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A system consisting of interconnected networks, or a network of networks (NoN),

appears diversely in many real-world systems, including the brain. In this study, we

consider NoNs consisting of heterogeneous phase oscillators and investigate how the

topology of subnetworks affects the global synchrony of the network. The degree

of synchrony and the effect of subnetwork topology are evaluated based on the

Kuramoto order parameter and the minimum coupling strength necessary for the order

parameter to exceed a threshold value, respectively. In contrast to an isolated network in

which random connectivity is favorable for achieving synchrony, NoNs synchronize with

weaker interconnections when the degree distribution of subnetworks is heterogeneous,

suggesting the major role of the high-degree nodes. We also investigate a case in which

subnetworks with different average natural frequencies are coupled to show that direct

coupling of subnetworks with the largest variation is effective for synchronizing the whole

system. In real-world NoNs like the brain, the balance of synchrony and asynchrony is

critical for its function at various spatial resolutions. Our work provides novel insights into

the topological basis of coordinated dynamics in such networks.

Keywords: synchronization, complex networks, modular organization, phase oscillator, Kuramoto model,

synchrony alignment function

INTRODUCTION

Many biological, social, and technological systems comprise of interacting subsystems and can be
modeled as a network of networks (NoN) (Gao et al., 2012; Boccaletti et al., 2014; Kivelä et al., 2014).
A prominent example of this is the brain that constitutes ofmultiple “regions” (Zamora-López et al.,
2011; Bullmore and Sporns, 2012). Delving in one more spatial resolution, the neocortical region
of the mammalian brain can further be regarded as an assembly of a densely connected neuronal
module, called the minicolumn (Mountcastle, 1997).

In the brain, synchronized activity of neurons is essential for the development and computation.
Synchronization in NoNs and modular networks has been explored theoretically based several
models, including phase oscillators (Arenas et al., 2006, 2008; Barreto et al., 2008; Laing, 2009;
Zhao et al., 2010; Louzada et al., 2013), chaotic oscillators (Zhao et al., 2011; Aguirre et al., 2014;
Leyva et al., 2017), and various neuron models (Zhao et al., 2010; Batista et al., 2012; Prado et al.,
2014), especially from the viewpoint of competition of global and local synchronizations depending
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on the ratio or the strength of interactions within and between
the subnetworks. In a system of heterogeneous phase oscillators,
Arenas et al. (2006) studied the dynamical stability of a
locally synchronized state in hierarchically modular networks
and provided analytical support based on the master stability
function. Zhao et al. (2010) used a similar phase oscillator
system to investigate the effect of modular topology on
network dynamics, focusing on the relationship between the
degree of topological modularization and the complexity of
network dynamics. The case of globally coupled NoNs has
been analytically investigated in more detail, for instance,
using a self-consistent analysis (Barreto et al., 2008) or
the Ott-Antonsen ansatz (Ott and Antonsen, 2008; Laing,
2009).

The synchrony in complex networks is strongly affected by
the topology of the networks, such as a regular lattice, random,
small-world (SW), or scale-free (SF) structure, which lies as the
foundation of diverse dynamics observed in naturally occurring
complex networks, such as the central nervous system (Feldt
et al., 2011). For instance, the hippocampal network during
development follows a SF topology, and its hub nodes shapes
synchronous activity in the network (Bonifazi et al., 2009). The
developing cerebellum, in contrast, takes a regular connectivity,
and its activity pattern is characterized by traveling waves (Watt
et al., 2009). Theoretically, the effect of topology on synchrony
has been studied extensively for single networks (Arenas et al.,
2008; Rodrigues et al., 2016; Yamamoto et al., 2016). For example,
in a single network of heterogeneous phase oscillators, the degree
of phase synchrony increases as a regular lattice is rewired to
SW and random networks (Hong et al., 2002). The effects of SW
rewiring on networks has also been studied on integrate-and-
fire neurons, and Netoff et al. (2004) investigated different types
of synchronized activity depending on the rewiring probability
and its relation to epileptic seizures. For SF networks, Lee (2005)
used a system of phase oscillators and reported the dependence
of the critical coupling strength for synchronization on the
degree exponent. This leads us to hypothesize that the topology
in subnetworks of NoNs would strongly influence their global
dynamics.

