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Adaptation refers to the general phenomenon that the neural system dynamically adjusts

its response property according to the statistics of external inputs. In response to an

invariant stimulation, neuronal firing rates first increase dramatically and then decrease

gradually to a low level close to the background activity. This prompts a question:

during the adaptation, how does the neural system encode the repeated stimulation

with attenuated firing rates? It has been suggested that the neural system may employ

a dynamical encoding strategy during the adaptation, the information of stimulus is

mainly encoded by the strong independent spiking of neurons at the early stage of the

adaptation; while the weak but synchronized activity of neurons encodes the stimulus

information at the later stage of the adaptation. The previous study demonstrated that

short-term facilitation (STF) of electrical synapses, which increases the synchronization

between neurons, can provide amechanism to realize dynamical encoding. In the present

study, we further explore whether short-term plasticity (STP) of chemical synapses,

an interaction form more common than electrical synapse in the cortex, can support

dynamical encoding. We build a large-size network with chemical synapses between

neurons. Notably, facilitation of chemical synapses only enhances pair-wise correlations

between neuronsmildly, but its effect on increasing synchronization of the network can be

significant, and hence it can serve as a mechanism to convey the stimulus information.

To read-out the stimulus information, we consider that a downstream neuron receives

balanced excitatory and inhibitory inputs from the network, so that the downstream

neuron only responds to synchronized firings of the network. Therefore, the response of

the downstream neuron indicates the presence of the repeated stimulation. Overall, our

study demonstrates that STP of chemical synapse can serve as a mechanism to realize

dynamical neural encoding. We believe that our study shed lights on the mechanism

underlying the efficient neural information processing via adaptation.
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1. INTRODUCTION

Adaptation is a general phenomenon that happens when the
neural system receives an invariant stimulation and decreases its
response. During adaptation, the neural system can dynamically
adjust its response property according to the statistics of
external inputs (Kohn, 2007; Wark et al., 2007). Previous studies
suggest that adaptation underlies how the neural system process
information efficiently using its computational resource (such
as spikes) (Gutnisky and Dragoi, 2008). During adaptation, the
firing rates of neurons first increase dramatically at the onset
of the stimulation and then decrease gradually to a low level
that is close to the background activity of neurons. Since the
repeated stimulation conveys little knowledge, it would seem
that it is not necessary for the neural system to encode repeated
information. However, our daily experiences indicate this is not
true: we can still sense the stimulus in many scenarios, even when
the neuronal responses have attenuated. For example, we can
view a static image or hear a lasting pure-tone long after our
sensory system has adapted (deCharms and Merzenich, 1996).
Thus, it prompts a question: during adaptation, how can the
neural system sense the existing stimulus with attenuated firing
rates?

There may exist different strategies for the neural system to
encode sensory inputs, and two candidate strategies are rate
coding and correlation coding. As illustrated in Figure 1, in rate
coding, individual neurons fire strongly and independently to
convey the stimulus information to the downstream neuron;
whereas, in correlation coding, a group of neurons fire weakly but
in a synchronized manner to convey the stimulus information.
Both strategies encode the stimulus information, but correlation
coding is economically more efficient (consuming less spikes).
In the previous study, Xiao et al. proposed that the generic
phenomenon of firing rate attenuation in neural adaptation may
underlie a dynamical information encoding strategy, i.e., a shift
from rate to correlation codes over time (Xiao et al., 2013).
Their study was based on the data of bullfrogs’ retina neurons
(dim detectors) in response to static stimuli. By quantifying
the amount of stimulus information encoded in either neuronal
firing rates or neuronal pair-wise correlations, they observed that:
at the early stage of the adaptation, the stimulus information
was mainly encoded in the neuronal firing rates; whereas at
the late stage of the adaptation, the stimulus information was
mainly encoded in the neuronal correlations. They built a
computational model to elucidate the underlying mechanism
and suggested that short-term facilitation (STF) of electrical
synapses (gap-junctions) is the substrate of dynamical encoding,
that is, STF increases neuronal connections in a stimulus-specific
manner during the adaptation, which consequently increase
the correlations between neurons in spite of their firing rates
attenuating (Xiao et al., 2013, 2014). We believe that the idea
of dynamical encoding is generally applicable in different forms
of neural adaptation in the brain. The previous modeling study
only considered electrical synapses between retinal ganglion cells.
However, the more common connections between neurons in
the sensory cortex are chemical synapses (Connors and Long,
2004). To validate the generality of dynamical encoding, it is

necessary to extend the previous work to the case that neurons
are connected by chemical synapses.

