model and
an important characteristic of healthy human balancing.

The differences between the robot experiments and the human
experiments in the time series, the FRFs, and the estimated
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parameters were larger than those between computer simulations
and human experiments. One likely reason is that the mechanical
components of the robot introduce additional inaccuracies due
to dead zones, friction, etc., which remained unconsidered in the
robot’s control model. The ability of the IC model to stabilize the
robot despite these unconsidered effects suggests a considerable
robustness of the control mechanism. This robustness is also
a major aspect in human balance control, which lends further
support to the evidence that human balance control can be
explained by such a simple feedback mechanism as described by
the IC model.

A difference between the robot experiments and the human
experiments concerned a peak around 0.7Hz in the magnitude
of the FRFs. The peak decreased with increasing perturbation
amplitude and increasing torque level. Manual changes in the
model parameters and additional experiments (not shown in the
results) suggest that this peak might be due to the activation
dynamics of the robot’s actuators in terms of a resonance peak.
As the peak decreased with increasing perturbation amplitude,
this suggests a nonlinear behavior of the robot’s actuation.

The peak around 0.7Hz also may explain the higher reflexive
stiffness and lower reflexive damping estimates for the robot
experiment data as compared to the human experiment data.
Furthermore, a clear difference was found for the force feedback
gain. As already mentioned above, the force feedback estimates
showed a high SEM value and primarily affects the low frequency
range, where the differences between the FRFs and between the
estimations of the force feedback parameters were largest.

Decrease in Differences With Increasing
Perturbation Amplitude
The results show that, overall, the differences between the human
experiments and the computer simulations on the one hand
and the human experiments and the robot experiments on the
other hand decreased with increasing perturbation amplitude,
as shown by the VAFs and the relative mean difference of the
parameters shown in Table 1. In the computer simulations, these
differences can be attributed mainly to the noise injected into the
model. The amplitude of the noise was kept constant across the
conditions. Thismeans that with a higher perturbation amplitude
the noise had less influence on the time series (resulting in a
better signal to noise ratio) and therefore had less influence on
the FRFs and the estimated parameters. This may explain why the
differences between the human experiments and the computer
simulations became less with increasing perturbation amplitude
and why the SEM of the estimated parameters became smaller.

The argument could also hold for the robot experiments if
one assumes that with increasing perturbation amplitude, the
effects of the sensory and motor noise became relatively smaller,
and similarly also the effects of the activation dynamics and
mechanical inaccuracies. The reduced difference with increasing
perturbation amplitude and with closing the eyes suggests that
the robot controlled by the IC model is able to reproduce human
balance behavior.

Limitations
The IC model is a simplification of the human balance control,
in which the human body is modeled as an inverted pendulum

pivoting around the ankle joint axis and the equations of motion
are linearized. The model can be used to describe balance
behavior in the frequency domain at a specific operating point as
long as the balance conditions are not changed and the deviations
from this point are small. Therefore, the model can only be used
during steady state conditions, e.g., within one amplitude, which
might also be possible with other models.

In case of larger perturbations, which result in larger
deviations and also in rotation around the hip joints in addition
to the rotation around the ankle joints, the IC model would
miss essential details as suggested by studies which used balance
control models that incorporate also the hip joints, modeling the
human body as a double inverted pendulum (Qu and Nussbaum,
2012; Boonstra et al., 2013; Hettich et al., 2014; Engelhart et al.,
2015; Hwang et al., 2016). These models are able to identify
both the control of the upper and lower body separately and the
intersegmental coupling.

The somewhat lower coherence of the human experimental
data likely originates from noise and variability present in the
measured time series given the low amount of nonlinearities in
the system. The coherence is plausible since the sway amplitude
evoked by the small perturbation was comparable to the sway
amplitude not evoked by the perturbation (i.e., spontaneous
sway in quiet stance). The coherence values are also comparable
to other studies (Pasma et al., 2012, 2015; Boonstra et al.,
2013). Despite the somewhat lower coherence in the human
experimental data, the sensitivity function described the linear
balance behavior in the humans rather well and can be explained
well by the IC model, as shown by a high variance accounted for.

Intrinsic dynamics of the passive tissue and tendon structures
were neglected in the formulation of the IC model. This
simplification was implemented based on earlier studies
suggesting that the intrinsic dynamics contribute only about 10%
to the overall torque generated by the active muscle contractions
(Peterka, 2002; Maurer et al., 2005; Cenciarini and Peterka, 2006;
Assländer et al., 2015; Vlutters et al., 2015; Wiesmeier et al.,
2015). Furthermore, previous studies showed that it is difficult to
experimentally determine the intrinsic dynamics during balance
control (Peterka, 2002; Pasma et al., 2015; Engelhart et al.,
2016). As our model was able to explain the obtained sensitivity
functions well without the intrinsic dynamics, we decided to
dismiss them here.

CONCLUSIONS

This study showed that the IC model, a descriptive linear model
in the frequency domain, is able to imitate human balance
behavior in both the time and frequency domain, this both in
computer simulations and robot experiments. Therefore, the IC
model represents a good descriptor of human balance control.
The capability to tolerate noise and keep the robot in an upright
position, while being externally perturbed, indicates that the
IC model is robust in the time domain and in a real world
situation.

The IC model may help in the future to obtain further
insights into human balance control and to develop better
and more human-like balance control mechanisms for robotic
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assistive devices such as exoskeletons. Furthermore, the robot
implementation is useful for educational purposes, as it opens
the possibility to experience the functionality of the IC model
in a direct interaction with the human-like behaving robot.
It remains to be shown to what extent the IC model can
help to detect and classify changes underlying impaired balance
control.
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