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The brain uses a mixture of distributed and modular organization to perform

computations and generate appropriate actions. While the principles under which the

brain might perform computations using modular systems have been more amenable

to modeling, the principles by which the brain might make choices using distributed

principles have not been explored. Our goal in this perspective is to delineate some

of those distributed principles using a neural network method and use its results as a

lens through which to reconsider some previously published neurophysiological data.

To allow for direct comparison with our own data, we trained the neural network to

perform binary risky choices. We find that value correlates are ubiquitous and are always

accompanied by non-value information, including spatial information (i.e., no pure value

signals). Evaluation, comparison, and selection were not distinct processes; indeed,

value signals even in the earliest stages contributed directly, albeit weakly, to action

selection. There was no place, other than at the level of action selection, at which

dimensions were fully integrated. No units were specialized for specific offers; rather,

all units encoded the values of both offers in an anti-correlated format, thus contributing

to comparison. Individual network layers corresponded to stages in a continuous rotation

from input to output space rather than to functionally distinct modules. While our network

is likely to not be a direct reflection of brain processes, we propose that these principles

should serve as hypotheses to be tested and evaluated for future studies.

Keywords: neuroeconomics, distributed network, neural network, modular network, parallel distributed system

INTRODUCTION

Many distributed decision-making systems, such as honeybee swarms, democracies, and slime
molds can select options based on their economic values (Bartels, 1988; Franks et al., 2002; Cohen
et al., 2008; Seeley, 2010). Such systems are faced with different constraints frommore conventional
serial, localized, and modular systems. In modular decision-making systems, different elements
of choice are handled by dedicated subsystems that are functionally separated and that have
highly specialized roles. For example, in the brain, different components of decision-making, from
evaluation to action selection, are sometimes proposed to be controlled by distinct brain structures
(Hare et al., 2009, 2011; Padoa-Schioppa, 2011; Levy and Glimcher, 2012). In distributed systems,
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by contrast, individual elements follow similar repertoires,
typically have more autonomy, and generally have limited and
often stochastic ability to communicate with other units (Seeley
and Buhrman, 1999; Couzin, 2009; Marshall et al., 2009; Mitchell,
2009; Eisenreich et al., 2017; Hunt and Hayden, 2017).

These two classes of systems may make choices based on
distinct sets of principles. The brain is, of course, a complex organ
with mixed distributed and modular elements. Nonetheless,
many proposed models are far on the modular side of the
continuum; that is, they envision that circuits corresponding to
elements of choice are anatomically separate, either at the level
of the brain region or the single neuron. Thus, for example, one
region or circuit may evaluate offers, another may compare them,
and a third may bind the results of the comparison with actions
to produce an overt choice (e.g., Wong and Wang, 2006; Hare
et al., 2009, 2011; Padoa-Schioppa, 2011; Levy and Glimcher,
2012; Ebitz and Hayden, 2016). Generally, in modular systems,
value is computed and represented explicitly and in an abstract
and universal format, often called a common currency (Landreth
and Bickle, 2008; Chib et al., 2009; Padoa-Schioppa, 2011; Levy
and Glimcher, 2012; Sescousse et al., 2015). Brain regions can
be classified as pre- or post-decisional, based on whether they
precede or follow the calculation of a common currency value.
And value comparison can be said to take place in a particular
space, typically in goods space or action space (e.g., Rangel et al.,
2008; Levy and Glimcher, 2012; Bartra et al., 2013; Clithero and
Rangel, 2013). Modular approaches often focus on the question
of what is the single site in the brain at which comparison
occurs, rather than how comparison reflects the interaction of
qualitatively different elements (e.g., O’Doherty, 2004; Hare et al.,
2008, 2011; Padoa-Schioppa and Assad, 2008; Kennerley et al.,
2011; Padoa-Schioppa, 2011; Hauser et al., 2015). They also tend
to explore how values are bound to actions (e.g., Padoa-Schioppa
et al., 2006; Cravo et al., 2011; Hare et al., 2011; Padoa-Schioppa,
2011).

Surprisingly, most thinking on economic choices and their
implementation in models has focused on modular networks
where the division of labor is rather strict, in the sense that,
for instance, one part of the network is devoted to value
estimation while other part of the network is devoted to choice
selection (Soltani et al., 2006; Soltani and Wang, 2010; Hunt
et al., 2012; Chau et al., 2014; Rustichini and Padoa-Schioppa,
2015). Such work also parallels related perceptual decision-
making models in which one part of the network performs
feature or stimulus estimation separately and then send this
information out downstream for the formation of a decision
(Shadlen et al., 1996; Wang, 2002; Usher and McClelland,
2004; Moreno-Bote et al., 2007; Beck et al., 2008). The above
work has provided a solid pillar to understand the neuronal
mechanism under which economic choices might operate,
especially because they model explicitly the time evolution of
choice selection through detailed and biophysically plausible
synaptic dynamics. Despite their large success, the principles
under which economic choices operate under distributed systems
have not been explored.

The goals of this perspective are to delineate the properties
of distributed economic decision-making as a guide for future

critical tests. Specifically, our first goal is to provide a proof-
of-concept argument that a modular system is not a priori
necessarily true, nor are ideas like common currency value
representations, an abstract goods space, or a labeled line
correspondence between specific neurons and offers. Our second
goal is to delineate the properties of one example system, and use
these as a lens through which to re-examine neural signals. We
conclude that the field’s strong focus on modular, as opposed to
distributed, models of economic choice is premature.