In this study, we explore the potential role of chemical
synapses in implementing dynamical encoding in the neural
system. We consider a large-size network, in which neurons are
connected by chemical synapses and their efficacy are subject
to short-term plasticity (STP). STP can be decomposed into
two components: short-term facilitation (STF) and short-term
depression (STD), and their relative contributions are varied in
different brain regions (Markram et al., 1998; Mongillo et al.,
2008), which, in mathematical modeling, can be controlled
by choosing different parameters. Here, since we consider
information processing in the sensory cortex, we set STP to have
a large STD time constant for STD and a small STF utilization
increment, consistent with the experimental data (Thomson
et al., 2002; Wang et al., 2006). A big difference between
electrical and chemical synapses is that: the former is analogical
to an constant resister between neurons, whose facilitation can
increase the neuronal correlation dramatically; whereas, the latter
mediates neuronal interaction via spiking and a single spike only
modifies the membrane potential of the post-synaptic neuron
mildly, therefore facilitation of a chemical synapse only increases
the neuronal correlation slightly. However, when a large-size
neural network is considered, weak changes on individual
synapses can have a significant impact on the synchronization
of the network (Schneidman et al., 2006), which can serve as
a substrate to convey the stimulus information. Overall, our
study demonstrates that STP of chemical synapses can serve as
a substrate to realize dynamical neural encoding.

2. MATERIALS AND METHODS

We build up a model to illustrate our ideas of dynamical neural
encoding. The model is composed of two parts (Figure 2):
a sensory network which simulates the adaptive responses
of sensory neurons and STP of neuronal synapses, and a
downstream neuron which reads out information of stimulus.
An excitatory neuron group(E) and an inhibitory neuron group
(I) compose the sensory network. The details of the model are
introduced below.

2.1. The Dynamics of Single Neurons
For simplicity, we consider that adaptation is caused by the
internal dynamics of single neurons. Other mechanisms may also
lead to adaptation, such as STD in the feedforward synapses to a
neuron (Abbott et al., 1997; Chung et al., 2002), or the interaction
between excitation and inhibition neurons (Middleton et al.,
2012), but they do not change our main results and hence are
not included in the present study. According to the experimental
data, a number of cellular mechanisms contribute to the
attenuation of neural responses, and they are roughly divided
into two classes (Benda and Herz, 2003; Brette and Gerstner,
2005): the spike-triggered mechanism, e.g., the calcium-activated
potassium current, and the subthreshold voltage-dependent
mechanism, e.g., the voltage-gated potassium current. Without
loss of generality, we model these two kinds of adaptation in the
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FIGURE 1 | Illustration of the rate and correlation codes. (Left panel) Rate coding. Strong and independent firings of individual neurons are sufficient to elicit the

downstream read-out neuron. (Right panel) Correlation coding. Weak but synchronized firings of neurons are also sufficient to elicit the read-out neuron.

FIGURE 2 | The model structure. The model consists of a sensory network

and a downstream read-out neuron. The sensory network is composed of an

excitatory neuron group (E) and an inhibitory neuron group (I). The excitatory

neurons receive the external input. The synapses between excitatory neurons

in the sensory network are subject to STP.

dynamics of excitatory neurons as follows: The dynamics of an
excitatory neuron is given by,

τm
dVi

dt
= −(Vi − EL)+ Rm

[

Isyn,i(t)− Iadp,i(t)
]

, (1)

where Vi is the membrane potential of neuron i, τm the
membrane time constant, EL the leaky reverse potential, Rm the
membrane resistance, Isyn,i the synaptic currents received by the
neuron, and Iadp,i the adaptive currents generated by the internal
mechanism of the neuron. A spike of neuron i is generated when
Vi reaches a threshold Vth, and membrane potential is reset to EL
afterwards.

