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Emergence of Relaxation
Oscillations in Neurons Interacting
With Non-stationary Ambient GABA
Denis A. Adamchik*, Valery V. Matrosov and Victor B. Kazantsev

Lobachevsky State University, Nizhny Novgorod, Russia

Dynamics of a homogeneous neural population interacting with active extracellular

mediumwere considered. The correspondingmathematical model was tuned specifically

to describe the behavior of interneurons with tonic GABA conductance under the

action of non-stationary ambient GABA. The feedback provided by the GABA mediated

transmembrane current enriched the repertoire of population activity by enabling the

oscillatory behavior. This behavior appeared in the form of relaxation oscillations which

can be considered as a specific type of brainwaves.
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1. INTRODUCTION

Historically, the focus of experimental and theoretical studies of brain signaling was almost
exceptionally on neurons and their networks. Being the only electrically excitable cells in the
nervous system, neurons are able to communicate by receiving, processing and generating electrical
signals in the form of spike trains (Nicholls et al., 2001). All other structures constituting the
nervous tissue such as glial cells and extracellular matrix (ECM) until very recent decades were
not taken into account in the mechanisms of information processing.

Glial cells and various exctracellular structures were primarily thought to perform a number of
auxiliary functions such as trophic, supportive and immune (Allen et al., 2009). The comprehension
of inalienability of glia and ECM to the neuronal signaling came with the discovery of chemical
synaptic transmission machinery (Krnjević, 1974) and secretory function of astrocytes (Martin,
1992). Glia turned out to be a gigantic chemical factory of the nervous system, governing neurons
and using the extracellular space as an intermediary (Barres, 1991).

At present, there has been a great number of theoretical and experimental studies devoted to
neuron-glia interaction (Bezzi and Volterra, 2001). One of the most prominent concepts in the
field was that of the tripartite synapse (Araque et al., 1999). Glial cells, particularly astrocytes, can
effectively influence and modulate the synaptic transmission. Many aspects of such modulations
were discussed in a number of computational studies (Postnov et al., 2007; Gordleeva et al., 2012;
Kazantsev et al., 2012; Volman et al., 2012; Lazarevich et al., 2017).

Besides several glial cell types, the extracellular space itself can be an important player
in neuronal signaling. It serves as an interstitial transport system mediating cell-to-cell
communications by means of numerous active chemicals (Sykovaá and Nicholson, 2008). This type
of communications is called “volume” transmission and is characterized by signal diffusion in a
three-dimensional fashion within the brain extracellular fluid (Agnati et al., 1995). The “volume”
transmission depends crucially upon the actual geometry of the ECS (Syková, 2004) which has great
relevance for pharmacokinetics and actions of neuropsychoactive drugs (Zoli et al., 1999).
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One of the major neurotransmitters in the CNS is γ -
Aminobutyric acid (GABA) (Webster, 2001). It mediates
intercellular communications by participating in both “wiring”
and “volume” transmission (Semyanov et al., 2004). The “wiring”
action of GABA is through mediating the synaptic transmission
by activating the postsynaptic (phasic) GABAA-receptors. The
“volume” transmission is, in its turn, carried out by “overspilled”
ambient GABA which regulates neuronal excitability by creating
the extra transmembrane current through extrasynaptic (tonic)
GABAA-receptors.

GABA was reported to maintain the fast neuronal
oscillations (gamma, 20–80Hz) in inhibitory interneuron
networks (Whittington et al., 1995; Bartos et al., 2007).
In the computational study (Wang and Buzsáki, 1996),
GABAA synaptic transmission was shown to provide a
suitable mechanism for synchronized gamma oscillations
in a sparsely connected network of fast-spiking interneurons.
Incidentally, GABA was reported to enhance collective behavior
in neuronal axons (Traub et al., 2003). Specifically, gamma-
frequency oscillations were demonstrated to coexist with phasic
high-frequency oscillations (>90Hz) in principal cell axon
populations.

