
METHODS
published: 05 April 2018

doi: 10.3389/fncom.2018.00024

Frontiers in Computational Neuroscience | www.frontiersin.org 1 April 2018 | Volume 12 | Article 24

Edited by:

Guenther Palm,

Universität Ulm, Germany

Reviewed by:

Michael Beyeler,

University of Washington,

United States

Stefan Duffner,

UMR5205 Laboratoire d’Informatique

en Image et Systèmes d’Information

(LIRIS), France

*Correspondence:

Paul Ferré

paul.ferre@cnrs.fr

Received: 18 May 2017

Accepted: 20 March 2018

Published: 05 April 2018

Citation:

Ferré P, Mamalet F and Thorpe SJ

(2018) Unsupervised Feature Learning

With Winner-Takes-All Based STDP.

Front. Comput. Neurosci. 12:24.

doi: 10.3389/fncom.2018.00024

Unsupervised Feature Learning With
Winner-Takes-All Based STDP
Paul Ferré 1,2*, Franck Mamalet 2 and Simon J. Thorpe 1

1Centre National de la Recherche Scientifique, UMR-5549, Toulouse, France, 2 Brainchip SAS, Balma, France

We present a novel strategy for unsupervised feature learning in image applications

inspired by the Spike-Timing-Dependent-Plasticity (STDP) biological learning rule. We

show equivalence between rank order coding Leaky-Integrate-and-Fire neurons and

ReLU artificial neurons when applied to non-temporal data. We apply this to images

using rank-order coding, which allows us to perform a full network simulation with a

single feed-forward pass using GPU hardware. Next we introduce a binary STDP learning

rule compatible with training on batches of images. Two mechanisms to stabilize the

training are also presented : a Winner-Takes-All (WTA) framework which selects the most

relevant patches to learn from along the spatial dimensions, and a simple feature-wise

normalization as homeostatic process. This learning process allows us to train multi-layer

architectures of convolutional sparse features. We apply our method to extract features

from the MNIST, ETH80, CIFAR-10, and STL-10 datasets and show that these features

are relevant for classification. We finally compare these results with several other state of

the art unsupervised learning methods.

Keywords: Spike-Timing-Dependent-Pasticity, neural network, unsupervised learning, winner-takes-all, vision

1. INTRODUCTION

Unsupervised pre-training methods help to overcome difficulties encountered with current neural
network based supervised algorithms. Such difficulties include : the requirement for a large
amount of labeled data, vanishing gradients during back-propagation and the hyper-parameters
tuning phase. Unsupervised feature learning may be used to provide initialized weights to the
final supervised network, often more relevant than random ones (Bengio et al., 2007). Using
pre-trained weights tends to speed up network convergence, and may also increase slightly the
overall classification performance of the supervised network, especially when the amount of labeled
examples is small (Rasmus et al., 2015).

Unsupervised learning methods have recently regained interest due to new methods such as
Generative Adverserial Networks (Goodfellow et al., 2014; Salimans et al., 2016), Ladder networks
(Rasmus et al., 2015), and Variational Autoencoders (Kingma and Welling, 2013). These methods
reach state of the art performances, either using top layer features as inputs for a classifier or
within a semi-supervised learning framework. As they rely on gradient descent methods to learn
the representations for their respective tasks, computations are done with 32-bits floating point
values. Even with dedicated hardware such as GPUs and the use of 16-bits half-floats type (Gupta
et al., 2015), floating point arithmetic remains time and power consuming for large datasets. Several
works are addressing this problem by reducing the resolution of weights, activations and gradients
during inference and learning phases (Stromatias et al., 2015; Esser et al., 2016; Deng et al., 2017)
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and have shown small to zero loss of accuracy with such
supervised methods. Nevertheless, learning features both with
unsupervised methods and lower precision remains a challenge.

On the other hand, Spiking Neural Networks (SNNs)
propagate information between neurons using spikes, which
can be encoded as binary values. Moreover, SNNs often
use an unsupervised Hebbian learning scheme, Spike-Timing-
Dependent-Plasticity (STDP), to capture representations from
data. STDP uses differences of spikes times between pre and post-
synaptic neurons to update the synaptic weights. This learning
rule is able to capture repetitive patterns in the temporal input
data (Masquelier and Thorpe, 2007). SNNs with STDP may only
require fully feed-forward propagation to learn, making them
good candidates to perform learning faster than backpropagation
methods.

Our contribution is three-fold. First, we demonstrate that
Leaky Integrate and Fire neurons act as artificial neurons
(perceptrons) for temporally-static data such as images. This
allows the model to infer temporal information while none
were given as input. Secondly, we develop a winner-takes-
all (WTA) framework which ensure a balanced competition
between our excitatory neuron population. Third, we develop
a computationally-efficient and nearly parameter-less STDP
learning rule for temporally static-data with binary weight
updates.

2. RELATED WORK

2.1. Spiking Neural Networks
2.1.1. Leaky-Integrate-and-Fire Model
Spiking neural networks are widely used in the neuroscience
community to build biologically plausible models of neuron
populations in the brain. These models have been designed
to reproduce information propagation and temporal dynamics
observable in cortical layers. As many models exists, from the
most simple to the most realistic, we will focus on the Leaky-
Integrate-and-Fire model (LIF), a simple and fast model of a
spiking neuron.

LIF neurons are asynchronous units receiving input signals
called spikes from pre-synaptic cells. Each spike xi is modulated
by the weight wi of the corresponding synapse and added to
the membrane potential u. In a synchronous formalism, at each
time step, the update of the membrane potential at time t can be
expressed as follow:

T
δu(t)

δt
= −(u(t)− ures)+

n
∑

i=1

wixi,t (1)

Where T is the time constant of the neuron, n the number of
afferent cells and ures is the reset potential (which we also consider
as the initial potential at t0 = 0).