As a guide to the basic properties of distributed choice systems
we use a feed-forward neural network, similar to one that has
been successfully used for vision (Orhan and Ma, 2017), to
perform choices between two gambles (the specific gambling
problem we chose is based on our own previous studies of such
tasks; Strait and Hayden, 2013; Strait et al., 2014; Blanchard et al.,
2015a; see also Blanchard et al., 2014, 2015b). We and others
previously proposed that choice processes may be distributed.
However, in the past we did not go, at a detailed level, into how
that might occur. Here, we implement a neural network as the
next small step in generating an intuition for how distributed
choice processes may occur in the brain. The network is not
designed to provide a realistic model of neural computations
underlying choice; the real brain has many important features
not included in our model (like its size, plasticity, feedback,
oscillatory signals, etc.). Instead, our goal is to understand,
in an abstract way, the general properties of a very simple
distributed network that can solve the problems of economic
choice (Figure 1).

A NEURAL NETWORK IS A DISTRIBUTED
CHOICE SYSTEM

As a lens through which to examine the mechanisms of
economic choice, we consider a simple distributed chooser,
a feed-forward network (Werbos, 1974; Minsky and Papert,
1988) that can perform a neuroeconomic task involving choice
between two gambles. (We focused on gambles because they are
mathematically well understood and yet not so simple as to be
trivial, and because we have ready access to neural data in similar
tasks).

Each of the two gambles (indicated by i=1,2, for right and
left spatial location) is described by a reward magnitude, ri,
and the probability, pi, of obtaining it (the probability of not
obtaining reward as outcome is the complementary probability
1− pi). The reward magnitude per gamble is drawn randomly
and independently across trials, following a uniform discrete
distribution in the interval [0,2] in steps of 0.2 (arbitrary units,
a.u.). The probabilities are also drawn randomly across gambles
and trials from a uniform discrete distribution in the interval
[0,1] in steps of 0.1. Accordingly, the expected values (EV) for
the two gambles varied randomly, defined as the product of the
corresponding probabilities and rewards, that is, EVi = piri.

We used a network consisting of 3 hidden layers (20 units in
each hidden layer), 1 input layer and 1 output layer. The input
layer contains 4 neurons (nodes), and the output consists of 2
neurons. The details of the network, such as number of layers
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FIGURE 1 | Cartoon schematic of information transforming from input to output spaces. (A) modular networks which encapsulate every component of decision

making into discrete set of neurons (B) distributed networks which continuously rotates information from input to a decision.

or number of neurons are not critical, and the qualitative results
discussed in this study apply to a large set of configurations. This
supports the idea that the principles we designate here are rather
general.

The rewards and probabilities of the gambles spatially
presented on the right and left side of the screen define the input
vector, I, which correspond to the activity of the 4 neurons in the
input layer,

I =
(

rR, pR, rL, pL
)

(1)

where the i-th entry of the input vector corresponds to activity of
the i-th neuron in the input layer (i=1,. . . ,4). The gamble chosen
by the network is read out from the two-neuron output layer
(each neuron described by label i=1,2) by determining which of
the two neurons have the largest activity. That is, if neuron, i=1
has larger activity than neuron, i=2, then the gamble on the right
is chosen, while the gamble on the left is chosen in the converse
configuration.

To train our network we used several versions of the
backpropagation algorithm (Rumelhart et al., 1986; Hoskins
and Himmelblau, 1992; Boyan and Moore, 1995) to test the
generality of our results, finding always very similar results across
algorithms, and also across different realizations of the initial
configurations of the network. For concreteness, we only report
the results of the following algorithm. We take the subscripts
(n, i) to represent neuron i in layer n. The activity (e.g., firing rate)
of such a neuron is denoted yn,i. The number of hidden layers
goes from 1 toN, and the number of neurons in each layer are 20,
i = {1, . . . , 20} , except for the output layer (n = N), for which
there are only two neurons i = {1, 2}. Note that the input layer,
consisting of four neurons, taking values as in Equation (1), is
considered to be layer n = 0.

At any trial to the network is presented with a choice between
two gambles, described by the random vector in Equation (1).
The gamble chosen corresponds to the neuron with the highest

activity in the output layer, with activity:

yN
chosen

= max
(

yN1 , y
N
2

)

(2)

In case that the two neurons have the same activity, one of them
is chosen randomly. The goal of the network is to minimize the
difference between the chosen activity and the obtained reward,
Rt , over trials

E = 1
2

∑

t e
2
t =

1
2

∑

t

(

Rt − yN
chosen,t

)2
(3)

We take gradient descent over this cost function by changing the
weights of the network locally and incrementally over trials, using
the back-propagation algorithm (Werbos, 1974; Rumelhart et al.,
1986; Haykin and Network, 2004). The following describes the
general algorithm for a given input at a trial t, and hence the
subscript t is omitted for all equations from now on.

Denoting the weights connecting layers n and n-1 by wn
ij, then

the activity in one layer as a function of the previous layer is
written as

yni = f
(

∑

j w
n
ij y

n−1
j

)

, (4)

where f is the neuron’s activation function, taken to be a
hyperbolic tangent with slope parameter equal to 3, f (x) =

tanh(3x), (this choice leads to an initial good scaling of inputs
into the first layer). The thresholds or biases (Rumelhart et al.,
1986; Haykin and Network, 2004) are set to zero. We generalize
Equation (4) for the special case of the first layer, n = 1, by taking
y0j = Ij, that is, the activities of the input layer, Equation (1). The

above equations define the activity of any neuron of the network
at any given trial, with gambles as defined by the input vector,
Equation (1).