Primarily, GABA was considered to be the main inhibitory
neurotransmitter in the brain until it was shown experimentally
to be able to perform the bi-directional regulation of neuronal
spiking activity (Song et al., 2011). Based on this experimental
finding, a number of mathematical models describing the
action of ambient GABA on the excitability properties of
interneurons were suggested (Adamchik et al., 2015; Adamchik
and Kazantsev, 2017). In Adamchik et al. (2015), the behavior
of a single interneuron embedded in the extracellular space
with constant ambient GABA concentration was studied. It
was shown that depending on the parameters of tonic current,
such as tonic conductance density and GABA reversal potential,
the interneuron demonstrated different behavioral modes
including self-oscillations. The impact of stationary GABA at
the population level was studied subsequently in Adamchik
and Kazantsev (2017). Specifically, it led to bistability between
asynchronous firing and zero-activity state.

In this paper, we study the effects of non-stationary, activity
dependent GABA upon population dynamics of interneurons. To
this end, we propose a mathematical model accounting for the
feedback between interneurons and ambient GABA (section 2).
The origin of the feedback has the following explanation.
Extracellular GABA creates the additional transmembrane
current through activation of extrasynaptic (tonic) GABAA-
receptors. This current further changes the firing properties of
interneurons (Adamchik et al., 2015), which immediately affects
the synaptic release of GABA (Destexhe et al., 1994). Since
extracellular GABA concentration depends, among others, on
spillover, i.e., the diffusion of the neurotransmitter out of the
synaptic cleft (Semyanov et al., 2004), it changes, which futher
affects tonic conductance and provides the respective feedback.

Based on these considerations, we proposed a mathematical
model using the following assumptions. First, we considered a
particular case of a homogeneous population of interneurons
which allowed us to describe their collective behavior using the

simple rate-based formalism. Second, we neglected any spatial
gradient of neurotransmitter, considering its concentration to
be uniformly distributed over the entire extracellular space.
This assumption allowed us to build the minimal model
of the feedback avoiding dealing with an explicit model
of spatiotemporal GABA dynamics. The model consisted of
two coupled equations, one of which described the time-
course of population activity (section 2.1) while the other–
the concentration of ambient GABA (section 2.2). The model
was explored both numerically and analytically (section 3). The
results including the appearance of relaxation oscillations were
discussed in (section 4).

2. MATERIALS AND METHODS

2.1. Population Dynamics
Within the framework of rate-based formalism, a homogenous
population of neurons is described by a single variable, e.g., the
population activity, A. The rate of change of A is determined by
the so called gain fuction gλ(I), which is unique for each cell type.
The respective equation reads:

τm
dA

dt
= −A+ gλ(I) (1)

where τm is the membrane time constant and I is the total input
current an arbitrary neuron receives from the entire network. The
latter is linearly dependent on population activity, I = JA, where
the proportionality factor, J, is called coupling strength (Gerstner
et al., 2014).

The gain gλ(I) is primarily a function of input current, I, but
can also depend on a number of factors, collectively denoted here
by λ. In our case, these are tonic conductance density, G, and
GABA reversal potential, E, i.e., λ = (E,G).

The exact form of the gain function can be derived analytically
only for a few simple neuron models, such as, for example, the
quadratic integrate-and-fire (QIF), whose dimensionless normal
form reads: v̇ = v2 + κ . Using separation of variables and
integration over infinite potential bounds, one can get:

gλ(I) =
1

τr + τmκ−1/2
(2)

where the dimensionless parameter κ depends both on input
current I and other factors. The absolute refractory period,
τr , is added to the period of oscillations to prevent the firing
frequency from taking an arbitrarily large value. Note, that
formula (Equation 2) is valid only for positive κ ; when κ < 0
no oscillations occur and, as a result, gλ(I) = 0.

The gain function (Equation 2) describes qualitatively the

responce of Class I excitability neurons. In these neurons, the
transition from resting to spiking occurs via saddle-node on

invariant circle bifurcation (SNIC), that allows them to fire

with arbitrarily small frequency (Izhikevich, 2007). The Wang-

Buzsáki interneuron (Wang and Buzsáki, 1996) belongs exactly
to this type of neurons. In Adamchik and Kazantsev (2017), the

original conductance-based model, modified in a way to account
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TABLE 1 | Model constants.