When u reaches a certain threshold T, the neuron emits a
spike to its axons and resets its potential to its initial value ures.

This type of network has proven to be energy-efficient Gamrat
et al. (2015) on analog devices due to its asynchronous and sparse
characteristics. Even on digital synchronous devices, spikes can

be encoded as binary variables, therefore carrying maximum
information over the minimum memory unit.

2.1.2. Rank Order Coding Network
Amodel which fits the criteria of processing speed and adaptation
to images data is the rank order coding SNN (Thorpe et al.,
2001). This type of network processes the information with
single-step feed-forward information propagation by means
of the spike latencies. One strong hypothesis for this type
of network is the possibility to compute information with
only one spike per neuron, which has been demonstrated
in rapid visual categorization tasks (Thorpe et al., 1996).
Implementations of such networks have proven to be efficient for
simple categorization tasks like frontal-face detection on images
(Van Rullen et al., 1998; Delorme and Thorpe, 2001).

The visual-detection software engine SpikeNet Thorpe et al.
(2004) is based on rank order coding networks and is used
in industrial applications including face processing for interior
security, intrusion detection in airports and casino games
monitoring. Also, it is able to learn new objects with a single
image, encoding objects with only the first firing spikes.

The rank order model SpikeNet is based on a several layers
architecture of LIF neurons, all sharing the time constant T , the
reset potential ures and the spiking threshold T. During learning,
only the first time of spike of each neuron is used to learn a
new object. During inference, the network only needs to know
if a neuron has spiked or not, hence allowing the use of a binary
representation.

2.2. Learning With Spiking Neural Networks
2.2.1. Deep Neural Networks Conversion
The computational advantages of SNNs led some researchers
to convert fully learned deep neural networks into SNNs
(Diehl et al., 2015, 2016), in order to give SNNs the inference
performance of back-propagation trained neural networks.

However, deep neural networks use the back-propagation
algorithm to learn the parameters, which remains a
computationally heavy algorithm, and requires enormous
amounts of labeled data. Also, while some researches hypothesize
that the brain could implement back-propagation (Bengio et al.,
2015), the biological structures which could support such
error transmission process remain to be discovered. Finally,
unsupervised learning within DNNs remains a challenge,
whereas the brain may learn most of its representations through
unsupervised learning (Turk-Browne et al., 2009). Suffering from
both its computational cost and its lack of biological plausibility,
back-propagation may not be the best learning algorithm to take
advantage of SNNs capabilities.

On the other hand, researches in neuroscience have developed
models of unsupervised learning in the brain based on SNNs.
One of the most popular model is the STDP.

2.2.2. Spike Timing Dependent Plasticity
Spike-Timing-Dependent-Plasticity is a biological learning rule
which uses the spike timing of pre and post-synaptic neurons
to update the values of the synapses. This learning rule is
said to be Hebbian (“What fires together wires together”).
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Synaptic weights between two neurons updated as a function
of the timing difference between a pair or a triplet of pre and
post-synaptic spikes. Long-Term Potentiation (LTP) or a Long-
Term Depression (LTD) are triggered depending on whether a
presynaptic spike occurs before or after a post-synaptic spike,
respectively.

Formulated two decades ago by Markram et al. (1997), STDP
has gained interest in the neurocomputation community as it
allows SNN to be used for unsupervised representation learning
(Kempter et al., 2001; Rao and Sejnowski, 2001; Masquelier and
Thorpe, 2007; Nessler et al., 2009). The features learnt in low-
level layers have also been shown to be relevant for classification
tasks combined with additional supervision processes in the top
layers (Beyeler et al., 2013; Mozafari et al., 2017). As such STDP
may be themain unsupervised learningmechanisms in biological
neural networks, and shows nearly equivalent mathematical
properties to machine learning approaches such as auto-encoders
(Burbank, 2015) and non-negative matrix factorization (Carlson
et al., 2013; Beyeler et al., in review).

We first consider the basic STDP pair-based rule from
Kempter et al. (2001). Each time a post synaptic neuron spikes,
one computes the timing difference 1t = tpre − tpost (relative to
each presynaptic spike) and updates each synapse w as follows:

1w =







A+.e
1t
T+ if 1t < 0

A−.e
1t
T− otherwise

(2)

where A+ > 0,A− < 0, and T+, T− > 0. The top and bottom
terms in this equation are respectively the LTP and LTD terms.

This update rule can be made highly computationally efficient

by removing the exponential terms e
1t
T , resulting in a simple

linear time-dependent update rule.
Parameters A+ and A− must be tuned on order to regularize

weight updates during the learning process. However in
practice, tuning these parameters is a tedious task. In order
to avoid weight divergences, networks trained with STDP
learning rule should also implement stability processes such
as refractory periods, homoeostasis with weight normalization
or inhibition. Weight regularization may also be implemented
directly by reformulating the learning rule equations. For
instance in Masquelier and Thorpe (2007), the exponential term
in Equation (2) is replaced by a process which guaranties that the
weights remain in the range [0...1] :

1w =

{

A+.w.(1− w) if 1t < 0

A−.w.(1− w) otherwise
(3)

Note that in Equation (3), the amplitude of the update is
independent from the absolute time difference between pre
and post-synaptic spikes, which only works if pairs of spikes
belongs to the same finite time window. In Masquelier and
Thorpe (2007) this is guaranteed by the whole propagation
schemes, which is applied on image data and rely on a single
feedforward propagation step taking into account only one spike
per neuron. Thus the maximum time difference between pre and
post-synaptic spikes is bounded in this case.