The synaptic current Isyn,i(t) consists of external and recurrent
parts. The recurrent part Irec,i(t) denotes currents from other
neurons in the sensory network. The external part Iext,i(t) denotes
the external stimulus described as a continuous current with a
Gaussian white noise.

They are given by,

Isyn,i(t) = Iext,i(t)+ Irec,i(t), (2)

Iext,i(t) = µext + σextηi(t), (3)

where ηi(t) satisfies 〈ηi(t)〉 = 0, 〈ηi(t)ηj(t′)〉 = δijδ(t − t′), and
µext and σ 2

ext are the mean and the variance of the external input,
respectively. Irec,i is the sum of postsynaptic currents from all
other neurons in the network received by neuron i. The dynamic
of Irec,i is described below.

The adaptation current Iadp,i is given by,

τa
d

dt
Iadp,i = −Iadp,i + Ap(Vi − EL)+ As

∑

k

δ(t − tki ), (4)

where τa is the time constant of adaptation and tki the moment
of neuron i emitting the kth spike. The parameter Ap describes
the strength of the adaptation under subthreshold voltage and the
parameterAs controls the strength of adaptation due to the spike.

For simplicity, we do not include adaptation currents in
inhibitory neurons. The dynamics of an inhibitory neuron is
described by Equation (1) except that Iadp,i = 0.

2.2. The Dynamics of Synapses
We only consider STP at synapses between excitatory neurons
and other synapses are set as unchanged. Denote ui to be the
release probability of neurotransmitters at each synapse of the
pre-synaptic neuron i, and xi the fraction of neurotransmitters
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available at each synapse. Their dynamics are given by,

τf
dui(t)

dt
= −ui(t)+ U

[

1− ui(t)
]

∑

k

δ(t − tki ), (5)

τd
dxi(t)

dt
= 1− xi(t)− ui(t)xi(t)

∑

k

δ(t − tki ), (6)

where τf is the time constant of STF, U controls the increment of
ui upon neural firing, and τd is the time constant of STD.

For an excitatory neuron, it receives recurrent inputs from
other excitatory and inhibitory neurons, which are written as,

τs
dIErec,i(t)

dt
= −IErec,i(t)+ JEE

∑

j∈E
wjiuj(t)xj(t)

∑

k

δ(t − tkj )

+ JIE
∑

j∈I
wji

∑

k

δ(t − tkj ),

(7)

where JEE is the maximum synaptic efficiency between two
excitatory neurons if they are connected, and the product
JEEu(t)x(t) denotes the instant synaptic efficacy at time t. JIE is
the synaptic efficiency from an inhibitory neuron to an excitatory
one if there is a connection.We use a binary variablewji to denote
the connectivity between two neurons, with wji = 1 indicating a
connection from neuron j to i and wji = 0 otherwise.

For an inhibitory neuron, it receives recurrent inputs from
other excitatory neurons, which is written as,

τs
dIIrec,i(t)

dt
= −IIrec,i(t)+ JEI

∑

j∈E
wji

∑

k

δ(t − tkj ), (8)

where JEI is the synapse efficiency from an excitatory neuron to
an inhibitory one if there is a connection.

2.3. The Sensory Network
The sensory network is composed of NE excitatory and NI

inhibitory neurons, with NE = 4NI . Neurons are randomly
and sparsely connected, with a probability p ≪ 1. All neurons
receive background inputs, but only excitatory neurons receive
the stimulus information directly. Only the synapses between
excitatory neurons are subject to STP. Both excitatory and
inhibitory neurons are connected to a downstream neuron,
which reads out the stimulus information.

2.4. The Read-Out Neuron
We consider that a downstream neuron read-out the stimulus
information encoded in the sensory network. All neurons in the
sensory network are connected to the downstream neuron. The
dynamic of the downstream neuron is

τo
dVO

dt
= −(VO − EL)+ Rm

[

JEOIE(t)− JIOII(t)
]

, (9)

where VO is the membrane potential of the read-out neuron,
τo the time constant, and Rm the membrane resistance. When
VO reaches Vth, the read-out neuron fires. IE(t) and II(t) are the

summations of spikes from the excitatory and inhibitory groups,
respectively. JEO and JIO represents the synaptic efficiency from
the excitatory and inhibitory group to the read-out neuron. We
choose JEO and JIO properly, such that the mean of the total input
from the sensory network to the read-out neuron approximates
to be zero.