Constant Value Description

τm 8.925ms Membrane time constant

τr 0.627ms Absolute refractory period

Gm 0.112mS · cm−2 Conductance density at threshold

Em −60.414mV Halfway between resting and

threshold membrane potentials

k 0.0155µA · cm−2 mV−2 Proportionality factor

α 5mmol−1 ms−1 Forward rate

β 0.18ms−1 Backward rate

for the additional transmembrane tonic current, was reduced

to the QIF neuron. The dimensionless parameter κ took the
following form:

κ = −
1+ (G/Gm)

2

4
+

k

G2
m

[I + G(E− Em)] (3)

where Em, Gm and k are constants listed in Table 1. The details of
the reduction can be found in Adamchik and Kazantsev (2017).

Equation (1) along with the relations (Equations 2, 3)
describes the time-course of population activity. It contains
parameters such as coupling strength, J, and GABA reversal
potential, E, which can take arbitrary values but remain
unchanged. Tonic conductance density, G, is on the contrary
a variable, which depends on local GABA concentration, C.
The form of this dependence can be determined using a
common kinetic formalism (Destexhe et al., 1998). According
to a simplified kinetic scheme of the GABAA-receptor, which is
assumed to exist in two conformations, open (O) and closed (C),
one can get:

G = Ḡ
αC

αC + β
(4)

where α and β are forward (activation) and backward
(deactivation) rates, respectively, and Ḡ is maximum
conductance density. Rate values were taken from Koch
and Segev (1998) and are given in Table 1 for reference.

Note, that equation (4) does not determine a momentary
but rather a stable-state value of G. Nevertheless, we may use
it because conductance relaxation time τG = 1/(αC + β) ≤

1/β ≈ 5ms, which is far less than the operating time of
ambient GABA concentration which amounts to hundreads of
milliseconds (Semyanov et al., 2004).

2.2. Ambient GABA Dynamics
According to Semyanov et al. (2004), extracellular GABA
concentration is regulated by uptake, non-synaptic release and
spillover. Uptake is carried out by GABA transporters which
decrease the concentration by binding and removing GABA
molecules from the extracellular space. Ambient GABA can
originate from various sources. It can escape from synaptic cleft
(spillover) and can be released via non-vesicular mechanism
by neurons and glia. Both spillover and non-synaptic release

increase ambient GABA concentration but do it differently.
Unlike non-synaptic release, spillover depends crucially on
synaptic dynamics and, as a result, on population activity. These
general considerations allowed us to write a governing equation
for ambient GABA concentration:

dC

dt
= −

C − C0

τC
+ S(A) (5)

The first term is supposed to describe the mutual action of uptake
and non-vesicular release, which counterbalance each other
by maintaining an optimal background GABA level, denoted
here by C0. Spillover is described, in its turn, by the second
term, S(A), representing the production function of GABA and
depending explicitly on population activity. The exact form of the
production function was chosen in a way to describe qualitatively
correctly the properties of synaptic neurotransmitter release. In
the most common case, the production function reads as follows:

S(A) = Q
AτP

AτP + 1
(6)

where τP is GABA production time constant and Q is the
maximum production rate.

The exact form of the production function can be derived
based on the following consideration. Let δCm be the amount
of GABA released in response to a single spike. Then, due to
exhaustion of synaptic vesicle pools, the next spike, coming
τ time units after the first one, will evoke the release of a
lesser amount of neurotransmitter, precisely δC = δCm[1 −

exp(−τ/τP)]. For a Poisson spike train, the interspike interval
distribution (ISI) with the mean firing rate equal to A reads:
P(τ ) = A · exp(Aτ ). Then, the average amount of GABA released
in response to a spike from the spike train will be 〈δC〉 =

∫ ∞
0 δC ·

P(τ )dτ = δCm/(1+AτP). The productA·〈δC〉 gives the required
production rate (cf. 6), where Q = δCm/τP.

2.3. Dynamical System
Two coupled ordinary differential equations (ODE) (1, 5) with
relations (2–4, 6) form a 2D dynamical system. Its state variables
are population activity, A, and ambient GABA concentration,
C. Besides some constants (see Table 1), the equations contain
a number of free parameters, which can roughly be split into
two distinct groups. The first group, (E, Ḡ, J), consists of the
parameters controlling population activity, while the second one,
(C0,Q), determines ambient GABA concentration. Our task is
to reveal how the dynamics of equations (1, 5) depend on all
these parameters. Some preliminary considerations concerning
the matter are the following.