2.3. Regulation Mechanisms in Neural
Networks
2.3.1. WTA as Sparsity Constrain in Deep Neural

Networks
Winner-takes-all (WTA) mechanisms are an interesting property
of biological neural networks which allow a fast analysis of objects
in exploration tasks. Following de Almeida et al. (2009), gamma
inhibitory oscillations perform a WTA mechanism independent
from the absolute activation level. They may select the principle
neurons firing during a stimulation, thus allowing, e.g., the
tuning of narrow orientation filters in V1.

WTA has been used in deep neural networks in Makhzani and
Frey (2015) as a sparsity constraint in autoencoders. Instead of
using noise or specific loss functions in order to impose activity
sparsity in autoencodermethods, the authors propose an activity-
driven regularization technique based on a WTA operator, as
defined by Equation (4).

WTA(X, d) =

{

Xj if |Xj| = max
k∈d

(|Xk|)

0 otherwise
(4)

where X is a multidimensional matrix and d is a set of given
dimensions of X.

After definition of a convolutional architecture, each layer is
trained in a greedy layer-wise manner with representation from
the previous layer as input. To train a convolutional layer, aWTA
layer and a deconvolution layer are placed on top of it. The
WTA layer applies the WTA operator on the spatial dimensions
of the convolutional output batch and retains only the np%
first activities of each neuron. This way for a given layer with
N representations map per batch and C output channels, only
N.np.C activities are kept at their initial values, all the others
activation values being zeroed. Then the deconvolutional layer
attempts to reconstruct the input batch.

While this method demonstrates the potential usefulness
of WTA mechanisms in neural networks, it still relies on
computationally heavy backpropagation methods to update the
weights of the network.

2.3.2. Homosynaptic and Heterosynaptic

Homeostasis
In their original formulation, Hebbian-type learning rule (STDP,
Oja rule , BCM rule) does not have any regulation process. The
absence of regulation in synaptic weights may impact negatively
the way a network learns. Hebbian learning allows the synaptic
weights to grow indefinitely, which can lead to abnormally high
spiking activity and neurons to always win the competitions
induced by inhibitory circuits.

To avoid such issues, two types of homeostasis have been
formulated.

Homosynaptic homeostasis acts on a single synapse and is
depends on its respective inputs and outputs activity only. This
homeostatic process can be modeled with a self-regulatory term
in the Hebbian rule as in Masquelier and Thorpe (2007) or as
a synaptic scaling rule depending on the activity driven by the
synapse as in Carlson et al. (2013).
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Heterosynaptic homeostasis is a convenient way to regulate
the synaptic strength of a network. The model of such
homeostasis takes into account all the synapses connected to
a given neuron, all the synapses in a layer (like the L2 loss
weight decay in deep learning) or at the network scale. Biological
plausibility of such process is still discussed. Nevertheless, some
evidences of heterosynaptic homeostasis have been observed
in the brain to compensate runaway dynamics of synaptic
strength introduced by Hebbian learning (Royer and Paré, 2003;
Chistiakova et al., 2014). It then plays an important role in the
regulation of spiking activity in the brain and is complementary
to homosynaptic plasticity.

2.4. Neural Networks and Image
Processing
Image processing with neural networks is performed with
multiple layers of spatial operations (like convolutions, pooling,
and non-linearities), giving the nameDeep Convolutional Neural
Networks to these methods. Their layer architecture is directly
inspired from the biological processes of the visual cortex, in
particular from the well known HMAX model (Riesenhuber and
Poggio, 1999), except that the layers’ weights are learnt with
back-propagation. Deep CNN models use a single-step forward
propagation to perform a given task. Even if convolutions on
large maps may be computationally heavy, all the computations
are done through only one pass in each layer. One remaining
advantage of CNNs is their ability to learn from raw data, such
as pixels for images or waveforms for audio.

On the other hand, since SNNs use spikes to transmit
information to the upper layers, they need to perform neuron
potential updates at each time step. Hence, applying such
networks with a convolutional architecture requires heavy
computations once for each time step. However, spikes and
synaptic weights may be set to a very low bit-resolution (down to
1 bit) to reduce this computational cost Thorpe et al. (2004). Also,
STDP is known to learn new representations with a few iterations
Masquelier et al. (2009), theoretically reducing the number of
epochs required to converge.

3. CONTRIBUTION

Our goal here is to apply STDP in a single-step feed-forward
formalism directly from raw data, which should be beneficial in
the cases where training times and data labeling are issues. Thus
we may select a neural model which combines the advantages of
each formalism in order to reduce the computational cost during
both training and inference.

3.1. Feedforward Network Architecture
3.1.1. Neural Dynamics
Here, we will consider the neural dynamics of a spiking LIF
network in presence of image data. Neural updates in the
temporal domain in such neural architecture are as defined by
Equation (1).

Since a single image is a static snapshot of visual information,
all the xi,t are considered constant over time. Hence

∑n
i=1 wi.xi,t

is also constant over time under the assumption of static synaptic
weights during the processing of the current image.

Let us define vin =
∑n

i=1 wi.xi,t ,∀t the total input signal to
the neuron. Let us also determine u(t0 = 0) = ures as an
initial condition. As vin is constant over time, we can solve the
differential equation of the LIF neuron, which gives:

T
δu(t)

δt
= −(u(t)− ures)+ vin

⇒ u(t) = −vin.e
−t
T + ures + vin ∀t > 0

(5)

The precise first spike-time of a neuron given its spiking
threshold T is given by :

ts = −T .log(1+
ures − T

vin
) (6)

Since Equation (6) decreases monotonically wrt. vin, we can
recover the intensity-latency equivalence. The relative order of
spike-times is also known since vin,1 > vin,2 → ts,1 < ts,2.