2.5. The Simulation Protocol
In a single trial of simulation, we run the network dynamics for a
fixed amount of time T = 5, 000ms. The onset of the stimulus
is at t = 0ms. From t = −2, 500ms to 0ms, all neurons in
the sensory network receive only background inputs, and the
sensory network evolves into a stochastic stationary state, such
that the response of the network to the stimulus is independent
of its initial state. From t = 0ms to 1, 500ms, the constant
stimulus is presented, and excitatory neurons in the sensory
network receive a strong feed-forward input. The stimulus is
terminated at t = 1, 500ms, and after that all sensory neurons
receive only background inputs. We run the simulation for 100
trials to analyze the performance of the network. The parameters
used are summarized in Table 1.

For comparison, we also shuffle synaptic currents to neurons.
In a trial, for each neuron i, we decompose the synaptic current
ci(t) to the neuron into many small bins (bin size 5 ms), and
randomly shuffle the order of bins. The newly obtained current
has the same mean value as ci(t), but the temporal structure of
ci(t) is destroyed.

2.6. Measurement of Correlation
In our model, STF facilitates neuronal synapses after the
onset of stimulation, which increases the pair-wise correlations
between neurons. The increment of neuronal correlation is rather
small, nevertheless, its effect on synchronized neural population
response can be significant (Bruno and Sakmann, 2006). The
previous study has shown that a simple dichotomized Gaussian
model can well describe how pair-wise correlations between
neuronal synaptic inputs affect the synchronization of a large-
size neural network (Amari et al., 2003). This model successfully
predicts the high-order interactions of neural activities in
the sensory cortexes (Yu et al., 2011). We therefore adopt
the dichotomized Gaussian model to measure the correlation
between neurons.

2.6.1. The Dichotomized Gaussian Model

Denote si to be the current received by neuron i, which is given
by

si = Isyn,i − Iadp,i. (10)

Since the network size is large and neurons are randomly and
sparsely connected with each other, we can approximately regard
that all neurons are statistically equivalent. Moreover, in the
periods of Pre-adp, Adp and Post-adp, the neural network is
approximately at stationary states. According to the central
limit theorem, the current si satisfies a Gaussian distribution
approximately, which is written as,

si = µs + σs(
√
1− αvi +

√
αǫ), (11)
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TABLE 1 | Parameters used in simulations.

Values

SINGLE-NEURON PARAMETERS

Vth,E - Spiking threshold of excitatory neurons −55 mV

Vth,I - Spiking threshold of inhibitory neurons −57 mV

EL - Resting potential −65 mV

τm - Membrane time constant 20 ms

τadp - Time constant of adaptation 250 ms

As - Strength of spike-trigger adaptation 1.0 µA

Ap - Strength of subthreshold adaptation 0.1 (k�)−1

τo - Membrane time constant of the read-out neuron 20 ms

Rm - m the membrane resistance 1.0 k�

SYNAPTIC PARAMETERS

JEE - Synaptic efficacy from E to E 6 µA

JEI - Synaptic efficacy from E to I 5 nA

JIE - Synaptic efficacy from I to E 4 nA

τs - Time constant of synaptic current 5 ms

U - Increment of STF 0.00525

τf - Time constant of STF 400 ms

τd - Time constant of STD 1,000 ms

Js - Synaptic efficacy from E to E in the static synapse model 0.129 µA

NETWORK PARAMETERS

T - Total simulation time of a single trial 5,000 ms

Tf - Time window to calculate the population firing rates 100 ms

tw - Time bin used to calculate firing rate distribution of the

excitatory neurons

5 ms

p - Probability of the connection 0.1

NE - Number of excitatory neurons 2,000

NI - Number of inhibitory neurons 500

µext -Mean of the stimulus 0.65 µA

µb - Mean of background input 0.45 µA

σext - Standard deviation of external input 1.2 µA

JEO - Synaptic efficiency from excitatory neurons to the read-out

neuron

1 µA

JIO - Synaptic efficiency from inhibitory neurons to the read-out

neuron

2 µA

where µs is the mean, σs the standard deviation of fluctuations,
and νi ∼ N(0, 1), ǫ ∼ N(0, 1) are Gaussian white noises of
zero mean and unit variance, The variables νi, for i = 1, . . . ,N,
are independent to each other, standing for input fluctuations to
individual neurons.