In this study, we consider a simple NoN consisting of two
coupled subnetworks and examine the effect of the topology
of the subnetworks on the global synchrony. The topologies
we consider are: random; SW; SF; and “super-hub,” which is
characterized by the presence of a few hub nodes that are
fully connected to all other nodes. Each node is represented
as a Kuramoto phase oscillator, and the synchronization is
evaluated by calculating the Kuramoto order parameter, r. We
evaluate the networks in terms of the minimum coupling
strength necessary to achieve synchronized state, by analyzing
the minimum inter-node coupling strength necessary for r to
exceed a threshold value. In the current study, the threshold was
set to be r = 0.9. We show that in networks of heterogenous
phase oscillators, the optimal topology varies between a single
network and a NoN. Finally, we consider a NoN with three
subnetworks and evaluate how coupling schemes between
subnetworks of different mean frequencies affect the global
synchrony.

MATERIALS AND METHODS

Network Models
Each node in a network is modeled as a Kuramoto oscillator. The
state of node i (i = 1, ..., N) is described by its phase φi, and its
dynamics are calculated by the 4th-order Runge-Kutta method
with a time step of dt = 0.05 s. Here, the time derivative of the
phase, φ̇i, is calculated as:

φ̇i = ωi −
K

2k

∑

j∈3i

sin
(

φi − φj
)

, (1)

where ωi is the natural frequency, K is the coupling strength, k
is the average node degree, and 3i is the set of nodes directly
coupled to node i. ωi is selected from a Gaussian distribution
N (ω, σ 2

ω) with a mean ω of 4.5 and a standard deviation σω
of 0.15, and allocated randomly in the nodes, unless otherwise
noted. The coupling strength is normalized using the average
degree (Hong et al., 2002; Lee, 2005; Zhao et al., 2010), rather
than the degree of individual nodes, in order to maintain the
identity of high-degree nodes. Simulations are conducted for 250
and 500 s for the single network and NoN, respectively.

Each single network or a subnetwork of a NoN is composed of
N = 50 nodes in most analyses, while networks with N = 1,000
nodes are employed to discuss the generalizability of the findings.
In either case, the nodes are interconnected with undirected links
with an average degree of six (k = 6). K is sampled at intervals
of 0.05 and 0.1 for the single network and NoN, respectively. For
each K, 250 networks with different sets of the adjacency matrix
Aij, initial phase φi(0), and natural frequency ωi are sampled.

The network topologies that we consider are Erdös–Rényi
random networks, Watts–Strogatz SW networks, Barabási–
Albert SF networks, and a super-hub network. A random
network is constructed by connecting randomly selected pairs

of nodes until the necessary amount of connections (N×k
2 ) are

formed (Erdös and Rényi, 1960). A SW network is constructed
by rewiring a one-dimensional lattice with a rewiring probability
of 0.1 (Watts and Strogatz, 1998). A SF network is constructed
as previously reported (Barabási and Albert, 1999), starting with
seven fully-coupled nodes as an initial structure (21 connections)
and sequentially adding 43 nodes with three connections per
node under the preferential attachment rule, i.e., the probability
of adding a new connection to an existing node i (1 ≤ i ≤ N′),

5
(

ki
)

, is given by:5
(

ki
)

= ki/
∑N′

j=1 kj, where N’ is the number

of existing nodes, and ki the degree of i. A super-hub network
comprises three hub nodes that are interconnected and also fully
connected to other 47 nodes. Either zero or one connection is
assigned between a given pair of nodes, except in the super-
hub network, connections between hub nodes are set to three
in order to retain constant the total number of connections
in a network. Self-connections are not allowed in any of the
networks.

Analysis of Synchrony
The degree of synchrony in the networks is
evaluated using the order parameter, r (Hong
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et al., 2002; Arenas et al., 2008; Breakspear et al.,
2010):

r =

〈

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

eiφj

∣

∣

∣

∣

∣

∣

〉

, (2)

where |· · · | and 〈· · · 〉 denote the absolute values and time
averages, respectively. In single networks, the first 50 s
of the simulation are neglected, and the time average is
obtained for the remaining 200 s. In the case of NoNs,
the first 50 s after the coupling (250–300 s) are neglected,
and the time average is obtained for the remaining 200 s
(300–500 s). As discussed later, the time constants of
transient phases are mostly in the order of seconds after
which the order parameters of networks saturate. Hence
the “burn-in” period of 50 s is sufficient to equilibrate the
networks.