3.1.2. Equivalence With Artificial Neuron With ReLU

Activation
Thus from Equation (6), for each neuron we can determine the
existence of a first spike, along with its precise timing. Hence,
since we are only concerned with the relative times of first
spikes across neurons, one can replace the computation at each
time-step by a single-step forward propagation given the input
intensity of each neuron.

The single-step forward propagation correspond to LIF
integration when t → ∞. As we are first looking for the existence
of any ts such that u(ts) > T:

lim
t→∞

u(t)− T = lim
t→∞

−vin.e
−ts
T + ures + vin − T

= ures + vin − T
(7)

Having vin =
∑n

i=1 wi.xi and b = ures − T,

lim
t→∞

u(t)− T = b+

n
∑

i=1

wi.xi (8)

which is the basic expression of the weighted sum of a perceptron
with bias.Also, ts exists if and only if b +

∑n
i=1 wi.xi > 0,

which shows the equivalence between LIF neurons with constant
input at infinity and the artificial neuron with rectifier activation
function (ReLU).

This demonstration can be generalized to local receptive fields
with weight sharing, and thus we propose to replace the time-
step computation of LIF neurons, by common GPU optimized
routines of deep learning such as 2D convolutions and ReLU
non-linearity. This allows us to obtain in a single-step all the
first times of spikes -inversely ordered by their activation level-
and nullified if no spike would be emitted in an infinite time.
Moreover, these different operations are compatible with mini-
batch learning. Hence, our model is also capable of processing
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several images in parallel, which is an uncommon feature in
STDP-based networks.

3.1.3. Winner-Takes-All Mechanisms
Following the biological evidence of the existence of WTA
mechanisms in visual search tasks (de Almeida et al., 2009)
and the code sparsity learned with such processes (Makhzani
and Frey, 2015), we may take advantage of WTA to match
the most repetitive patterns in a given set of images. Also,
having to learn only these selected regions should drastically
decrease the number of computations required for the learning
phase (compared to dense approaches in deep learning and SNN
simulations). Inspired by this biological mechanism, we propose
to use three WTA steps as sparsifying layers in our convolutional
SNN architecture.

The first WTA step is performed on feature neighborhood
with a max-pooling layer on the convolution matrix with kernel
size kpool >= kconv and stride spool = kconv. This acts as a lateral
inhibition, avoiding the selection of two spikes from different
kernels in the same region.

Next we perform a WTA step with the WTA operation
(Equation 4) on the channel axis for each image (keeping at each
pooled pixel, the neuron that spikes first). This forces each kernel
to learn from different input patches.

The third WTA step is performed with WTA operation on
spatial axes as in Makhzani and Frey (2015). This forces the
neuron to learn from the most correlated patch value in the input
image.

The WTA operation (Equation 4) is not to be confused with
the Maxout operation from Goodfellow et al. (2013) and the
max pooling operation, since these latter squeeze the dimensions
on which they are applied, while the WTA operation preserves
them.

Then we extract the indexes of the selected outputs along with
their sign and their corresponding input patch. Extracted input
patches are organized in k subsets, each subset corresponding
to one output channel. These matrices will be refered to
as follow :

• Yk : matrices of selected outputs, of dimension (mk, cout)
• Xk : matrices of selected patches, of dimension (mk, cin×hin×

win)
• W : matrices of filters, of dimension (cin × hin × win, cout)

with mk the number of selected indexes and patches for neuron
k ∈ [1...cout], cout the number of channels (or neurons) of the
output layer, and cin, hin,win are the receptive field size (resp.
channel, height and width). Note that at most one output is
selected per channel and per image,mk ≤ N.

The WTA in our model has two main advantages. First, it
allows the network to learn faster on only a few regions of the
input image. Second, classical learning frameworks use the mean
of weights gradient matrix to update the synaptic parameters.
By limiting the influence of averaging on the gradient matrix,
synaptic weights are updated according to the most extreme
values of the input, which allow the network to learn sparse
features.

Note that the network is able to propagate relative temporal
information through multiple layer, even though presented
inputs lack this type of data. It is also able to extract regions
which are relevant to learn in terms of informationmaximization.
The full processing chain for propagation and WTA is shown in
Figure 1.

3.2. Binary Hebbian Learning
3.2.1. Simplifying the STDP Rule
Taking inspiration from the STDP learning rule, we propose a
Hebbian correlation rule which follows the relative activations of
input and output vectors.

Considering the input patch value xn,i ∈ Xn, n ∈ [1...mk], i ∈
[1...cin × hin × win], the corresponding weight value wk,i, the
selected output value yk ∈ Yk and a heuristically defined
threshold Tl, the learning rule is described in Equation (9).

1wk,i =

{

sign(xn,i).sign(yk) if |xn,i| > Tl

−sign(wk,i) otherwise
(9)

The learning rule is effectively Hebbian as shown in the next
paragraph and can be implemented with lightweight operations
such as thresholding and bit-wise arithmetic.

Also, considering our starting hypotheses, where we limit to
one the number of spikes per neuron during a full propagation
phase for each image, it is guaranteed that, for any pair of pre
and post-synaptic neuron, the choice of LTP or LTD exist and
is unique for each image presentation. These hypotheses are
similar to the ones in Masquelier and Thorpe (2007), where these
conditions simulates a single wave of spikes within a range of 30
ms.

3.2.2. Equivalence to Hebbian Learning in Spiking

Networks
In this section we show the Hebbian behavior of this learning
rule. For this, we first focus on the “all positive case” (x, y,w ∈

R+) and will explain in the next section the extension to
symmetrical neurons.