In absense of the second equation (Equation 5), the system
reduces to a simple 1D phase line, corresponding to the case of
stationary external medium. This particular case was a subject
of our previous study (Adamchik and Kazantsev, 2017). It was
shown then that introduction of tonic current did not lead to
any new dynamical effects compared to the reference case, (G =

0), characterized by a simple stable-state dynamics. It resulted,
however, in appearance of a monostable regime of asynchronous
firing once tonic current parameters, E and G, were properly
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tuned, specifically, in a way that the point (E,G) was located
above a certain curve on the parameter plane. This curve was
shown previously to be a border of the self-oscillatory mode in
the model of a tonically driven single neuron (Adamchik et al.,
2015). The impact of coupling strength, J, on population activity
consisted, in its turn, in inducing bistability, i.e., coexistence of
resting and asynchronous firing, and expanding the bistability
region at the cost of trivial (zero-activity) monostable solutions.

In this study our particular interest is on the feedback-induced
dynamical effects. For this purpose we specifically focus on
the parameters governing ambient GABA concentration, i.e.,
C0 and Q. Note that such parameters as baseline concentation,
C0, and maximum production rate, Q, can be controlled
pharmacologically in experiments.

2.4. Semi-explicit Model
To verify the validity of our population model prediction as
well as to visualize neural oscillations we built a semi-explicit
computational model of the respective spiking network. To
do this we replaced the equation for the population activity
(Equation 1) with an explicit spiking neural network model but
preserved (Equation 5), which describes the dynamics of ambient
GABA.

We considered specifically a network of N = 100
interneurons randomly coupled with probability p = 0.1.
Each neuron was described by the original conductance-based
model (Wang and Buzsáki, 1996) with the additional tonic
current term: IGABA = G(u − E), where u is the membrane
potential. Tonic conductance density, G, depended here on
extracellular GABA concentration just in accordance with
equation (4). Synaptic transmission was mediated by phasic
GABAA-receptors. The total synaptic current to an arbitrary
neuron was determined as the normalized sum over the
contributions of all its presynaptic neighbors:

Isyn =
1

M

∑

Gsynr(u− E) (7)

whereM is themean number of presynaptic inputs:M = Np. The
fraction of the receptors in the open state, r, obeyed the kinetic
equation

dr

dt
= αT(1− r)− βr (8)

while the synaptic concentration of GABA, T, strictly followed
the potential at the presynapse:

T(upre) =
Tmax

1+ exp
(

−
upre−2

1

) (9)

Besides transmembrane and synaptic components, the total
current to each neuron included also a constant one, I0, which
served to regulate the level of depolarization. The parameters of
synaptic transmission are listed in Table 2.

To couple the explicit spiking network model with the
equation describing ambient GABA dynamics we calculated at

TABLE 2 | Model synapse.

Parameter Value Description

Gsyn 0.1mS · cm−2 Maximum phasic (synaptic) conductance density

Tmax 1mmol Peak synaptic cleft concentration of GABA

2 0mV Threshold of the activation

1 2mV Width of the transition area

I0 −1.4 µA cm−2 Depolarization current

each time step the instantaneous population activity, using for
averaging the α-function (Dayan and Abbott, 2001):

A(t) =
1

N

3τw
∑

s=jτs ,
j∈N

α(s) S(t − s; t − s+ τs), (10)

α(s) =

[

s

τ 2w
exp

(

−
s

τw

)]

+

(11)

Here, S(t − s; t − s + τs) is the total number of spikes, the
entire network generates within the respective time window;
τw = 20ms and τs = 1ms are averaging and sliding windows,
respectively.

3. RESULTS

3.1. Numerical and Phase Plane Analysis
First, we performed numerical analysis of the dynamical system
(Equations 1, 5). We carried out numerous simulation trials for a
wide range of biologically relevant parameter values. In each trial,
the system proceeded with the same initial conditions (A|t=0 =

0, C|t=0 = C0) corresponding to zero population activity
and baseline GABA concentration, respectively. We found out
that, depending on parameters, the system demonstrated either
oscillatory or stationary behavior (see Figure 1). The parameters
of the simulations are listed in Table 3.