Analytically, the order parameter of a network is derived using
the synchrony alignment function (Skardal et al., 2014), and
is calculated using the natural frequency matrix and adjacency
matrix A= [Aij]:

J (ω̃, L) =
1

N

N
∑

j=2

λ−2
j

〈

νj, ω̃
〉2
, (3)

where ω̃ is the normalized matrix of the natural frequency;
L = [Lij] is the Laplacian matrix with Lij = δijki − Aij and

ki =
∑N

j=1 Aij; λj is the j
th eigenvalue of L, ordered ascendingly;

νj is the normalized eigenvector associated with λj; and 〈·, ·〉

denotes the inner product. When a network is synchronizable,
J (ω̃, L) is approximately zero, and the analytical approximation
of the order parameter can be calculated as:

r ≈ 1−
J (ω̃, L)

2
(

K/2k
)2
. (4)

RESULTS AND DISCUSSION

Synchronization in Single Networks
We begin with a description of the basic properties of a single
network of Kuramoto oscillators. A large portion of the results
presented in this Section has already been under thorough
investigation and are reviewed in Rodrigues et al. (2016), but is
recapitulated here as a prolog to the next Section.

Figure 1A illustrates the dynamics of random networks
without and with internode connections. Without any coupling
(K = 0), the nodes oscillate independently at their natural
frequencies, and the resulting order parameter for the network
is r ≈ 0.1. In contrast, the nodes synchronize with sufficiently
strong couplings (K = 10), yielding r ≈ 1. Figure 1B shows the
dependence of r on K. When K reaches a critical value (K ≈ 0.2
for σω = 0.15), r increases until it saturates at ∼1. The effect of
the inhomogeneity in the natural frequencies of the nodes is also
shown in Figure 1B. Analytically, when the standard deviation
σω is scaled by a factor of p, pK is required to obtain an equivalent
degree of synchrony (see Appendix). Hence, in the following
discussion, we focus on a case where σω = 0.15.

FIGURE 1 | Synchronization in Kuramoto networks and the effect of the

network inhomogeneity. (A) Dynamics of random networks (ω = 4.5,

σω = 0.15) with coupling strengths of (a) K = 0 and (b) K = 10.

(B) Dependence of the Kuramoto order parameter r on K for networks of

inhomogeneous oscillators. A total of 250 networks are sampled for each

condition, and their means are plotted. Shaded error bars represent 95%

confidence intervals.

Next, we examine the effect of the network topology on
the synchrony of a single network. We consider four types
of topologies: random, SW, SF, and super-hub (Figure 2A).
In all four networks, a synchronized state, which we define
as r > 0.9, is achieved when K is sufficiently high. Figure 2B
shows the dependence of r on K for networks with different
topologies. Comparison of the random, SF, and super-hub
networks reveals that random networks synchronize at the
lowest K (Figure 2B). When the nodes are inhomogeneous,
the variation in the natural frequencies of the hub nodes
degrades the synchronization in the SF and super-hub
networks. This trend is confirmed analytically from the
evaluation of r from the synchrony alignment function
(Figure 2C).

The SW networks always exhibit the lowest synchrony among
the four topologies (Figures 2B,C). Importantly, the global
synchronization in a network is not always a positive symptom.
In the brain, for example, hypersynchronization of neurons is
a phenotype of epilepsy (Netoff et al., 2004). In such cases, SW
connectivity, such as that observed in the macroscopic wiring of
the human cortex (Bullmore and Sporns, 2012), can be beneficial.

In summary, random connection is the most efficient strategy
for synchronizing a network of inhomogeneous nodes with the
minimum coupling strength.