In the case of “all positive,” the Equation (9) can be rewritten
as Equation (10).

1wk,i =

{

1 if xk,i > u(tpost)

−1 otherwise
(10)

This rule tends to increase the weights when the input activity
is greater than a threshold (here the post-synaptic neuron firing
threshold), and decreases it otherwise.

Equation (10) is equivalent to the pair-based STDP rule
presented in Equation (2) removing the exponential term and
using A+ = 1 and A− = −1.

3.2.3. Extension to Symmetric Neurons
We have demonstrated that the proposed learning rule is
effectively Hebbian in the case where x,w, y ∈ R+. Our learning
rule also takes into account negative values of x,w, y. In biological
networks models, negative values do not seem to make much
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FIGURE 1 | Processing chain for the region WTA.

TABLE 1 | Weight update given x, y, and w following the proposed learning rule

(Equation 9).

x < −T −T < x < T x > T

y > 0 −1 −sign(w) +1

y < 0 +1 −sign(w) −1

sense since firing rates and synaptic conductance are expressed
in units defined only in R+.

Nevertheless, negative values are used in many spiking
networks models in the very first layer of visual features. For
instance, ON-centered-OFF-surround and OFF-centered-ON-
surround filters (also known as Mexican hat filters) are often
used to pre-process an image in order to simulate retinal cells
extracting gradients. These two filters are symmetric with respect
to the origin. Hence a common computational optimization is
to apply only one of the two filters over the image, separating
negative and positive resulting values as OFF and ON activities,
respectively.

We extend this computational trick to neurons in any
neural layer under the hypothesis that negative values for x,w, y
corresponds to activities and weights of synaptically symmetric
neurons. For a neuronwith constant input activityX and synaptic
weights W of size n, we can express its output activity y =
∑n

i=1 Xi × Wi. If y < 0, we can convert it to a positive value
using the synaptically opposite weights

∑n
i=1 Xi ×−Wi = −y.

Under the hypothesis of the existence of a pair-wise
competition between neurons with symmetric weights (for
instance with inhibition), this computational trick remains
biologically plausible.

Considering now the proposed learning rule, the weights
update given x, y, and w is shown in Table 1. In this table, the
first spikes (|x| > T) will induce an update of the weight to
increase the |y| (1w = sign(y).sign(x)). Meanwhile, the weights
corresponding to the last spike will be reduced (1w = −sign(w)).

With this framework the choice of the parameter Tl is critical.
Thanks to the WTA mechanism developed, the selection of a
neuron for learning is performed disregarding its firing threshold
T, set to zero in practice. Hence contrary to Masquelier and

Thorpe (2007), we cannot rely on the precise firing threshold
of the neuron. In order to approximate this threshold, we
developed two strategies described in the next paragraphs. These
strategies are made adaptative such that the learning rule can
be invariant to contrast variation. Also the adaptative behavior
of this threshold avoids to tune an additional parameter in
the model.

3.2.4. Hard Percentile Threshold
The first strategy applied follows the STDP learning rule, which
fixes a time constant for LTP and LTD. In our framework this
is implemented as a percentile of the input activity to map their
influence in the spike. For each input vector xn ∈ Xk∀k , we
compute the patch threshold Tl as theminimum value in the local
pn% percentile. pn% is manually set and global for all the patches.

1wk,i =

{

−sign(wk,i) if |xn,i| ≤ pn%

sign(xn,i).sign(yk) otherwise
(11)

However, we have seen experimentally that the threshold
tuning may be cumbersome. As it regulates the sparsity of the
synaptic weight matrix, fixing the sparsity manually may lead
to unsatisfying results. Also, getting the percentiles uses the
index-sorting operation which is time consuming.

3.2.5. Average Correlation Threshold
We propose a second strategy which relies on the computation
of an adaptative threshold between LTP and LTD. For each
input vector xn ∈ Xk∀k we compute the sign correlated input
activation as ˆxn,i = xn,i.sign(wk).sign(yk). Next we compute the
threshold Tl as the mean of x̂n. Then we apply the learning rule
in Equation (9).

With this strategy, the learning rule is also equivalent to
Equation (12), which is straightforward to implement since it
avoids conditional branching.

1wk,i = sign(xn,i.sign(yk).sign(wk,i)− Tl).sign(wk,i) (12)

Using the mean sign corrected input activation as a threshold, the
model is able to be invariant to local contrasts. It also requires the
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calculation of the mean and a thresholding, two operations that
are much faster than sorting. Finally, the adaptative behavior of
such a threshold automate the sparsity of synaptic weights.

3.2.6. Computing Updates From a Batch of Images
Since our method allows the propagation of several images at the
same time through mini-batch, we can also adapt our learning
rule when batches of images are presented. Since biological visual
systems never deal with batches of dozen images at once, the
following proposal is a computational trick to accelerate the
learning times, not a model of any existing biological feature.

When all the update vectors have been computed, the
weight update vector for the current batch is obtained through
the binarization of the sum of all the update vector for the
corresponding kernel. We finally modulate the update vector
with a learning rate λ.

Un,i =

mk
∑

k=1

1wk,i (13)

1Wk,i =

{

−1 if Un,i ≤ 0

1 otherwise
(14)

Wk,i = Wk,i + λ.1Wk,i (15)

3.2.7. Weight Normalization Through Simple Statistics
Since each update step adds +λ or −λ to the weights, a
regularization mechanism is required to avoid the weights
growing indefinitely. Also we want to maintain a fair competition
between neurons of the same layer, thus the total energy of the
weights should be the same for all the neurons.