Because the activity of the neuron associated to the chosen
gamble in trial is the one that tries to predict the outcome, the
input weights of the neuron associated with the chosen gamble in
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any single trial are updated, while the input weights of the neuron
associated with the unchosen gamble are left constant in that trial.
We denote by δni in every trial the error associated to neuron (n, i)
in the network. These errors take the values in Equation (5) for
the output layer,

δNi = Ei × f
′
(

∑

j w
N
ij y

N−1
j

)

(5)

and the following values

δnj =
∑

i
δn+1
i wn+1

ij f ′
(

∑

k w
n
jk
yn−1
k

)

(6)

for any other layer below it (n < N), where f ’ is the derivative of
the activation function (in our case, f ′ (x) = 1− tanh6x). Finally,
the per trial update equation the weights per trial can be simply
expressed as

∆wn
ij = η δni yn−1

j , (7)

where η is the learning rate (η = 0.01). To keep the weights
between bounds, at every trial after applying Eq. (6) we
normalized all them by the maximum value of wn

ij across all

neurons in layer, n, denoted wn
max, by

wn
ij →

wn
ij

wn
max

(8)

We also used other versions of the background algorithmwithout
weight normalization, giving very similar results to the ones
shown here.

The parameters of the network are updated trial-by-trial using
Equation (7), and the performance is tracked for a total of 3,000
trials. The responses of neurons in the final 1,000 trials portraying
stationary performance through a plateau are used for analysis.
The final results are an average of 300 networks that differ
in their initial values, randomly and i.i.d. following a uniform
distribution in the interval [−0.01, 0.01]. Thus, our results are
not specific to any particular initial configuration of network
connectivity.

The performance of the network is measured by its ability to
choose the best of the offers. As the outcome is probabilistic,
the network cannot fully predict and learn the actual outcomes
beyond the average quantities. We expect, however, that the
network as a whole is able to learn the abstract notion of ‘expected
value’ from the observations and range of outcomes.

Correlations between neural responses to various task
parameters were performed using Pearson linear correlations,
and regressions were performed using linear regressions with
single predictor. Tuning or coding of a neuron is defined when
its activity significantly (p < 0.05) correlates with task variables
such as offer value, probability of offer. There is a possible
confound of the extent of training on the computed p-value.
To get around the confound, we limit network learning to
the saturation by following the criterion limit of performance
greater than 80% in a total of 3,000 trials, a percentage similar
to that reported during experimental training of humans and
monkeys by our earlier studies. Also, we particularly focus on

the differences in neuronal activity across layers, and not on the
magnitude of individual neuronal responses. Because training
was the same across layers/conditions, the relative values are
(somewhat) meaningful, even if the absolute values are not. They
help us to discuss the significance of differences in encoding of
variables such as offer reward magnitude, offer probability, by
neurons across layers. We compare them to neurophysiological
data from various brain structures in the light of distributed
coding.

Some variables of interest are offer reward magnitude (rew),
offer probability (prob), both of which can be directly taken from
the network input. Others are spatial position of offers (pos), and
choice. The choice is a categorical variable computed based on
the maximum of network output as described in the Methods.
Spatial information, i.e., the encoding of offer side, is computed
by finding the response activities to the same offer (reward and
probability) when it appeared in position 1 (offer side is left, first
two input terms) vs. position 2 (offer side is right, third and fourth
term), and regressing the responses against their positions (1 vs.
2), irrespective of the other offer.

To analyze lesions, the activities of a proportion of neurons
[5, 10, 25, 50, 75%] that are randomly selected in a given layer
are turned to zero, after network stabilizes at trial = 3,000. The
lesioned net is run for 1,000 trials and for 300 realizations of
the initial conditions, with no additional training, for further
analysis.

BASIC BEHAVIOR OF THE NETWORK

The network was able to perform greater than chance in choosing
the best offer. As with our monkeys, errors (in which the
network choice is the gamble with lower expected value) were
most common when the two-presented gambles were close in
value (Figure 2A, Strait et al., 2014, 2015). The performance
of the network as an average over all instances converged
to a final accuracy of 85% (variance across 300 instance of
repeats was 11.56%, standard deviation=33.99%), a quantity that
approximates to the behavior of monkeys in similar tasks.

VALUE IS CODED BROADLY IN THE
NETWORK

In modular systems, each neuron’s specific computational role
is specialized and is determined by the function of the module
to which it belongs. In distributed systems, by contrast, neurons
tend to have broader and more flexible roles. These roles vary
quantitatively but seldom qualitatively, and neurons may play
multiple roles simultaneously. In our network, coding of all task
variables was distributed.

Figure 2B shows that more than 80% of the neurons coded
for all categories such as rewards (blue line), probabilities (red
line), spatial position (yellow line), and choice (violet line).
Figure 2C shows regression coefficients for the encoding of
rewards, rL (blue line), probabilities, pL (red line), in each layer.
All of these variables were coded ubiquitously and were not
confined to a specific layer or to specialized neurons in a layer
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FIGURE 2 | Basic behavior of the network. (A) Percent choosing the offer presented in left as a function of value difference between left and right offers (shaded in

gray) shows a characteristic sigmoidal curve fit (averaged over N = 300 network instances) (B) Percent tuning for task parameters show ubiquitous encoding of them

throughout the network. The panel shows percentage encoding of offer (left) value, rew, offer (left) probability, prob, choice and offer’s spatial position, pos, in three

layers of the network (C) Regression coefficients (β) of a linear regression model with a single regressor show increase in encoding of task parameters with increase in

levels of layers. The figure shows the variance of observed regression coefficients for offer value (rew, left), offer probability (prob, left), choice and offer’s spatial

position (pos), for neurons across three layers. The spatial information is computed as the difference in responses to offer side for the same offer magnitude as

described in the Methods. Error bars denote SEM (D) No common currency is found. The activity of several neurons in the third layer is shown as a function of reward

and probability while the product of these two is kept constant to a fix expected value (EV = 0.16).