Different kinds of behavior can be accounted for using the
phase plane. In case of oscillations, the trajectory first makes a
big loop before converging to the limit cycle (see Figure 1B).
The latter is intersected by the A-nullcline, coinciding for the
small A’s with the border between zero and non-zero gain:
gλ(0) = 0 (see Figure 2B). It means that the system in the
oscillatory mode sequentially visits the region of excitatory
GABA action. The oscillations would evidently not occur if the
baseline GABA concentration, C0, exceeded the borderline value
between inhibition and excitation, C+. In other words, if the
system was placed into the region of inhibitory GABA, it would
never leave it. In the stationary mode, the trajectory moves up
slower than the A-nullcline does (see Figure 1D), so it converges
to the fixed point corresponding to stationary asynchronous
firing. This scenario realizes if the maximun production rate,
Q, is lower than a certain threshold value. These considerations
helped us subsequently to determine conditions for oscillations
(section 3.2).
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FIGURE 1 | The time-course of population activity (solid) and ambient GABA concentration (dashed) along with the respective phase plane trajectories (thick solid) for

oscillatory (A,B) and stationary (C,D) modes. On the phase portraits (B,D), thin gray lines correspond to A- (solid) and C- (dashed) nullclines, respectively.

Separatrices of the saddle are represented by a pair of thin black lines with arrows indicating the flow direction.

TABLE 3 | Model parameters.

Parameter Value Description

J 50ms ·µA cm−2 Coupling strength

E −50mV GABA reversal potential

Ḡ 1mS · cm−2 Maximum tonic conductance density

τC 100ms GABA relaxation time constant

τP 100ms GABA production time constant

C0 0.05mmol Baseline ambient GABA concentration

Q 0.02mmol · ms−1 (oscillations) Maximum GABA production rate

0.01mmol · ms−1 (stationary)

Let us now describe the biophysical mechanism underlying
periodical oscillatory solutions (see Figure 1B). If the baseline
ambient GABA concentration, C0, is high enough to make
neurons fire but not too high to inhibit them by shunting,
the initially silent neurons start firing. Non-zero population
activity makes activity dependent ambient GABA concentration

steadily grow up through synaptic release and spillover (OM).
If parameters, governing ambient GABA dynamics, are properly
tuned, then, at some point, tonic GABA switches from excitation
to inhibition. On the phase plane, it corresponds to the
intersection of the trajectory with the A-nullcline (M). As
soon as the intersection occurs, the gain becomes zero and
population activity starts decreasing to its steady-state (zero)
value with a time constant of the membrane, τm. While
population activity goes down, the concentration keeps growing
but its grow rate gradually slows down (MN). Eventually,
the rate of change of C becomes negative and the trajectory
moves down with a time constant of concentration, τC (NO′).
At some point (O′), the trajectory re-enters the region of
excitatory GABA and the entire process starts from the scratch.
Note, that concentration does not reach its baseline level, C0,
so the magnitude of the limit cycle is less than that of the
initial loop.

To avoid the trajectory from making a loop before converging
to the limit cycle, we took the initial conditions exactly at
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FIGURE 2 | Stationary relaxation oscillations in the model of the feedback between a population of interneurons and GABA-containing extracellular medium: (A) the

time-course of the dynamical variables during one period of oscillations–population activity (solid) and ambient GABA concentration (dashed); (B) the corresponding

phase plane trajectory in the form of a limit cycle. The unstable fixed point (denoted by the empty circle) lies close to the limit cycle.

FIGURE 3 | Oscillatory region on the plane (gray) (C0,Q) for (A) E = −50mV, (B) E = −55mV.

the upper border between inhibitory and excitatory GABA:
A|t=0 = 0, C|t=0 = C+. The condition for the border follows
directly from equation (1) as: gC+−0(0) > 0, gC++0(0) =

0. Based on the explicit analytical expression for the gain
function (Equations 2, 3) as well as on the relation between
tonic conduction density, G, and GABA concentration, C,
(Equation 4), one can get:

C± =
β

α

G±

Ḡ− G±

, (12)

where

G± = Gm

(

x±
√

x2 − 1
)

, x =
2k

Gm
(E− Em) (13)

The minus-subscripted concentration, C−, corresponds to the
transition from inhibition to excitation as we move upwards the

C-axis and is given here just for reference. Its value for the actual
choice of parameters (see Table 3) is negligible and its existence
does not play any substantial role for oscillations. Oscillations
occur essentially at the border between excitatory and inhibitory
GABA and not vice versa.