Synchronization in Interconnected
Networks
Next, we investigate the effect of the network topology of
subnetworks in NoNs on the global synchrony. We consider
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FIGURE 2 | Effect of the network topology in single networks. (A) Schematic illustrations of the four types of network topologies considered in this study. For ease of

viewing, the number of nodes N and their degrees k are varied. In the actual calculation, N and k are 50 and 6, respectively. (B,C) Dependence of r on K derived from

(B) the numerical simulation and (C) the synchrony alignment function (SAF). The networks are random (Rand; blue circles), SW (orange triangles), SF (green crosses),

and super-hub (H; red squares). A total of 250 networks are sampled for each condition, and their means are plotted. Shaded error bars represent 95% confidence

intervals.

the simplest case, i.e., a NoN consisting of two subnetworks
(Figure 3A). Each subnetwork contains 50 nodes connected via
the random, SW, SF, or super-hub strategy. Two subnetworks
with an equivalent topology are coupled, with nine connections
among three selected nodes. In coupling the subnetworks, nodes
having the highest degree are selected from each subnetwork,
since cortical networks are characterized by the rich-club
organization (van den Heuvel and Sporns, 2013; Samu et al.,
2014; Gal et al., 2017). This configuration is also inspired by
previous studies on identical chaotic oscillators, which explored
synchronization in NoNs comprised of two SF subnetworks
and discovered that inter-subnetwork connections linking high-
degree nodes allow efficient global synchrony (Zhao et al., 2011;
Aguirre et al., 2014), while maintaining dynamical clustering of
subnetworks (Zhao et al., 2011). For the super-hub topology,
the three hub nodes are selected as connector nodes. The
intra-subnetwork coupling strength, Kintra, is kept constant at
Kintra = 4, and the inter-subnetwork coupling strength, Kinter , is
varied.

Figure 3B shows the change in the order parameter averaged
over the whole network, or the global order parameter, upon
the addition of inter-subnetwork connections (Kinter = 10).
Prior to the coupling of the two subnetworks, the nodes within
each subnetwork are synchronized, as Kintra is sufficiently high
(Kintra = 4). However, the synchronizing phases of the two
subnetworks are independent, yielding a global order parameter
of r ≈ 0.6. When the two subnetworks are coupled at t = 250 s,
the global order parameter gradually increases, and the coupled

subnetworks synchronize (r > 0.9). Note that although the
network does not reach a fully synchronized state (r = 1), the
whole network is in a steady state when r saturates (t> 300 s); this
is confirmed by observing the distribution of the phase and phase
velocity (Figure 3A). The steady state is hence different from the
so-called “chimera state,” a state which coherent and incoherent
domains coexist in (Laing, 2009) and appears as a transient phase
in finite-sized Kuramoto networks (Wolfrum and Omel’chenko,
2011).

Analysis of the transient state after coupling the subnetworks
(t > 250 s) reveals that the SF and super-hub networks have the
fastest response. The results of curve fitting to an exponential
function r = r0−A exp [−(t − t0)/τ ] are summarized inTable 1.
The response to coupling the subnetworks is fastest in the SF
(τ = 3.9 s) and super-hub (τ = 4.0 s) networks, followed by the
random networks (τ = 4.7 s) (Figure 3C). For the SW network,
the time constant τ is 10.2 s.

We next analyze r in the steady state. As shown in Figure 4,
the r of NoN with random, SW, SF, and super-hub subnetworks
increases with Kinter . Despite the fact that the random topology
synchronized (r > 0.9) at lowest coupling strength in the
single networks, the super-hub topology is the most effective for
synchronizing NoNs (Figure 4A). The result of the numerical
simulation is fully supported by the analytical evaluation
of order parameters from the synchrony alignment function
(Figure 4B).

Since previous works have shown that the number of nodes
in a network can dramatically impact the degree of synchrony
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FIGURE 3 | Synchronization in interconnected networks. (A) Schematic

illustration of the interconnected network and the change in the node

dynamics after the subnetworks are coupled at 250 s. The upper and lower

panels show the evolution of phases and phase velocities, respectively. The

topology of each subnetwork is super-hub with N1 = N2 = 50, ω = 4.5, and

K intra = K inter = 4. (B) Transient change in order parameter r upon the

coupling of the subnetworks. A total of 250 networks are sampled and

averaged for each topology. Shaded error bars represent 95% confidence

intervals. The time average of r plotted here is calculated every 0.5 s instead of

every 200 s. (C) The time constant τ of the transient change in r calculated for

each topology. The abbreviations are as follows: R, random; SW, small-world;

SF, scale-free; H, super-hub. The network parameters are N1 = N2 = 50,

K intra = 4, and K inter = 10.