(Supplementary Figure 1). These results support the basic idea
that an implementation of a decision process does not need to be
composed of neurons that resemble distinct choice stages, such
as a separate representation of probability and reward that is later
combined for a decision.

Neurons that coded pL were more likely to jointly encode rL
(for example in the third hidden layer: Pearson correlation, ρ =

0.53, p < 0.001, Figure 3, red line). Similar results were found
for rR and pR (in the third hidden layer: ρ = 0.54, p < 0.001).
This kind of multiple-value coding pattern was seen throughout
the network (Supplementary Figure 2). The dependence of
response, in the same way, on the two dimensions that determine
value indicates that these neurons’ responses correlated with
integrated value. (The fact that correlations are substantially
weaker than 1 suggests that value may be only partially integrated
at this point). The positive relationship between coding for
elements that contribute to value is a diagnostic feature of
value coding in single neurons. The proportion of neurons
encoding EVL and EVR increased in higher layers (Kruskal-
Wallis, χ

2 = 15.34, p < 0.05), suggesting that the conversation
of disjunct inputs to values occurs gradually and smoothly
rather than in one discrete layer. Overall, value coding was
ubiquitous and there weren’t distinct neurons coding only
value.

Neural Parallels
The broad coding of value correlates mirrors neural results
showing that reward signals and their expectancies can be found
ubiquitously throughout the brain, from early sensory structures
(Shuler and Bear, 2006; Serences, 2008) to premotor structures
(Cisek and Kalaska, 2005; Cisek, 2007). Indeed, one recent
neuroimaging study reported coding of reinforcement signals
broadly throughout much of the brain (Vickery et al., 2011).
Single neuron data collected throughout the prefrontal cortex
and striatum shows value correlates ubiquitously in these areas
as well (e.g., Wallis and Rich, 2011; Nogueira et al., 2017). Some
work has focused on distinguishing ersatz value signals—mere
value correlates—from true value representations (Wallis and
Rich, 2011; O’Doherty, 2014). This work is motivated, in part, by
the idea that multiple value representations would be redundant
and pointless. In a modular system, they would be. Our model
suggests an alternative idea, that ubiquitous value correlates may
be real, and may be a signature of distributed choice processes.

It is not the case in our network model that any layer precedes
or follows the computation of value—although layers do differ
quantitatively in how abstract their value encoding is. Value
encoding becomes more prevalent and more abstract (i.e., there
is greater integration) with layer; later layers simply inherit and
purify less abstract value encodings from previous layers. This
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FIGURE 3 | Correlations: The panel shows Pearson correlation coefficients

measured for the scatter between regression coefficients (β) over the neuronal

population for probabilities and rewards presented in left side: rewl and probl,

the integration increases with layers; for expected values: EV l and EVr, the

anti-correlation for value tuning increases with layers; for abs(EV l) and

abs(chosen value) there is a constant positive correlation between the offer

value and the chosen value that doesn’t change with layers. The regression

coefficients are obtained from linear regression using a single regressor.

Choice probability correlations (CPC) referring to a correlation between

responses of neurons (variance in firing not accounted for by task variables

such as offer value, offer probability, offer position) and choice increase as the

level of hidden layer increases; error bars denote SEM.

finding is consistent with some results showing more abstract
(less-componential or less-dimensional) tunings in the anterior
cingulate cortex (ACC; presumably later in the sequence) and less
abstract or more componential in the orbitofrontal cortex (OFC;
presumably early in the sequence, Kennerley and Wallis, 2009;
Kennerley et al., 2011; Blanchard et al., 2015a; Nogueira et al.,
2017).

VALUE INFORMATION IS NOT
SEGREGATED FROM SPATIAL
INFORMATION

We next considered the encoding of spatial information, and
defined coding of offer side as the difference in responses to
the same offer (i.e., probability/reward pair) when it appeared in
position 1 (left, first two terms) vs. position 2 (right, third and
fourth term). Note that because it is a neural network, the spatial
terms are notional; what is important is the linkage between
the first pair of input neurons and the first output neuron and
the linkage between the second pair of input neurons and the
second output neuron. We found that encoding of offer side and
chosen side rose as layer level increased (Figure 2C, violet and
yellow lines respectively). Thus, spatial information—from both
the input (offer) and output (choice) end—is present throughout
the network. More generally, information about the details of the
stimulus—information that allows for identification of stimuli
and specification of actions, is present throughout the network.

Therefore, there are no pure abstract value units that solely code
expected value (Pearson correlation between unsigned regression
coefficients for spatial position and EV, ρ = 0.2, p < 0.001
suggesting their joint encoding).

It is notable that neurons do not consistently use the same
code (left vs. right) for offer (Figure 2C, violet line) and choice
(Figure 2C, yellow line). In other words, a left-preferring neuron
for offers is no more or less likely to be left-preferring for
choices. It appears then that our network does not develop
a task invariant spatial code. In other words, space is not
accounted for in any special way and does not serve as an
anchor around which other signals are organized, but rather
different spatial signals are mapped to units arbitrarily. One
implication of the fact that our network lacks neurons with
only a pure value code is that any downstream decoder will
need to have information about the position of a gamble to
be able to ascertain the meaning of a value response, at least
from a single neuron. This feature is characteristic of distributed
systems.