The noise ǫ is common to all neurons, inducing correlations
between neurons. It is straightforward to check that the
covariance cov(si, sj) = σ 2

s α. The previous study showed that
the above simplified noise model Equation (11) well captures
the high-order statistics of neural data (Amari et al., 2003; Yu
et al., 2011). Therefore, we use the quantity σ 2

s α to measure the
pair-wise correlation between neurons. The effect of STF is to
increase σ 2

s α, such that the sensory network has a higher chance
to generate large-size synchronized firing.

In the dichotomized Gaussian model, neuron firing is
simplified as a threshold operation, which is given by

xi =

{

0, si < h, silent,

1, si > h, firing,
(12)

where h is the predefined threshold.
The probability density function of neural population firing

rate, measured by the portion of neurons firing in an unit time is
calculated to be (Amari et al., 2003)

p(r) = Cexp[
(h− µs −

√
ασsF

−1(r))2

2σ 2
s (1− α)

−
(F−1(r))2

2
], (13)

where F(ǫ) = 1√
2πσs

∫ ∞
h−µs−σs

√
αǫ

σs
√
1−α

e
−ν2

2 dν, andC the normalization

factor.
In the simulation, we calculated (σs)i for each individual

neurons and take their mean as the estimate of σs. For each
neuron pair, we collected synaptic currents si, sj in the periods
of Pre-adp, Adp and Post-adp, and calculated the covariance
cov(si, sj) in these periods, respectively. Averaging over all neuron
pairs, we got the mean of pair-wise neural correlation in the
network, which gives rise to σ 2

s α.

3. RESULTS

3.1. The Adaptation Behavior
Before applying the stimulation, the sensory network received
stochastic background inputs and was at a stationary state of low
firing rates. The stimulation, which represents the presence of the
stimulus via a strong external input, was applied to all excitatory
neurons in the network at t = 0ms, and the stimulation was
terminated at t = 1, 500ms. As shown in Figure 3A, the sensory
network displayed the typical adaptive phenomenon: the firing
rates of neurons first increased dramatically at the onset of the
stimulation and then gradually attenuated to a level close to
the background activity (after around t = 300ms). The length
of adaptation, from the moment of firing rate increasing to
the moment of firing rate returning to the background level,
is mainly determined by the time constant of single neuron
dynamics and the amplitude of adaptation currents. Here, we
chose the parameters to let the adaptation length to be around
250ms, but generalization to other time scales is straightforward.
As a comparison, when the stimulation was only presented
transiently, the neuronal responses was also transient and did not
exhibit the adaptation behavior (Figure 3B).

For the convenience of description, we selected three periods
to analyze the response properties of the sensory network
(Figure 3), which are: (1) Pre-adp: from t = −900ms to
−100ms, 2) Adp: from t = 500ms to 1, 300ms, and (3) Post-
adp: from t = 1, 600ms to 2, 400ms. In the periods of Pre-adp
and Post-adp, there was no stimulation and the network activity
was at the background level. In the period of Adp, although
the stimulation was presented, neuronal firing rates had already
attenuated to the background level. There is little difference in
firing rate among three periods, but the neuronal correlations of
them are different as described below.

3.2. The STP Effect During the Adaptation
The synapses between excitatory neurons in the sensory network
were subject to STP. We set the time constant of STD to be
large and the utilization increment of STF to be small (see
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FIGURE 3 | (A) Neural adaptation to a constant input. Stimulation is set from 0 to 1, 500 ms. (Upper panel) spiking activities of 100 example excitatory (black dots)

and 25 inhibitory (green dots) example neurons. (Middle panel) the averaged firing rates of excitatory (black curve) and inhibitory (green) neuron groups. Colored boxes

indicate three time periods: Pre-adp, Adp and Post-adp. Lower panel: the time course of the stimulation. (B) Neural responses to a transient input. Stimulation is set

from 0 to 20 ms.

section Materials and Methods), which agree with the data
in the sensory cortexes (Thomson et al., 2002; Wang et al.,
2006).