We propose a simple model of heterosynaptic homeostasis
in order to regulate the weights of each neuron.We chose to
normalize the weights of each neuron k by mean centering and
standardization by variance. Hence, after each update phase, the
normalization is done as follows :

Wk =
Wk − µ(Wk)

σ 2(Wk)
(16)

This way, even neurons which did not learn a lot during the
previous epochs can win a competition against the others. In
practice, we set λ in an order of magnitude of 10−1 and halved it
after each epoch. Given the order of magnitude of λ and the unit
variance of Wk, we know that ninety-five percent of the weights
belongs to the interval [−1.5...1.5]. In fact, only a few batches of
images are necessary to modify the influence of a given afferent.
Two neurons responding to a similar pattern can thus diverge
and specialize on different patterns in less than a dozen training
batches.

As a detail, if the WTA region selected is small, some neurons
may learn parts of patterns already learned by an other one. Since
σ 2(Wk) = 1 and most of the weights are equal to zero, the values
of the remaining weights would grow very large. This can end up
in multiple neurons learning almost identical patterns. We have
observed that clipping weights after normalization between the
range [−2...2] prevents this situation.

3.3. Multi-layer Architectures With Binary
STDP
This proposed approach is able to learn a multi-layer
convolutional architecture as defined by the user. It does
not require a greedy layer-wise training, all the convolutional
layers can be trained in parallel. We can optionally apply a
non-linearity, a downsampling operation or a normalization
after each convolution layer.

Once all the features layers have learned, the whole features
architecture can process images as a classical convolutional
neural network in order to obtain the new representations.

4. EXPERIMENTS AND RESULTS

4.1. Method
The proposed method learns, unsupervised, convolutional
features from image data. In order to validate our approach,
we evaluated the learnt features on four different classification
datasets : MNIST, ETH80, CIFAR10, and STL10. Architectures
and hyper-parameters were tuned separately for each dataset,
details being given in the relevant sections.

The overall evaluation method remains the same for each
dataset. The proposed framework will be used to learn one or
several convolutional layer with the simplified STDP. In order to
show the faster convergence of features with our method, we will
only train these layer with a subset of the full training dataset with
very few epochs.

Once the features are learnt, we show qualitatively the learnt
features for each dataset. To quantitatively demonstrate their
relevance, we use the extracted features as input to a supervised
classifier. Although as state of the art classification are deep
learning systems, we use a simple Multi-Layer Perceptron (MLP)
with zero, one, or two hidden layers (depending on the dataset)
taking as inputs the learnt features with the proposed solution.

For all the experiments, we started with a lightweight network
architecture (the simplest available in the literature if available),
and incrementally added complexity until further additions
stopped improving performance. The classifier on top of the
network starts as linear dense layer with as many neurons as the
number of classes, and is complexified with intermediate layers
as the architectural-tuning goes on.

We compare our results with other state of the art
unsupervised feature learning methods specific for each dataset.

4.2. MNIST
The MNIST dataset contains 60,000 training images and 10,000
testing images of size 28× 28 containing handwritten digits from
0 to 9. MNIST digits are written in white on a black background,
hence pixel values are distributed across two modes. Considering
the data distribution and the limited number of classes, MNIST
may be considered as an easy classification task for current state-
of-the-art methods. As a matter of fact, neural based methods
do not need deep architectures in order to perform well on this
dataset. Light-weight architectures can be defined in order to
explore issues with the developed method. Once the method
has satisfying results on MNIST, more complex datasets may be
tackled.
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FIGURE 2 | Architecture of the network in the MNIST experiment.

FIGURE 3 | Eight 5 × 5 features learned from MNIST dataset on raw images.

To perform classification on this dataset, we defined a
lightweight convolutional architecture of features close to LeNet
LeCun et al. (1998), presented in Figure 2. Since achieving high
classification accuracy on MNIST is easy with a high number of
neurons per layer, the number of neurons per layer was kept as
low as possible in order to actually verify the relevance of the
features.

Unsupervised learning was performed over only 5,000
random images from the dataset for 5 epochs, which only
represents 25,000 image presentations. A visualization of the
learnt features is shown in Figure 3.

Once the features were learnt, we used a two-hidden layers
MLP to perform classification over the whole transformed
training set. The learnt features and classifier were then run on
all the testing set images in order to get the test error rate.

Classification performances are reported in Table 2. While the
best methods in the state-of-the-art reach up to 99.77% accuracy,
we did not report these results since these approaches use
supervised learning with data augmentation, which is outwith the

TABLE 2 | MNIST accuracy.

Method Accuracy (%)

SDNN (Kheradpisheh et al., 2016) 98.40

Two layer SNN (Diehl and Cook, 2015) 95.00

PCA-Net (Chan et al., 2014) 98.94

Our method 98.49

scope of this paper. All the reported results were obtainedwithout
data augmentation and using unsupervised feature learning.

Our approach performs as well as SDNN since they are
structurally close, reaching state-of-the-art performance without
fine-tuning and data-augmentation. While PCA-Net has better
performance, learning was done on twice the number of samples
we used. Doubling the number of samples to match the
same number used for PCA-Net (10,000) did not improve the
performance of our method.

4.3. ETH80
The ETH80 (Leibe and Schiele, 2003) contains 3,280 color images
of eight different object categories (apple, car, cow, cup,dog,
horse, pear, tomato). Each category contains 10 different object
instances taken from 41 points of view. This dataset is interesting
since the number of available images is limited and contains a
lot of variability in 3D rotations. It allows us to evaluate the
generalization potential of the features and their robustness to
changes in viewpoint.

As the number of samples is restrained here, we performed
both unsupervised and supervised learning on half the dataset
(1,640 images chosen randomly). The other half was used as the
test set.