Neural Parallels
The question of whether spatial position can be decoded in
reward regions of the brain is much debated (Feierstein et al.,
2006; Roesch et al., 2006; Cai and Padoa-Schioppa, 2012; Strait
et al., 2016). There is some evidence that the OFC and/or the
ventromedial prefrontal cortex (vmPFC) may be a space-free
region (Padoa-Schioppa and Assad, 2006; McNamee et al., 2013;
Grattan and Glimcher, 2014; Rich and Wallis, 2016). Indeed,
the purported lack of spatial information in OFC/vmPFC is
one factor supporting the idea that they, not anterior cingulate
cortex, are candidates for the core value regions of the cortex
(Heilbronner and Hayden, 2016; Strait et al., 2016). However,
the situation is clouded by other evidence pointing to spatial
information in these regions, especially for chosen action
(Feierstein et al., 2006; Seo and Lee, 2007; Furuyashiki et al.,
2008; Tsujimoto et al., 2009; Sul et al., 2010; van Wingerden
et al., 2010; Abe and Lee, 2011; Luk and Wallis, 2013; Rich and
Wallis, 2014; Bryden and Roesch, 2015; McGinty et al., 2016;
Strait et al., 2016), and also for the offer position (Strait et al.,
2016).

If spatial information for offer and choice is contained
throughout the brain’s reward regions, our network makes a
suggestion of why. The network gradually begins to build a
representation of the forming action plan. Information about the
plan is weak but detectable even in early layers. And information
about the positions of offers (to the extent that it is irrelevant
to choice) is weak but detectable even in later layers. From
that perspective, then, there is no real categorical distinction
between goods-based (input-based) and action-based (output-
based) choices; there is just a gradual transformation from input
to output domains. Although early layers may be more goods-
based-like and later layers may be more action-based-like. From
this perspective, then, goods-based and action-based choice is a
false dichotomy, and value comparison among goods and action
selection for a choice are two names for the same process (Cisek
and Kalaska, 2010).

Frontiers in Computational Neuroscience | www.frontiersin.org 6 March 2018 | Volume 12 | Article 22

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Balasubramani et al. Neural Principles of Economic Choice

RELEVANCE OF SPATIAL SELECTIVITY
RESULTS TO RULE ENCODING

Often times, we must deal flexibly with changing rules to make
effective choices (Wallis et al., 2001; Yamada et al., 2010; Sleezer
et al., 2016). For example, the decision about whether to answer
or ignore a cellphone ringtone depends on whether it is one’s
own phone or a colleague’s. The rule then is a modulatory factor
that changes an input-output mapping. In our network, which
models space in an abstract manner, space is just another rule.
That is, if the positions of two gambles are switched, the action
may be entirely different, even if the evaluation and comparison
are the same. Indeed, if we wished to model rule instead of spatial
position, our network would be identical, and its results would
of course not change. For this reason, the spatial findings have
some implications for the neuroscience of rule-based decisions
in distributed networks as well. Specifically, they suggest that we
should expect to find rule representations embedded within the
same set of neurons that make choices.

Neural Parallels
The neuroscience of rule-based decision-making, like
neuroeconomics, often proceeds from the assumption of
modularity. Thus, it is often assumed that rules are stored
in specialized brain regions that modulate activity in other
disparate regions to implement rules (Miller and Cohen, 2001;
Wallis et al., 2001; Wallis and Miller, 2003; Yamada et al., 2010).
While the evidence for a modular organization of rule processing
systems is strong, some recent results challenge this idea. Most
notably, some results indicate that rule encoding is found in a
wide number of structures. Most notably, results indicate that
rule encoding can be observed in ostensibly core reward regions
like OFC and ventral striatum, VS (Wallis et al., 2001; Floresco
et al., 2006; Hayden et al., 2010; Bissonette and Roesch, 2015;
Sleezer and Hayden, 2016; Sleezer et al., 2017).

NO COMMON CURRENCY CODE

The overlap at the single neuron level between value and spatial
coding challenges the idea that there is necessarily a pure value
domain. In doing so, this finding raises a deeper question, of
whether a single domain-independent value code is necessary.
Such a code is sometimes called a common currency code because
it allows for direct comparison of dissimilar goods (Landreth and
Bickle, 2008; Chib et al., 2009; Padoa-Schioppa, 2011; Levy and
Glimcher, 2012; Sescousse et al., 2015).

We reasoned that in if our network uses a common currency
value system, then equally valued gambles would elicit the same
responses regardless of what drove that valuation. Thus, a high-
stakes low-probability and a low-stakes high-probability gamble
that are equally preferred should produce the same responses.
Formally, we say a common currency format is used if the
response to offers A and B is the same when the value (as
measured by preference indifference) of A and B are matched but
their attributes (reward and probability) are not. Our network did
not produce any neurons exhibiting common currency effect on
analyzing all EV and all layers. Figure 2D presents few instances;

it shows responses from example neurons in third layer for
different combination of reward and probability components
(x labels) yet with same expected value, 0.16. The results show
that responses are distinct for various combinations of rewards
and probabilities suggesting that there is no common currency
coding.