According to the STP dynamics (Equation 6), the efficacy of a
synapse was given by ux, where u denoted the utilization factor
and x the fraction of available neurotransmitters. We used the
mean efficacy averaged over all synapses, denoted as 〈ux〉, to
measure the synaptic strength of the network. Figure 4 displays
how the synaptic strength varied over time during the adaptation.
In the period of Pre-adp, the synaptic strength of the network was
at a stationary value. Immediately after the stimulation onset, the
synaptic strength experiences an abrupt increase, which was due
to STF triggered by strong firings of neurons. As time went on,
the firing rates of neurons attenuated, and the STD effect became
dominating. Since STD was a slow process, in the period of Adp,
although the firing rates of neurons had attenuated, the synaptic
strength of the network was still well above the background level.
Finally, in the period of Post-adp, the synaptic strength of the
network returned to its value before the adaptation.

3.3. Enhanced Neural Correlation During
the Adaptation
During the adaptation, the enhanced synaptic efficacy
increased the interactions between neurons, resulting enlarged
correlations between neuronal responses. This increment in
neural correlation was rather small, however, its effect on
the synchronized firing of the neural population (i.e., a large
population of neurons firing together in a short time window)
can be significant (Bruno and Sakmann, 2006). It is difficult to

FIGURE 4 | Short-term plasticity of the synapses between excitatory neurons

in the sensory network. The synaptic strength of the network is measured by

the average value of all synapse strengths.

theoretically analyze the dynamics of the network with varying
synapse strengths. Here, we adopt a simplified dichotomized
Gaussian model to describe the STF effect on the synchrony
of the network (Amari et al., 2003). This model estimated the
neural population synchrony based on the correlation between
neuronal synaptic inputs, and the latter was affected by the
synaptical interactions between neurons (see section Materials
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and Methods). This model has been shown to fit well the
characteristics of neural responses in the real neural system (Yu
et al., 2011).

We simulated the sensory network for 100 trials, and
measured the averaged pair-wise correlation between neurons in
the network (given by σ 2

s α, see Equation 11 in section Materials
andMethods). Figure 5 shows the neural correlations in different
periods. We saw that the neural correlation in the Adp period
is larger than those in other periods (the difference is small but
statistically significant), consistent with the synaptical strength
differences in three periods.

To confirm that the enhanced neural correlation was really
associated with STP, we carried out following comparisons.
Firstly, to exclude the possibility that the increase of neural
correlation was due to the variations of neuronal firing rates
(which change the means of synaptic currents to neurons), we
shuffled the synaptic currents to all neurons, which destroyed the
temporal structures of the synaptic currents but kept their means
unchanged (section Materials and Methods). We observed that
in such a case, the increase of neural correlation in Adp vanished
(Figure 5). Secondly, we constructed a network of static synapses.
This model had the same parameters as the original one except
no STP, and the synapse strength was set to be a constant, so that
the neural correlations in the Pre-adp and Post-adp periods agree
with those in the original model. As shown in Figure 5, without
STP, the neural correlation in Adp had no significant difference
with those in the other periods. Finally, we also calculated neural
correlations in the case when the stimulation was only presented
transiently (i.e., no adaptation, see Figure 3), and found no
increase in neural correlation in Adp compared to other periods
(Figure 5).

We also checked the model performances for different STP
parameters by choosing different combinations of τf and τd,
which are: τf = 400ms, τd = 400ms; τf = 1, 000ms, τd =
400ms; and τf = 50ms, τd = 400ms. The parameter U was also
adjusted accordingly to ensure neuronal firing rates attenuate
in the Adp period, and other parameters remained the same.
Overall, we observe that the neural correlation was enhanced in
the Adp period for a wide range of τf and only failed to increase
when τf is too small (Figure 6).

The neural correlation strength determines the probability
of synchronized firing of the network. We measured the
distributions of neural population firing rate in three periods
by counting the portion of excitatory neurons firing in a short
time bin (the bin size 5ms), and fitted these distributions by
the dichotomized Gaussian model (see section Materials and
Methods). We see that indeed the enhanced neural correlation
increased the probability of the network generating large-size
synchronized firing (Figure 7).

