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Effective and accurate diagnosis of Alzheimer’s disease (AD), as well as its early stage

(mild cognitive impairment, MCI), has attracted more and more attention recently.

Researchers have constructed threshold brain function networks and extracted various

features for the classification of brain diseases. However, in the construction of the brain

function network, the selection of threshold is very important, and the unreasonable

setting will seriously affect the final classification results. To address this issue, in this

paper, we propose a minimum spanning tree (MST) classification framework to identify

Alzheimer’s disease (AD), MCI, and normal controls (NCs). The proposed method mainly

uses the MST method, graph-based Substructure Pattern mining (gSpan), and graph

kernel Principal Component Analysis (graph kernel PCA). Specifically, MST is used to

construct the brain functional connectivity network; gSpan, to extract features; and

subnetwork selection and graph kernel PCA, to select features. Finally, the support

vector machine is used to perform classification. We evaluate our method on MST brain

functional networks of 21 AD, 25 MCI, and 22 NC subjects. The experimental results

show that our proposed method achieves classification accuracy of 98.3, 91.3, and

77.3%, for MCI vs. NC, AD vs. NC, and AD vs. MCI, respectively. The results show

our proposed method can achieve significantly improved classification performance

compared to other state-of-the-art methods.

Keywords: minimum spanning tree, gSpan, graph kernel principal component analysis, mild cognitive impairment,
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INTRODUCTION

Alzheimer’s disease (AD) is a common and progressive
neurodegenerative disorder of the nervous system. It is predicted
that the number of AD patients will double in the next 20 years
(Brookmeyer et al., 2007). Therefore, in its early stage, such as
mild cognitive impairment (MCI), early diagnosis and treatment
for patients is of great significance for delaying the development
of the disease. However, because of the subtle differences between
AD,MCI andNormal Control (NC) in cognitive function,MCI is
more difficult to diagnose. Therefore, it is very crucial to propose
methods that can identify diagnostic markers of MCI and AD,
and classify AD, MCI, and NC.

Over the past 10 years, technologies such as functional
magnetic resonance imaging (fMRI) and electroencephalograph
(EEG) have emerged, which provide effective and non-invasive
ways to capture human brain’s functional connectivity patterns.
Recently, neuroimaging techniques, such as structural magnetic
resonance imaging (sMRI) (Aguilar et al., 2013; Li et al., 2014;
Beheshti et al., 2015; Moradi et al., 2015; Papakostas et al.,
2015), functional MRI (fMRI) (Andersen et al., 2012; Dinesh
et al., 2013), Diffusion Tensor Imaging (DTI) (Graña et al.,
2011; Mesrob et al., 2012; Lee et al., 2013), Positron Emission
Tomography (PET), and Single Photon Emission Computed
Tomography (SPECT) (Hanyu et al., 2010; Górriz et al., 2011;
Gray et al., 2012; Chen et al., 2013) have been used successfully
in the classification of AD and MCI.

Supekar et al. (2008) used the clustering coefficient as feature
to identify AD from normal controls with specificity of 78% and
sensitivity of 72%. Zhang et al. (2011) proposed a multimodal
[MRI, PET, and Cerebrospinal Fluid (CSF)] classification
framework to discriminate between AD and normal controls by
using a kernel combination method with accuracy of 93.2%. Wee
et al. (2012b) integrated anatomical and functional connectivity
information to identify MCI from normal controls by using a
multiple-kernel-based support vector machine algorithm with
accuracy of 96.3%. Wee et al. (2012a) extracted clustering
coefficient of five frequency subbands for classification. The
classification accuracy was 86.5%. Jie et al. (2014a) integrated
multiple properties of a connectivity network for identifyingMCI
with accuracy of 91.9%. Jie et al. (2014b) proposed a classification
framework to identify MCI by using a set of local measures and
topological information derived from functional connectivity
networks. This method achieved area under receiver operating
characteristic curve of 0.94, classification accuracy of 91.9%, and
sensitivity of 100.0%.

A common problem in the above studies was to use
network properties based on threshold connected network for
AD and MCI classification. However, this may affect the final
classification performance to some extent, because to construct
threshold function network, we need to set a threshold for the
original weighted network. Threshold can be set according to
connectivity strength or network density. When threshold is
set based on connectivity strength, due to the difference of the
connectivity weight distribution of the original network, two
different density networks are generated, and these differences
affect the network characteristics. When threshold is set based

on network density, though the number of connections is fixed,
it may cause false or noisy connections in the network or
exclude related connections in the network. This may be a good
explanation for some contradictory results in the study of brain
disease (Diessen et al., 2013). Therefore, in order to solve these
problems, researchers often study network attributes in a range
of thresholds. Supekar et al. (2008) set threshold from 0.01
to 0.99 to study the small world properties of AD functional
connectivity networks. Zanin et al. (2012) studied classification
performance within an appropriate threshold range in order to
find the best threshold. Geng et al. (2017) studied the graph
theory of the brain network in the sparsity threshold from 0.17
to 0.5.