Another basic assumption of a common currency code is that
responses of neurons that use such a code will encode the value
of offer and not its attributes (reward, probability). We showed
above that integration rises with layer in the network and is
greatest in the third layer. But does the network ever succeed in
throwing away all information about components to create a pure
value signal? It appears the answer is no: it was possible to decode
both attributes independently from ensemble responses from any
layer of the network. The network codes offer values (EV) for
left and right positions very differently (Pearson correlation ρ

= −0.58 in layer I, −0.9 in layer II and−0.93 in layer III, p <

0.001, Figure 3, violet line), while still differentially coding for
their attributes—rewards (Pearson correlation between signed
regression coefficients for rL and rR, ρ = −0.42 in layer I, −0.71
in layer II and −0.79 in layer III, p < 0.001) and probabilities
(Pearson correlation between signed regression coefficients for pL
and pR, ρ =−0.19 in layer I,−0.48 in layer II and−0.66 in layer
III, p < 0.001) of offers. They show that offer’s expected values
EV, and their attributes, r and p can be decoded independently.

These results indicate that, whether or not we can say that the
network uses a common currency code in any sense (this may
be a philosophical question), it is not one that is observable at
the level of the single unit by our definitions. Together with the
above findings, these results challenge the idea that value must
be “recognizably coded” (to use Fetz’ term, Fetz, 1992) or be
reified (to use the philosophical term) at the single unit level
in a system that can make economic choices between gambles
differing onmultiple dimensions. On the contrary, they show that
it is possible for even a simple system to make effective choices
without solely computing and encoding value in its neurons.
Value can be coded emergently—that is, it is not present in any
units particularly, but observed as an output of the system as a
whole.

Neural Parallels
A good deal of evidence supports the idea that neurons in a few
brain regions use a common currency code for value, especially
OFC (e.g., Padoa-Schioppa, 2011; Levy and Glimcher, 2012). We
consider this evidence to be relatively strong, but anticipate that
more sophisticated analysis methods and larger recordings in
more complicated tasks will be needed to critically test these
ideas. Some tentative new results have already challenged the
dominant view of OFC as a source of common currency codes
(McGinty et al., 2016; Wang and Hayden, 2017). Nonetheless, we
regard the question as currently unresolved.

NO LABELED LINES FOR OFFERS

Several prominent models of value comparison are labeled
line models; that is, they imagine two discrete populations
of neurons competing for control of dedicated comparison
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neurons (e.g., Chau et al., 2014; Rustichini and Padoa-Schioppa,
2015; Hunt et al., 2016). Labeled line model fits readily into a
modular organizational scheme: the labeled lines neurons are
pre-decisional; the comparison neurons are decisional, and their
targets are post-decisional. They do not fit as naturally with a
distributed model.

We did not see two distinct populations of neurons for
the two offers in any layer of our network. Specifically, we
found a positive relationship between coding strength (unsigned
regression coefficient) for the two offers, a finding that cannot
be reconciled with the idea of specialized populations for the two
values (Pearson correlation, ρ= 0.08, p<0.0001). Similar positive
correlation between unsigned regression coefficients for offer and
chosen value was found (ρ = 0.35, p < 0.05, Figure 3, green line).
These findings suggest that offer and chosen value neurons do not
constitute discrete sets of neurons (Figure 3).

Neural Parallels
It remains unclear whether neurons in the reward system have
labeled line encodings. There is a small amount of evidence that
neurons that encode the value of the two offers in a choice are the
same, but alternate in which value they encode - a finding at odds
with labeled line models (Rich andWallis, 2014; Strait et al., 2014,
2015; Blanchard et al., 2015a; Azab and Hayden, 2017; Xie et al.,
2017). These lines of work have not yet been reconciled, but the
question is empirical. The contribution of our model, however, is
to show that a labeled line system is not theoretically necessary,
or one that a distributed system will necessarily develop through
simple learning rules.

COMPARISON OF VALUES

We found a significant negative correlation between the signed
coding parameters for all layers (for value in the first layer:
Pearson correlation, ρ =−0.58, p < 0.001). That is, to the extent
that a neuron encodes the value of one offer it (stochastically
speaking) encodes the value of the other offer with reversed
tuning. Thus, no neuron is solely dedicated to a particular
offer, consistent with the lack of labeled line coding (see
previous section). We have previously reported such an effect
in vmPFC, VS, and dorsal ACC, and have attributed this effect
to a comparison process (Strait et al., 2014, 2015; Azab and
Hayden, 2016). Indeed, in our network, this negative correlation,
which was distributed across layers, is the mechanism by which
comparison and thus choice occurs.

The anti-correlation between the value tuning for the two
offers rose with layer (Figure 3, violet line; Pearson correlation,
ρ = −0.93, p < 0.001), suggesting that all layers contribute
to comparison but that responses of later layers more closely
resemble a value difference. In other words, early layers initiate
the process of value comparison and later layers strengthen it
by aggregating signals from earlier layers. Thus, a consensus
between early and late layers can be achieved directly in a feed-
forward manner. This does not mean that the “true” site of
comparison is the last layer, and the earlier ones are simply
modulators of the comparison. We could equally say that the
comparison occurs in rough form in the first layer, and is refined

in subsequent layers. More simply, we could say that the choice is
distributed.

Choice probability correlation (CPC) is a term that refers to a
correlation between responses of neurons (variance in firing not
accounted for by task variables) and choice. It can be computed
by analyzing choice correlations for our network’s responses after
regressing out task input variables such as reward, probability
and spatial location of the two gambles. We found significant
but weak choice correlations in neurons throughout the system
(Kruskal-wallis, χ2 = 21.643, p < 0.05). The size of correlations
rose with layer (Figure 3, blue line).