TABLE 1 | Transient change in the order parameter after the coupling of two

subnetworks.

Random Small-world Scale-free Super-hub

r0 0.98 0.93 0.99 0.99

A 0.36 0.30 0.38 0.36

τ (s) 4.7 10.2 3.9 4.0

The results of the numerical simulation are fitted to an exponential function (r = r0 −

A exp[−(t− t0 )/τ ]) to derive the parameters r0, A, and τ .

in modular networks (Oh et al., 2005), we further study the
effect of the subnetwork topology in a larger NoN consisting
of 2,000 nodes. It is found that the advantage of the super-
hub topology over random topology becomes more prominent
when the network size is enlarged (Figure 4C). Note that the
discrepancy between the synchrony alignment function and the
numerical simulation, which is especially noticeable in the super-
hub network is due to the extended relaxation time required for
the networks to synchronize in the large networks.

One of the major advantage of the synchrony alignment
function is the ability to combine the network structure with
the allocation of natural frequencies. The effect of frequency
allocation on the synchrony of NoNs (N1 = N2 = 50) with
different subnetwork topologies is shown in Figures 4D–G. Here
the natural frequencies,ωi, are reallocated depending on the node
degree, ki: ωi is sorted so that |ωi − ω| either ascends or descends
with ki. In the former case, outlying frequencies are allocated at
the hub nodes, the first three of which are the connector nodes
of the NoN. Contrarily, in the latter case, ωi ≈ ω for the hub
nodes, and the outlying frequencies are allocated at the low-
degree nodes. Analyses reveal that, in all subnetwork topologies,
synchrony increases when outlying frequencies are allocated at
the hubs (connector nodes). The direct interaction of outlying
frequencies averages ωi and allows them to oscillate at near ω. In
contrast, when the outliers are placed at low-degree nodes, the
cancelation does not occur and a group of nodes that oscillate
away from ω is formed, resulting in the degradation of global
synchrony. In support of this, the effect of frequency reallocation
is most effective in the random and SW networks, whereas the
effect is minor in the super-hub and SF network, in which all
peripheral nodes are under direct or strong control of the hubs.

We also investigate how the choice of connector nodes
influences synchrony in NoNs of various subnetwork topologies.
Here the synchrony alignment function is used to analyze r
for NoNs constructed by connecting the lowest-degree nodes,
instead of the highest-degree nodes, in two subnetworks. Natural
frequencies are allocated randomly, and Kintra is increased to
12. The order parameters of the four topologies are summarized
in Figure 4H, together with the results for the default case in
which highest-degree nodes are used as connector nodes. The
results show that the super-hub and SF topologies achieve highest
synchrony even when the lowest-degree nodes are the connector
nodes. Under this connection strategy, random networks exhibit
the lowest synchrony, which is primarily due to a stochastic
existence of nodes with very few intra-subnetwork connections.
Such nodes can appear in SF networks as well, but in SF networks,
the node is likely to be directly coupled to a high-degree node,
and hence the global synchrony does not degrade even when the
low-degree node is used as a connector.

The properties of the network topologies explored in the
current study is not mutually exclusive. For instance, in the
neural networks of the brain, SW and SF properties coexist
as a result of cost-efficiency trade-off (Chen et al., 2013). In
contrast, Watts-Strogatz SW network models generally lack SF
properties, and the Barabási-Albert SF network models lack
SW properties. In an attempt to model subnetworks bearing
a topology that more closely resembles the real neural system,
we further consider a hierarchically modular network with a
rich-club organization (Zhou et al., 2006; Meunier et al., 2010;
Wu et al., 2012; van den Heuvel and Sporns, 2013; Samu
et al., 2014; Hilgetag and Goulas, 2016; Zamora-López et al.,
2016; Gal et al., 2017). Such a subnetwork is generated by
interconnecting two sub-subnetworks (each with N = 25 nodes
and pin × N × k/2 intra-connections) with

(

1− pin
)