We compare our approach to the classical HMAX model and
to Kheradpisheh et al. (2016). The architectures for unsupervised
and supervised part are shown in Figure 4. Learning visual
features becomes more and more difficult with the proposed
method as we add convolutional layers on top of the network.
Since ETH80 images are large (96 × 96), we apply pooling with
a stride of 4 in order to quickly reduce the dimensions over the
hierarchy.

Results are reported in Table 3. While our approach does not
reach the same performance as Kheradpisheh et al. (2016), it
is able to learn features relevant for a classification task with
multiple points of view of different objects.

4.4. CIFAR-10
The CIFAR-10 dataset (Krizhevsky, 2009) is a dataset for
classification of natural images from 10 classes (airplane,
automobile, bird, cat,deer, dog, frog, horse, ship, and truck). The
dataset is split into three with 60,000 training, 10,000 validation,
and 10,000 testing images. Images are a subset of the 80 million
tiny images dataset (Torralba et al., 2008). All the images are 32
× 32 pixels size with three color channels (RGB).

This dataset is quite challenging, since it contains many
variations of objects with natural backgrounds, in low resolution.
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FIGURE 4 | Architecture of the network in the ETH80 experiment.

TABLE 3 | ETH80 results.

Method Accuracy (%)

HMAX (Riesenhuber and Poggio, 1999) 69.0

SDNN (Kheradpisheh et al., 2016) 82.8

Our method 75.2

Hence in order to tackle this dataset, algorithms must be able to
find relevant information in noisy data.

The architecture used for this dataset is given in Figure 5.
Learnt features are shown in Figure 6A. We observe that
the features are similar to oriented-gabor features, which is
consistent with the results of other unsupervised methods such
as k-means and RBM. Also the weights distribution displayed in
Figure 6B contains a majority of values close to zero, showing
the sparsity of the features. Performances obtained on CIFAR-10,
along with other methods evaluation, are shown in Table 4.

As a performance baseline, we also trained the MLP with
the same architecture but keeping the convolutional layer’s
weights randomly initialized and frozen. The increase of 17% of
classification rate proves the usefulness of the features learnt with
our method in the classification process.

Only a few works related to SNNs have been benchmarked
on CIFAR-10. Cao et al. (2015) and Hunsberger and Eliasmith
(2015) rely on convolutional to SNN conversion to perform
supervised learning on the dataset. Panda and Roy (2016) built a
convolutional feature hierarchy on the principle of auto-encoders
with SNNs, and classified the top level representations with an
MLP.

Also, some works unrelated to SNNs are worth comparing
here. Coates et al. (2011) benchmarked four unsupervised feature
learning methods (k-means, triangle k-means, RBM, and sparse
auto-encoders) with only one layer. Results from the PCA-Net
approach are also included.

FIGURE 5 | Architecture of the network in the CIFAR-10 experiment.

Our approach reached good performance given the
lightweight architectures and the limited number of samples.
It outperforms the CNN with 64 random filters, confirming
the relevance of the learnt features for classification, and also
the Triangle K-means approach with 100 features. Empirically
however, training with more samples without increasing the
number of features does not improve the performance.

Also, due to the low resolution of CIFAR-10 images, we
tried to add a second convolutional layer. The learnt filters
in this new layer were very redundant and led to the same
performance observed with only one layer. Further investigations
might explore ways to force layers above the first to learn more
sparse features.

4.5. STL-10
STL-10 is a dataset dedicated to unsupervised feature learning.
Images were taken from the ImageNet dataset. The training set
contains 5,000 images labeled over the same ten classes as CIFAR-
10. An unlabeled training set of 100,000 images is also provided.
Unlabeled images may contain objects from other classes of
ImageNet (like bear, monkeys, trains...). The testing set contains
8,000 images (800 per class). All images are in RGB format with a
resolution of 96× 96.

We applied the same architecture as for the CIFAR-10
dataset, except the average pooling layer was done over 24 ×

24 sized windows (in order to have the same 4 × 4 output
dimension). As before, we limited the number of samples during
the unsupervised learning step to 5,000.

While some works related to SNNs or STDP have been
benchmarked on CIFAR-10, we were not able to find any
using the STL-10 dataset. Hence our approach may be the first
biologically inspired method trying to tackle this dataset.

Our approach reaches 60.1% accuracy on STL-10, which
is above the lower-bound performance on this dataset.
Performances obtained by other unsupervised methods
range between 58 and 74%.
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FIGURE 6 | (A) Sixty-four filters of size 7 × 7 learned with our method on the CIFAR-10 dataset. (B) The weights distribution of the network’s first layer trained on

CIFAR-10.

TABLE 4 | CIFAR-10 results.

Method Unsupervised Training

samples

Accuracy

(%)

Triangle k-means (1,600 features)

(Coates et al., 2011)

Yes 50,000 79.6

Triangle k-means (100 features)

(Coates et al., 2011)

Yes 50,000 55.5

PCA-Net (Chan et al., 2014) Yes 50,000 78.67

LIF CNN (Hunsberger and Eliasmith,

2015)

No 50,000 82.95

Regenerative Learning (Panda and

Roy, 2016)

Yes 20,000 70.6

Our method (64 features) Yes 5,000 71.2

CNN random frozen filters No 50,000 55.3

5. DISCUSSION

The proposed approach is able to train lightweight convolutional
architectures based on LIF neurons which can be used as a
feature extractor prior to a supervised classification method.
These networks achieve average levels of performance on
four image classification datasets. While the performances are
not as impressive as the ones obtained with fully supervised
learning methods, where features are learnt specifically for the
classification task, interesting characteristics emerge from this
model.