LESIONS LEAD TO GRACEFUL
DEGRADATION OF FUNCTION

Studies on lesions in the decision making circuitry don’t provide
consistent results for behavioral impairment (Harlow, 1869;
Damasio and Damasio, 1990; Bechara et al., 2000); as there is
evidence for little or no change in decision making behavior
even after surgical removal of entire frontal lobe (Busch et al.,
2017). Several theories point toward the presence of underlying
distributed networks, where functions are not localized, for
reconciling with the results of lesion studies (e.g., Plaut, 1995).
Specifically, many studies relate to graceful degradation property
of distributive nets to explain lesion effects (Farah, 1994; Plaut,
1995; Wilson et al., 2010).

Graceful degradation of function is a standard property of
neural networks (Arbib, 2003; Haykin and Network, 2004).
We explored the effects of network lesions in sizes of 10–75%
per layer. Lesions were generally not catastrophic (a benefit
of distributed processing networks). They were modeled by
nullifying the responses of certain proportion of neurons that are
randomly selected in a layer. It led to choice deficits that were
stronger for more difficult choices. Particularly, smaller lesions
(25% size) were less destructive thanmedium (50% size) and large
(75% size) lesions for all layers, as expected (Figure 4).

CONCLUSIONS

The distributed implementation of economic choice may be less
familiar or less intuitive than a modular one, but it should not
be. Familiar distributed decision-making processes include how
bees, ants, and other social insects choose hive sites, how fashion
trends become popular, and how prices are set in capitalist
economies (Bartels, 1988; Franks et al., 2002; Cohen et al.,
2008; Seeley, 2010). These are processes in which there is no
central decision-maker; instead, the choice is the result of simple
repeated interactions among agents that all have a limited and
often noisy view of the whole (Mitchell, 2009). In this perspective,
we focus on implementing a classic model of neural networks
to delineate some properties of distributed networks as put
forth earlier by several scholars (Cisek and Kalaska, 2010; Cisek,
2012; Pearson et al., 2014; Eisenreich et al., 2017; Hunt and
Hayden, 2017), and compare them to neural data, conceptually,
to quantify how they can adjudicate between distributed and
modular models of economic choice. We happened to choose a
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FIGURE 4 | Lesion effects (A) Network’s performance in choosing the best

offer when averaged over trials, and (B) the crossing slopes of sigmoid curves

(psychometric function as in Figure 2A, for percent choosing the offer

presented in left as a function of value difference between left and right offers)

fitting those percentages, are shown for lesioned networks—with percent

lesions 5, 10, 25, 50, and 75% (for layers I, or II, or III, or all of the three layers,

as mentioned in legend). The psychometric curves were fitted using a

hyperbolic tangent function to show network’s average performance.

neural network to implement it because it’s a well-understood
system. In our model, we find the neurons implementing
evaluations, comparisons, and choice, ubiquitously; qualitative
differences arise between layers. Some results on ubiquitous
presence of comparison between offers, and choices (in form of
CPCs) are shown in the last section of the results- “comparison
of values.” We also performed a simple modification to the
network, by adding one another layer at the end consisting
of a single binary output neuron, directly reading the choice
(Supplementary Figure 3). This modification didn’t alter any of
our results qualitatively, suggesting the network didn’t wait till
the end to perform comparisons and choices, substantiating they
are ubiquitously spread throughout the network.

One major limitation of our network is that it is designed
to perform only a single task. It is possible that a network
designed to be more flexible to tackle complex variety of
tasks will naturally create more modularity in its organization
(Yang et al., 2017). However, our brief consideration of space
and rules in the brain suggest that such modularity is not
necessarily observed (also see Hunt and Hayden, 2017). Another
limitation would be the simplicity of computational neural
network we chose to perform the distributed computations.
Perhaps, more complex networks can be thought to model the
brain functions closely, but nevertheless we seek to show that
basic properties of simple distributed networks could explain
the principles of neuroeconomic choice as observed from our
past electrophysiological data. We made the decision to focus
on linear correlations primarily because neural studies use that
measure; they thus allow for the most direct comparison with
existing neural data and thus familiar to most readers. This is
a possible limitation of the current study. However, the main
idea of the study, distributed coding of the neural network, can

be claimed irrespective of the linearity of its statistical methods.
We can notice them from Figure 2D, where we test the encoding
of expected value, EV, in all neurons, and the results show none
to encode purely EV regardless of other variables. Therefore, the
neurons of our network don’t exhibit common currency.

One property that distinguishes many distributed systems
from many modular systems is the relative self-similarity
of the system across disparate regions. Another (sometimes)
distinguishing property is the relatively direct relationship
between functions of neurons and functions of the whole
(Mitchell, 2009). These features have direct implications for the
interpretation of neural data. If the brain is highly modular, like
a microprocessor, then responses of single units can be nearly
useless and often highly misleading when making inferences
about the whole (Jonas and Kording, 2017). However, to the
extent that the brain works in a distributed manner, responses
of units can be diagnostic about the properties of the system,
making unit physiology useful. Again, this is not to say that
the brain is highly distributed, or that strong and well thought-
out theories are not helpful. But, the possibility of a distributed
brain may be one reason for optimism when faced with limited
measures of brain activity.

One reason given to favor a highly modular approach over
a distributed one is that abandoning modularity means giving
up answering any important questions like what distinct roles
given regions and neurons play. Supporting a distributed view,
then, is seen as pessimistic, giving into a neural nihilism. We do
not agree. Instead, we think that while adopting a distributed
approach does demote some questions, it promotes a new
and different set of questions. Most fundamentally, how can
very simple computational neurons be arranged so that they
produce flexible and accurate choices? And what simple learning
rules can these neurons follow that allow them to adapt to
changing circumstances in some cases, and yet to store important
information for decades in others?