Note, that the solution exists only if GABA reversal potential,
E, lies above a certain threshold, whose value is determined by
zero determinant condition (see equation (13)): E∗ = Em +
Gm
2k

≈ −56.8mV, which exceeds the resting membrane potential
(≈ −64mV) by 9.2mV.

The time-course of the dynamical variables as well as the
shape of the limit cycle (see Figure 2) are typical for relaxation
oscillations. In the excitatory region, the population activity
relaxes to the value determined by the gain function but as
soon as it leaves it, A starts the exponential decay to zero. The
concentration follows the population activity with a delay caused
by the difference between the time constants of membrane, τm,
and of concentration, τC.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 April 2018 | Volume 12 | Article 19

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Adamchik et al. Emergence of Relaxation Oscillations

FIGURE 4 | (A,C) Period and (B,D) magnitude of relaxation oscillations (A–solid, C–dash) vs. baseline GABA concentration and maximal GABA production rate. The

parameters are: E = −50mV, (A,B) Q [mmol · ms−1]: 0.02 (black), 0.06 (dim gray), 0.1 (silver); (C,D) C0 [mmol]: 0 (black), 0.03 (dim gray), 0.06 (silver).

3.2. Conditions for Oscillations and Their
Characterisctics
Our next step was to determine the region in the parameter
plane (C0,Q) where the system had periodical solutions. For
this purpose we implemented the following calculations. For
each point (C0,Q) from the rectangular (0,Cmax) × (0,Qmax)
we traced the time evolution of the dynamical system Equations
(1, 6) under the same initial conditions: A|t=0 = 0, C|t=0 =

C+. Depending on the parameters, the system either remained
at the starting point or relaxed to the upper stable state, or
oscillated periodically. The periodicity was ascertained based
on multiple crossings of the trajectory with the A-nullcline.
The border between the regions of oscillatory and transient
solutions is depicted in Figure 3 for two different values of GABA
reversal potential. Specifically, Figure 3A corresponds to highly
depolarizing GABA, while Figure 3B corresponds to GABA,
whose reversal potential is slighly above (precisely by 1.8mV) the
oscillatory threshold.

The oscillatory region for highly depolarizing GABA has
roughly the shape of a semi-infinite strip, (0,C+) × (Q−,∞),
where the border values C+ and Q− are both dependent on the
reversal potential, E. As far as we get closer to the oscillatory

threshold, the region shrinks until collapsing at E = −56.8mV.
The shape of the oscillatory region for high E’s implies that
oscillations occur if both the baseline GABA concentration and
the GABA production rate are located below and above their
respective threshold values: C < C+, Q > Q−. Note, that the
upper bound C+ corresponds exactly to the concentration value
at the starting point of simulation. The shape of the oscillatory
region has the straightforward phase-plane interpretation (see
section 3.1). Although, we managed to find the explicit analytical
expression for C+ (see Equations 12, 13), there was no way to
obtain such for Q−(E), the more so it depends not only on E but
on C+ as well, which is illustrated in Figure 3B.

Having found the oscillatory region we looked for the

magnitude and period of oscillations as functions of C0 and Q.