By showing the equivalence between rank-order LIF neurons
and perceptrons with ReLU activation, we were able to borrow
computationally efficient concepts from both neuroscience
and machine learning literature while remaining biologically
plausible enough to allow the conversion of network trained this
way to be converted into SNN.

Binary STDP along with WTA and synaptic normalization
reduces drastically the process of parameters tuning compared to
other STDP approaches. LIF neurons require the tuning of their
respective time constant. STDP also requires four parameters to
be tuned : the time constants T+ and T− as well as the LTP and
LTD factorsA+ andA− for each layer. Ourmodel of binary STDP
on the other hand only needs to set its learning rate λ, set globally
for the whole architecture.

Another advantage over other STDP approaches is the ability
to train the network with multiple images in parallel. While this
ability is biologically implausible, it can become handy in order
to accelerate the training phase thanks to the intrinsic parallel
optimization provided by GPU. Also, the equivalence between
LIF neurons and perceptrons with ReLU activation in presence
of images allows us to perform the full propagation phase of a
SNN in one shot, and to apply our STDP rule without the need of
interpolation precise timing information from the image. Other
approaches using SNNs with STDP requires the interpolation of
temporal information from the image (Masquelier and Thorpe,
2007; Kheradpisheh et al., 2016), with gabor filters for instance,
in order to generate spike trains. This way, STDP can be applied
to learn the correlations between spike timings.

From a deep learning point of view, the main interest
of our model resides in the proposal of a backpropagation-
free training procedure for the first layers. As the backward
pass in deep neural networks implies computationally heavy
deconvolutions to compute the gradients of the parameters, any
prior on visual modelization which can avoid a backpropagation
over the whole network may help to reduce the computational
overhead of this step. The LIF-ReLU equivalence demonstrated
allows a convolutional network to take advantage of the inherent
characteristic of STDP to quickly find repeating pattern in an
input signal (Masquelier and Thorpe, 2007; Masquelier et al.,
2009; Nessler et al., 2009).

With the WTA scheme proposed, we made the assumption
that relevant visual information resides in the most contrasted
patches. It also imposes the neurons to learn a sparse code with
the combination of neighburhood and channel-wise inhibition.
Such hard-coded WTA led to first layers features very similar to
the gabor-like receptive-fields of LGN and V1. Quantitatively,
the performances obtained on classification tasks allows us to
conclude on the relevance of this learning process on such task.
However it is still far from optimality considering the supervised
learning methods (Graham, 2014; Hunsberger and Eliasmith,
2015) and human-level performances. The main drawback of
our method is the difficulty to train more than one or two
convolutional layers with. Since spatial inhibitions are critical in
our WTA scheme to achieve feature sparseness, we suspect that

Frontiers in Computational Neuroscience | www.frontiersin.org 10 April 2018 | Volume 12 | Article 24

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ferré et al. Unsupervised Feature Learning With WTA-STDP

the input width and height of one layer must be large enough
to make the competition between neurons effective. Other
competition schemes less dependent on the spatial dimension
have to be explored in order to train deeper architectures with
the proposed framework.

Also our binary variant of STDP rule shows the ability to train
neurons with very low precision updates. Gradients used to be
coded on floating-point variables ranging from 32 bits as these
encoding schemes had the better trade-off between numerical
precision and efficiency on CPU and GPU hardware. Gupta et al.
(2015) showed the possibility to perform gradient descent with
only 16-bits floating-point resolution, a feature implemented
since then in NVidia Pascal and AMD RX Vega GPUs. Studies
on gradient quantization (Zhou et al., 2016; Deng et al., 2017)
showed promising results reducing the precision down to 2
bits without penalizing significantly the performances. The main
advantage of such reduction in resolution is two-fold : the lowest
the resolution, the fastest the computations (under the condition
hardware has sufficient dedicated compute units) and the fastest
the memory transfers. Seide et al. (2014) accelerated learning
speed by a factor 50 quantizing the weight updates gradients on
1 bit, enabling a very fast transfer between the 8 GPU of the
considered cluster. The binary STDP learning rule proposed here
may fit this goal. Further quantization on activations and weights
(even if the distributions obtained on MNIST and CIFAR-10
seem to converge to three modes) are to be studied in such
framework in order to bring massive acceleration thanks to this
biologically inspired method.

In order to better understand the implication of the binary
STDP learning rule from a machine learning point of view,
studies on the equivalence to state-of-the art methods should be
performed as in Hyvärinen et al. (2004) and Carlson et al. (2013).
Further mathematical analysis may help us understanding better
the limits and potentials of our approach in order to combine
it with other approaches. The literature in machine learning
and neuroscience (accurately summarized in Marblestone et al.,
2016) shows that it is unlikely that only one objective function or
algorithm may be responsible for all the learning capabilities of

the brain. Considered combinations include supervised approach
with backpropagation compatible models such as Esser et al.
(2015), reinforcement learning methods (Mnih et al., 2013;
Mozafari et al., 2017), as well as other unsupervised strategies
such as auto-encoders and GANs.

Finally, the binary STDP along with WTA and normalization
has been shown to be successful at learning in an unsupervised
manner low level visual features from image data. Extension
of this learning framework on temporal data is envisaged.
The roles of neural oscillations in the brain are still studied,
and their place in attention-demanding tasks (Dugué et al.,
2015; McLelland and VanRullen, 2016) is still under debate.
Nevertheless, oscillation processes like the theta-gamma model
(McLelland and VanRullen, 2016) shows interesting information
segmentation abilities, and may be incorporated in a network of
spiking or recurrent artificial neurons (such as GRU and LTSM)
as a more hard-coded WTA scheme to evaluate their impact
during learning.
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