× N × k/2
inter-connections, where pin designates the probability of intra-
connections. The two nodes to be connected are chosen with
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FIGURE 4 | Dependence of r on K inter in interconnected networks. (A) is derived from the numerical simulation, and (B) from the evaluation of the synchrony

alignment function (SAF). The network topologies are random (blue), SW (green), SF (orange), and super-hub (red), with N1 = N2 = 50 and K intra = 4. (C) r-K inter

relationships in large networks (N1 = N2 = 1000, K intra = 4) with random (blue) and super-hub (red) subnetworks. Plots and solid lines represent the results obtained

from the numerical simulation and SAF, respectively. (D–G) Effect of frequency allocation on synchrony in NoNs with (D) random, (E) SW, (F) SF, and (G) super-hub

subnetworks (N1 = N2 = 50, K intra = 4). Natural frequencies are reallocated so that outlying frequencies are placed either at high-degree hub nodes (broken lines) or

at low-degree nodes (dotted lines). Solid line represents the default, random allocation. (H) Effect of connector node degree on synchrony. Nodes used to connect

two subnetworks are chosen from either the highest-degree (solid lines) or lowest-degree (broken lines) nodes. Natural frequencies are allocated randomly, and K intra

was set to 12. The same color schemes are used for different topologies as in (B). Error bars are removed to aid visualization. (I) Effect of rich-club organization on

synchrony of hierarchically modular networks (N1 = N2 = 50, K intra = 4, k = 6, pin = 0.97). NoNs bearing subnetworks with rich-club organization (α = 10) is

compared against those without it (α = 0). The two subnetworks are connected through the highest-degree nodes. A total of 250 networks are sampled for each

condition, and their means are plotted. Shaded error bars represent 95% confidence intervals.

a probability 5i = kαi /
∑

j k
α
j , where ki is the degree of node

i, and α a parameter that tunes the preference of high-degree
nodes. Finally, two of the subnetworks are connected through the
top three highest-degree nodes. Comparison of r calculated from
adjacency matrices generated with α = 0 (random selection)
and α = 10 (rich-club selection) is summarized in Figure 4I.
In hierarchically modular networks, the higher synchrony is
achieved by coupling the sub-subnetworks through high-degree
hub nodes. Together with the previous result (Figure 4H),
the result underscores the importance of hubs in considering
synchrony within NoNs.

The variation in the effective topology for synchronizing
a single network and NoN is the primary finding of the
present work. In a single network, the random topology is
more robust to node inhomogeneity (section Synchronization
in Single Networks). However, in NoNs, the existence of high-
degree hub nodes and connection of the subnetworks through the
hubs is effective for achieving synchronization. This advantage
overwhelms the aforementioned disadvantage in individual
networks, and hence, super-hub and SF networks synchronize
with weaker coupling strength than random networks. The result
is consistent with a recent report on the synchronization in
multilayer networks of identical chaotic oscillators, in which
synchrony was achieved at weaker inter-layer coupling strength
when a network with layers configured under the SF topology

rather than random topology (Leyva et al., 2017). Analytical and
numerical studies on the NoNs (or multilayer networks) with
non-identical subnetwork topology is an important topic (Um
et al., 2011; Leyva et al., 2017), which awaits future research.

Coupling Networks of Different
Frequencies
In real systems, the natural frequencies of the nodes are often
distributed. In the previous sections, we considered this by using
nonzero values for σω. Previously, a number of reports have
investigated effective connection strategies for synchronizing an
isolated single network comprised of inhomogeneous oscillators
(Gleiser and Zanette, 2006; Brede, 2008). Going up one hierarchy
in scale, it is reasonable to consider a case in which the
subnetworks in a NoN have distinct average natural frequencies
ωα . In the last section of this paper, we explore an optimal wiring
strategy for synchronizing such a network.

When two subnetworks with different average natural
frequencies, ω1 and ω2, are coupled with a sufficiently high
coupling strength, they synchronize at a mean frequency of
(ω1 + ω2)/2, as shown previously in Li et al. (2008) and Wu
et al. (2012). Figure 5A shows the transient dynamics of coupled
super-hub networks with ω1 = 4.3 and ω2 = 4.7. After inter-
subnetwork coupling at t = 250 s, the two networks begin to
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FIGURE 5 | Coupling networks of different frequencies. (A) A schematic

showing the networks under consideration, and the evolution of phases (upper

panel) and phase velocities (lower panel) of the nodes. The average natural

frequencies of the two subnetworks are ω1 = 4.3 and ω2 = 4.7. (B) A

schematic showing the three-network system and the effect of inter-network

coupling on synchronization. A total of 250 networks are sampled for each

condition, and their means are plotted. Error bars representing 95%

confidence intervals are depicted but are invisible. The network topology of the

individual networks is super-hub, with N1 = N2 (= N3) = 50, σω = 0,

K intra = 4, and K inter = 40.

interact, and the oscillating frequencies of their nodes gradually
converge to 4.5.