To this end we started time-course simulations from the same
point at the limit cycle as we did before in oder to pass the

transition phase. We defined the period of oscillations as the
time before two subsequent intersections with the A-nullcline

with the same sign of the slope. The magnitude of oscillations
was determined as the maximum value of population activity and
concentration, respectively. The results are depicted in Figure 4.
First, we fixed the maximum production rate, Q, and found
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FIGURE 5 | Spike raster plots and time-course of population activity for (A,C) oscillatory and (B,D) stationary modes. The parameters are: C0 = 0.05mmol,

Q [mM/ms]: (A,C) 0.01, (B,D) 0.003.

numerically the dependence of both period andmagnitude on the
baseline concentration of GABA,C0 (see Figures 4A,B). Next, we
fixed C0 and found the respective dependencies on the parameter
Q; the corresponding graphs are depicted in Figures 4C,D. Note,
that the period grows infinitely as soon as we approach the
boundaries of the oscillatory region. The dependence of the
magnitude on the production rate is more drastic than that on
the background GABA level. The explanation is quite simple –
the higher Q is, the faster the periodic trajectory intersects the
A-nullcline, the lower is the magnitude.

3.3. Spiking Network Simulation
The results of our computer simulation are depicted in Figure 5.
Note that they quite correctly reproduce those obtained using
the original rate model. In case of periodicity, after an initial
burst of population activity, the network demonstrates stationary
oscillatory behavior (Figure 5C) just in accordance with the
prediction (Figure 1A). The stationary-like behavior in the
spiking network model was another option that we can verify at
the network level (see Figure 5D).

4. DISCUSSION

We proposed a self-consistent model of interneurons
interacting with extracellular, activity dependent GABA.
The model represented two coupled nonlinear ODEs describing
the dynamics of population activity and ambient GABA
concentration, respectively. To write the first equation we

used the well-known Wilson-Cowan formalism describing
the low-pass behavior of a neural ensemble (Gerstner et al.,
2014). The gain function was chosen in a way to properly
mimic the behavior of the interneuron with tonic GABA
conductance (Adamchik and Kazantsev, 2017). The dynamics of
ambient neurotransmitter were quantitatively accounted for on
the basis of empirical evidence about the sources and sinks of
extracellular GABA (Semyanov et al., 2004). Mathematically, the
model was a continuous-time dynamical system on a plane. It was
shown to admit both stationary and periodic solutions depending
on the parameters governing neurotransmitter concentration.
Unlike the stationary-like behavior, periodicity was a feedback-
induced feature with clear biophysical explanation. In oscillatory
mode, the system evolved between the regions of excitatory
and inhibitory GABA. In each of these regions the dynamical
variables relaxed to their stable-state values, so that the type of
the oscillations was essentially relaxational. Such a pattern of
synchronized population activity can be regarded as a specific
type of brainwave.

We determined the conditions for oscillations and their
characteristics such as period and magnitude as a function of
GABA parameters. In particular, we found out that oscillations
were possible only for strongly depolarizing GABA. For
interneurons, GABA reversal potential had to exceed the RMP
by at least 9.2mV for oscillations to occur, which is above the
reported values (Michelson and Wong, 1991; Verheugen et al.,
1999; Chavas and Marty, 2003; Banke and McBain, 2006). The
oscillatory region on the plane of baseline GABA concentration
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and maximumGABA production rate had roughly the shape of a
semi-infinite stripe, i.e., there existed an upper background level
of GABA and a lower intensity of its production, beyond which
no oscillations occured. As a consequence, neural oscillations
could be induced or suppressed pharmacologically, by changing
GABA control parameters. This might have some biomedical
implications since extrasynaptic GABA is believed to contribute
to epileptic or schizophrenic brain activity (Brickley and Mody,
2012).

In conclusion, we need to mention the limitations of our
present consideration. The suggested model of the feedback
between neurons and extracellular GABA is minimal in the sense
that it does not account for many key features of real neural
networks and their environment. For example, when discussing
ambient GABA dynamics (section 2.2) we assumed GABA
sources, sinks, and receptors to be co-local. This allowed us to
describe the time evolution of ambient GABA concentration with
a simple ODE instead of building a detailed model accounting for
the actual geometry of the extracellular space. Futher, we assumed
uptake and non-vesicular release independent on population
activity, although there is experimental evidence that this
traditional view was too simplistic (Richerson and Wu, 2003).

In addition, we considered the special case of a homogeneous
neural network which is a rough representation of real neuronal
ensembles. Taking into view all these considerations, we must
admit that our conclusions can offer only primary insights into
the feedback-induced dynamics of GABA-driven interneurons.
At the same time, they can be regarded as reference point for
future studies applying more sophisticated methods.
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