3.4. Reading-Out the Stimulus Information
In dynamical encoding, a constant stimulation triggers adaptive
responses of the stimulus-specific neurons, and during this
process, although the firing rates of neurons attenuate, the
correlations between neurons are enhanced, which increased the
chance of the network to generate large-size synchronized firing.
Thus, the synchrony of the network during the adaptation was

associated with the stimulus information. Here, we show how the
neural system reads out the stimulus information.

We considered a downstream neuron receives inputs from
all neurons in sensory network and encodes the stimulus
information (section Materials and Methods). The dynamic of
the read-out neuron was given in Equation (9), and we chose
the connection weights JEO, the synaptic efficacy from the
excitatory neuron group to the downstream neuron, and JIO,
the synaptic efficacy from the inhibitory neuron group to the
downstream neuron, properly, such that the downstream neuron
receives balanced synaptic inputs. The balanced condition
means that the mean of the excitatory and inhibitory inputs is
approximately zero, a condition which had been observed in
the experiment (Shu et al., 2003). It has been suggested that the
balanced condition plays important roles in neural information
processing, such as to generate irregular neural spikes (Van
Vreeswijk and Sompolinsky, 1996), to detect synchrony of
neuronal responses (Shadlen and Newsome, 1998), and to
track the change of external inputs rapidly (Van Vreeswijk and
Sompolinsky, 1996). These properties come from that in the
balanced condition, the membrane potential of a neuron was
always close to the firing threshold, so that the neuron was
sensitive to fluctuations of the input. In our model, this implies
that the downstream neuron is only sensitive to the large input
fluctuations triggered by synchronized firings of the sensory
network, and the latter is associated with the presence of the
stimulus.

As shown in Figure 8, synchrony of the sensory network
induced large fluctuations in the input to the read-out neuron,
triggering the read-out neuron to fire. In Adp, since the chance
of the sensory network to have large-size synchronized firing
was much higher than in other periods, the firing rates of the
read-out neuron were much larger than that in other periods
(Figure 8). This ensures that the fire rate of the read-out neuron
encodes the information about the presence of the stimulus
reliably.

Please note that in dynamical coding, the neural system does
not need separate schemes to read-out the stimulus information.
For the rate code, pre-synaptic spikes arrive independently
but at high frequency, so that the accumulated post-synaptic
current can activate the read-out neuron. For the correlation
code, pre-synaptic spikes arrive at low frequency but in a
coherent manner, and the summed post-synaptic current can
equally activate the read-out neuron. Thus, both codes convey
the stimulus information to the same read-out neuron but in
different manners as illustrated in Figure 1.

4. CONCLUSIONS AND DISCUSSIONS

This study is motivated by the observation that in response
to a sustained invariant stimulation, although the firing rates
of individual neurons are attenuated, the neural system can
still sense the presence of the stimulus. We show that this
can be achieved through a dynamical encoding strategy using
a computational model. At first, the stimulus information is
encoded by the strong and independent firings of neurons at
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FIGURE 5 | Neural correlations in different periods in different models. The neural correlation is measured by the covariance of synaptic inputs to a neuron pair

averaged over the population (see section Materials and Methods). The shuffled case refers to that the synaptic currents to neurons are randomly shuffled, which

destroys the temporal structures of synaptic currents but keeps their means unchanged. Only in the model with dynamic synapses, neural correlation in the period

Adp is significantly larger than those in other periods. **Indicates the significant difference between neural correlations, p < 0.05.

FIGURE 6 | Neural correlations in different periods with varied STP parameters. Parameters used in three models (from left to right) are:

τd = 400ms, τf = 1, 000ms,U = 0.0018; τd = 400ms, τf = 400ms,U = 0.00425; τf = 400ms, τf = 50ms,U = 0.02. **Indicates the significant difference between

neural correlations, p < 0.05.

the early stage of adaptation; while as the firing rates attenuated
due to adaptation, the information is shifted into the weak but
synchronized firings of neurons. We demonstrate that STP can
accomplish this shift of information encoder. In detail, the strong
firings at the early stage of adaptation can facilitate the synapses
between neurons via STF; thus the interactions between neurons
are enhanced, causing the increase of neural correlations. This

increase of neural correlations is stimulus-specific and lasts
in the slow time constant of STD, and hence it can be seen
as the substrate to encode the stimulus information during
the adaptation, regardless of the attenuation of firing rates.
Facilitated synapses can retain stimulus information, this idea
has been proposed previously, for examples, it was proposed
that STF contributes to hold working memory without recruiting
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A B