We further investigate whether there is an efficient coupling
scheme for a NoN comprising three subnetworks of different ωα .
We assume that each subnetwork retains the super-hub topology
with Nα = 50 (α = 1, 2, 3), k = 6, K intra = 4, and K inter = 40
and that the total number of inter-subnetwork links is nine. The
average natural frequencies of the three subnetworks are ω1 =

ω0 − 1ω, ω2 = ω0, and ω3 = ω0 + 1ω, with ω0 = 4.5.
To simplify the discussion, the variation of the natural frequency
within each subnetwork (σω1, σω2, σω3) is set as zero. A total of
250 realizations are sampled for each condition.

Three types of inter-subnetwork connections are considered
(Figure 5B). We denote the NoN with full coupling as Network
(i), which serves as a reference in the subsequent discussion.
In Networks (ii) and (iii), only two pairs of subnetworks are
coupled. Subnetworks 1 and 2 are coupled in both networks,
and in Network (ii), two subnetworks with a large discrepancy—
Subnetworks 1 and 3—are coupled, whereas in Network (iii),
two subnetworks with a small difference—Subnetworks 2 and
3—are coupled. A network with two couplings of Subnetworks

1 and 3 and Subnetworks 2 and 3 is mathematically equivalent to
Network (ii).

The order parameter for Networks (i)–(iii) and its dependence
on 1ω is shown in Figure 5B. Network (i), with fully coupled
subnetworks, has the highest degree of synchrony for all values
of 1ω. When the wiring resource is limited to coupling two
pairs of subnetworks, the direct coupling of subnetworks with
a dissimilar average frequency [Network (ii)], is favorable for
achieving a high global synchrony in the steady state.

The mechanism of Network (ii) being more synchronizable
than Network (iii) can be understood from the previous
discussion regarding the steady-state frequency of the coupled
subnetworks (Figure 5A). Considering that two coupled
subnetworks synchronize at their mean frequency, Network (ii)
can be coarse-grained into a set of interacting subnetwork-pairs
with the average natural frequency of 4.5 − 1ω

2 (constituted by
the interaction of Subnetworks 1 and 2) and 4.5 (Subnetworks
1 and 3). For Network (iii), the frequencies are 4.5 − 1ω

2

(Subnetworks 1 and 2) and 4.5 + 1ω
2 (Subnetworks 2 and 3).

The delta in these frequencies is smaller for Network (ii) than
for Network (iii); hence, Network (ii) can withstand a larger
deviation in the natural frequencies. However, the shift in the
r-1ω relationship with the connection strategy is nonlinear, and
the value of 1ω for realizing a certain r in Network (ii) is not
equal to 2×1ω for Network (iii).

In summary, the direct coupling of dissimilar subnetworks is
favorable for achieving a high degree of global synchrony with a
limited number of connections.