Why factors, then, might make us favor a distributed system
to a modular one—or a hybrid to a purely modular one? One
fundamental motivating factor behind distributed systems is
their naturalness—that is, they are more naturally evolved. Brains
are created over millions of years to solve particular problems
(Fetz, 1992; Cisek and Kalaska, 2010; Cisek, 2012; Hayden, 2015,
2018; Jonas and Kording, 2017). As such, they are limited in
the pathways they can take toward certain organizations. At
the same time, our behaviors can be consistent with multiple
brain organizations—they may be multiply realizable. Several
features of our network seem consistent with unplanned, self-
organized systems. For example, the lack of specific links between
neurons and functions (Churchland et al., 2012; Rigotti et al.,
2013; Blanchard and Hayden, 2018). Likewise, the ability of
single regions to perform multiple functions simultaneously is
consistent with a bottom-up function (Cisek and Kalaska, 2005;
Hayden and Gallant, 2013; Luk and Wallis, 2013; Pearson et al.,
2014;McGinty et al., 2016; Nogueira et al., 2017).We have argued
that taking the perspective based on the constraints imposed by
evolution can shed new light onto our understanding behavior
(Blanchard and Hayden, 2015). We suspect the same is true for
neural responses as well.
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The goal of the present study is to delineate some
basic principles of economic choice in distributed systems.
Because our ultimate goal is to understand brain function,
and because neural networks are a particularly tractable
distributed system, we used them as our model here. Our
model was not designed with a goal of biological realism;
nonetheless, we think that some of the similarities between
responses in our network and those observed in neurons
are suggestive, and support the idea that the brain’s choice
mechanismsmay be more distributed than is sometimes thought.
This does not mean that the brain is a fully distributed
chooser however. Indeed, the evidence for modular function
is copious (e.g., Rushworth et al., 2011). It is not, however,
unambiguous. Some methods (lesion studies, neuroimaging)
are more well suited for detecting modular functions and
others (unit physiology) are relatively more well suited for
detecting distributed ones. Thus, the methods and techniques
used by various laboratories could bias their inferences on
brain organization, As such, the portrait of choice derived from
these methods are different, sometimes strikingly so. Ultimately,
however, we suspect that the truth lies somewhere in the
middle.

Given the likely possibility that the truth lies in between, the
question of why the field has focused on modular models is an
interesting one. We suspect that part of the reason is that such
models are more intuitive and familiar, especially to scholars
more familiar with computers than with ant colonies (Eisenreich
et al., 2017). And another reason is that the most widely used
method to study economic choice, neuroimaging in humans, is
more adept at assigning functions to regions than it is as detecting
distributed computations. We also suspect that in the future,
models designed with more biological realism inmind could help
sort out the differences between different methods, such as fMRI,
lesion studies, and unit physiology.

AUTHOR CONTRIBUTIONS

PB, RM-B, and BH: Contributed to conceiving of idea, designing
of methods, analysis of results, and manuscript writing.

FUNDING

This work was supported by an R01 fromNIH to BH (DA037229)
and grants PSI2013-44811-P and FLAGERA-PCIN-2015-162-
C02-02 fromMINECO (Spain) to RM-B.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2018.00022/full#supplementary-material

Supplementary Figure 1 | Encoding of option dimensions. (A) probl (B) rewl (C)

offer side (D) chosen side layers 1, 2, and 3 (three subpanels). The forth and fifth

subpanels present summary statistics for all three layers- variance of distribution

and the proportion of nodes of encoding variables in (A–D), and error bars show

SEM.

Supplementary Figure 2 | Correlations. Between (A) unsigned regression

coefficients for probabilities and rewards presented in a specific position, here, left

side, Abs(probl) and abs(rewl), (B) signed regression coefficients for probabilities

and rewards presented in left side, rewl and probl, (C) unsigned regression

coefficients for expected values, abs(EVl ) and abs(EVr), (D) signed regression

coefficients for expected values, EVl and EVr, (E) EVl and chosen value; and three

subpanels in (A–E) for all three layers. Each subpanel also presents its data’s

Pearson correlation coefficient (rho represented as “r”) and p-value (p).

Supplementary Figure 3 | Choices, comparisons and evaluations are

ubiquitously spread throughout the network. This extended network consists of an

additional layer at the end with a single output neuron. We find their results to be

qualitatively similar to our earlier network dealt in this manuscript. (A–C) Show the

basic behavior and correlations found in the extended network. (A) Shows the

accuracy of choice through time; (B) shows the percent choosing of offer

presented in the left as a function of value difference between left and right offers;

(C) shows correlations similar to Supplementary Figure 2. Simulation results for

the extended network are run for total instances of 10, and trials of 15,000. The

responses of neurons in the final 1,000 trials portraying stationary performance

through a plateau are used for analysis. The architecture of the extended network

consists of initial input layer of size 4 (similar in properties to our earlier network),

hidden layer 1 of size 50 neurons, hidden layer 2 of size 50 neurons, hidden layer

3 of size 50 neurons, hidden layer 4 of size 2 neurons, output layer of size 1

neuron. Learning rates are set to 0.01. Activation functions are designed with

same properties as our previous network, and the newly added output layer has a

tanh activation function of slope 10. The output neuron directly reads choice of

offer 1 (offer 2) depending on its activity being greater (lesser) than zero. The

back-propagation training uses error function constructed as a difference between

the choice read by the network and the desired (accurate) choice.
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