C D

FIGURE 7 | Distributions of firing rate of excitatory neurons in different periods. (A) Histogram of population firing rate in Pre-adp period fitted by the dichotomized

Gaussian model. (B) Histogram of population firing rate in Adp period fitted by the dichotomized Gaussian model. (C) Histogram of population firing rate in Post-adp

period fitted by the dichotomized Gaussian model. (D) Comparing population firing rates in three periods. C(r) is the cumulative distribution. Dashed line indicates that

the network in Adp has a higher probability to generate large-size synchronized firing than in other two periods.

A B

C

FIGURE 8 | Activity of the read-out neuron. (A) Upper panel: membrane potential of the read-out neuron in an example trial. Dashed line is the firing threshold of the

read-out neuron. Lower panel: the balanced synaptic input to the read-out neuron in an example trial. (B) The spike counts of the read-out neuron in different period

averaged over 100 trials. (C) PSTH of the read-out neuron in three periods. **Indicates the significant difference between spike counts, p < 0.05.
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neuronal firing in the prefrontal cortex (Mongillo et al., 2008),
STF contributes to the priming effect (Gotts et al., 2012), and
STP contributes to detect weak stimuli (Mejias and Torres,
2011). Here, we propose that STF contributes to implement a
dynamical coding strategy in neural adaptation. Furthermore, we
investigate how correlation-based information can be read out
by a downstream neuron via large-size synchronized firing, and
showed that the balanced inputs are crucial to implement this
task efficiently.

The previous study found that adaptation of single neuron
dynamics alone (without including STP of synapses) can lead to
that the variability of neuronal responses in a balanced network
decreases during the adaptation, which partly compensates the
influence of firing rate attenuation on the reliability of neural
encoding (Farkhooi et al., 2013). Here, our study goes one
step further by considering the effect of STP, which increases
synaptical strengthes due to the strong transient responses of
neurons at the onset of stimulation, and subsequently enhances
neuronal correlations during the adaptation, leading to the
implementation of the dynamic encoding strategy. In such a
coding scheme, the adaptation of single neuron dynamics also
is not sufficient, as it does not increase neuronal correlations (as
confirmed by the simulation experiment on static synapses, see
Figure 5).

There has been a long standing debate on the role of
correlation in neural coding (Averbeck and Lee, 2004). A
few studies indicate that neural correlation conveys little
stimulus information (Ecker et al., 2010; Oizumi et al.,
2010; Meytlis et al., 2012); whereas, the others argue that
neural correlation is crucial in the stimulus information
processing. (Ishikane et al., 2005; Bruno and Sakmann, 2006;
Ince et al., 2010). In this study, we reconcile these two
different views. We propose a dynamical encoding strategy
and we think that both views capture the characteristics of
neural information encoding at the different time stages. An
advantage of the correlation code is that it is economically
efficient (using less spikes). One may concern that why the
neural system does not employ the correlation code in the

first place. An argument is that the correlation code is
slow: since neurons fire weakly, it takes long time for a
downstream neuron to read-out the stimulus information,
but in reality, animals need to respond quickly to a newly
appeared stimulus. Thus, it is likely that the brain has exploited
a compensational solution: the neural system detects the
appearance of a novel stimulus by using the fast firing-rate
code and retains the information of a sustained stimulus by
using the slow but economically more efficient correlation code.
The previous study based on retina data demonstrated that
enhanced electrical synapses between ganglion cells contribute
to encode stimulations of different luminance levels during
the adaptation (Xiao et al., 2013), but to validate the similar
computational role of chemical synapses, it will be much more
challenging. This is because the effect of facilitated chemical
synapses on varying neuronal correlation is rather small.
We hope that along with the development of neuroimaging
technique, it will become eventually feasible to measure neuronal
correlations over a large population of neurons in vivo

and validate our theoretical hypothesis on dynamical neural
encoding.
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