CONCLUSION

We investigated the effect of the subnetwork topology on
the synchronization of interconnected networks, or NoNs.
Although random connection was favorable for synchronizing
individual networks, the SF and super-hub topology with high-
degree hub nodes exhibited highest synchrony in NoNs. This
variation in the optimal topology in single and interconnected
networks is the major finding of our study. The use of a
phase oscillator model as local node dynamics allowed us
to analytically investigate the structure-function relationships
in NoNs via the synchrony alignment function. The results
provide a first-order approximation to the study of dynamics
within complex networks of biologically more plausible neural
oscillators, such as the neural mass models (Zhao et al.,
2010, 2011; Zamora-López et al., 2016). Indeed, the collective
dynamics of a Kuramoto oscillator system has been shown
to resemble that of neural mass models (Hoppensteadt and
Izhikevich, 1997; Zamora-López et al., 2016), which highlights
the neuroscientific relevance of the phase reduction approach
(Breakspear et al., 2010; Rodrigues et al., 2016). The directionality
of the connections and interaction delays are the factors that
we also simplified or neglected in this study. The former is
critical for analyzing the propagating signals in networks, and
the latter has been shown to be able to settle interconnected
networks at an atypical global oscillatory state (Louzada et al.,
2013).
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In the brain, synchronized neural activity is critical for its
function at various spatial resolutions. At the microscopic
scale, it modulates the synaptic weights (Kubota and
Kitajima, 2008; Benchenane et al., 2011) through spike-
timing dependent plasticity, whereas at the macroscopic scale,
it supports efficient signal transfer between distant brain
regions (Senkowski et al., 2008; Deco and Kringelbach,
2016). Excessive synchrony, however, in a wide area is
pathophysiological, and is a phenotype of neurological disorders
such as epilepsy (Netoff et al., 2004; Truccolo et al., 2014).
In this line, the current work provides insights into how the
topology of subnetworks contributes to balance synchrony
and asynchrony in complex networks comprised of interacting
subsystems. In particular, our results suggest that coexistence
of SF and SW properties, which promote and suppress
synchrony, respectively, would facilitate networks to achieve this
balance.

The balance of synchrony and asynchrony, and the resulting
complexity of the dynamics, has been quantified based on,
e.g., the probability distribution of pairwise correlation between
nodes (Zhao et al., 2010; Zamora-López et al., 2016), the
probability distribution of joint states of nodes (Marshall et al.,
2016), modularity analysis on the correlation matrix (Zhou et al.,
2006; Zhao et al., 2011), and Granger causality analysis on the
temporal pattern of joint states (Shanahan, 2008). Such measures
have been applied not only to analyze synthetic networks but

also anatomical brain connectomes, which revealed that the
dynamical complexity is maximized therein (Zhao et al., 2010;
Zamora-López et al., 2016). Most of the measures are applicable
to phase oscillator systems, and their combination would provide
a theoretical framework for further investigating the structure-
function relationships within NoNs, such as brain networks.
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APPENDIX

We show here that the order parameter, r [Equation (2)],
of a Kuramoto oscillator network with a natural frequency
distribution ωi ∼ N (ω, σ 2

ω) and a coupling strength K does not
change when both the σω and K are simultaneously multiplied
by and arbitrary value p∈ R, i.e., σω and K are replaced such that
σω → pσω and K → pK. If we define a new phase variable,ψi, as
ψi ≡ φi − ωt, then Equation (1) can be rewritten as:

ψ̇i = ωi
′ −

K

2k

∑

j∈3i

sin
(

ψi − ψj

)

, (A1)

where ωi
′ ≡ ωi − ω obeys the distribution of ωi

′ ∼

N (0, σ 2
ω). Since r = 1

N

〈∣

∣

∣

∑N
j=1 e

iφj
∣

∣

∣

〉

= 1
N
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∣

∣
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j=1 e

i(ψj+ωt)
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〉

=

1
N

〈∣

∣

∣
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j=1 e

iψj

∣
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∣

〉

, the order parameter for φi is equal to that for ψi,

indicating that:

r
(

N
(

ω, σ 2
ω

)

;K
)

= r
(

N
(

0, σ 2
ω

)

;K
)

, (A2)

where, for the simplicity of notation, we denoted the order
parameter r for the system with ωi∼N (ω, σ 2

ω) and K as
r
(

N
(

ω, σ 2
ω

)

;K
)

.

Next, we consider a rescaling of time t by defining t′ ≡
t
p . Using the new time variable t’, the dynamics of φi under

t’ is:

dφi

dt′
= p

dφi

dt
= pωi −

pK

2k

∑

j∈3i

sin
(

φi − φj
)

. (A3)

Since rescaling of time does not influence a temporally
averaged value, r for the two systems in Equations (1) and
(A3) are equal. And hence, the following relationship is
derived:

r
(

N

(

0,
(

pσω
)2

)

; pK
)

= r
(

N
(

0, σ 2
ω

)

;K
)

. (A4)

Finally, by using the relationships in Equations (A2) and (A4), we
obtain:

r
(

N

(

ω,
(

pσω
)2

)

; pK
)

= r
(

N
(

ω, σ 2
ω

)

;K
)

, (A5)

meaning that the replacement of σω → pσω and K → pK does
not affect the value of r.
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