In 2015, Tewarie et al. proposed that the minimum spanning
tree (MST) is an unbiased approach to the construction and
analysis of brain networks. The construction of MST depends
only on the ordering of weights in the original network, and does
not depend on the distribution of these weights or the absolute
value (Dobrin and Duxbury, 2001; Jackson and Read, 2010). In
addition, in many fields of science, it is found that MST can
effectively capture the essential attributes of complex networks.
In 2006, Lee et al. appliedMST to brain network for the first time,
and MST was widely applied to the research and development
of many kinds of neuropsychiatric disorders (Lee et al., 2006;
Boersma et al., 2012; Demuru et al., 2013; Stam et al., 2014; Guo
et al., 2017a,b).

Accordingly, in this article, we propose a classification
framework to accurately identify multiclass (MCI patients, AD
patients, and NCs) by using topological information derived
from MST brain networks. Our approach uses three new
tools: Kruskal’s algorithm (Kruskal, 1956), gSpan (Yan and
Han, 2002), and graph kernel PCA (Schölkopf et al., 1997).
Specifically, Kruskal’s algorithm was used to construct the brain
functional network, and gSpan was used to extract features.
Moreover, graph kernel PCA was used to select features by
directly measuring the topological similarity between brain
networks.

Figure 1 illustrates the framework of our proposed method.
Specifically, for each subject, a brain network is constructed
firstly by MST from the respective fMRI data. Then, frequent
subnetworks are mined by gSpan from the respective MST,
and the most discriminative subnetworks are selected using
the subnetwork selection algorithm based on their respective
frequency differences. Moreover, graph kernel PCA is used to
extract features from the rebuilt networks. Finally, a Support
Vector Machine (SVM) is used to classify the data with extracted
features.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The data used in this study was downloaded from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (http://adni.
loni.usc.edu/). ADNI was launched in 2003 by the National
Institute on Aging (NIA). It aims to study the pathogenesis of
AD by analyzing a variety of medical imaging data.
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FIGURE 1 | Framework of proposed method.

This study included a total of 68 participants, including 21
AD patients, 25 MCI patients, and 22 NCs. Table 1 shows the
demographic information of the participants. Details of the
acquisition process and scanning parameters are available on the
ADNI website (http://adni.loni.usc.edu/data-samples/).

Many preprocessing steps of the fMRI images, which includes
brain skull removal and motion correction followed by temporal
pre-whitening, spatial smoothing, global drift removal, slice
time correction, and band pass filtering, were performed using
the Statistical Parametric Mapping software package (http://
www.fil.ion.ucl.ac.uk/spm/software/spm12/). Then, by warping
the Automated Anatomical Labeling (AAL) template (Tzourio-
Mazoyer et al., 2002), for each subject, we parcellated the brain
space into 90 regions of interest (ROIs). For each individual

ROI, the fMRI time series of all voxels was averaged to be
the mean time series of the ROI. Lastly, with ROIs as nodes
and Pearson correlation coefficients between pair of ROIs as
connectivity weight value, a functional full connected network
was constructed for each subject.

Methods
The key techniques of the classification framework included
Kruskal’s algorithm to construct the MST brain network, gSpan,
and graph kernel PCA to select features. Kruskal’s algorithm was
used to construct the unbiased brain networks. In order to extract
the topological properties of networks, gSpan was adopted to
mine frequent subnetworks from the brain network, and then
the discriminative subnetworks were selected according to the
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TABLE 1 | Demographic information of study participants.

Group AD MCI NC

No. of subjects (M/F) 8/13 16/9 10/12

Age (mean ± SD) 74.1 ± 7.4 73.5 ± 6.1 74.9 ± 6.3

MMSE (mean ± SD) 21 ± 3.5 27.6 ± 2.0 28.8 ± 1.7

CDR (mean ± SD) 0.8 ± 0.2 0.5 ± 0.2 0.0 ± 0.1

AD, Alzheimer’s disease patients; MCI, Mild cognitive impairment; NC, Normal control;

MMSE, Mini-mental state examination; CDR, Clinical dementia rating; M, Male; F, Female.

frequency difference. To reflect the differences in the topology
of brain networks, graph kernel PCA was used to measure the
similarity between the brain networks. Finally, the topological
structure features was used to classify.

MST Network Construction
Definition 1 (Minimum spanning tree). For a connected, edge-
weighted undirected graph G, an MST of G is a subset of the
edges that connect all vertices without any cycles and with the
minimum possible total edge weight.

Kruskal’s algorithm is a well-known algorithm for finding an
MST. In our case, we start the algorithm with the largest link
weights because we are interested in the strongest connections
in the brain network. This algorithm first orders the weights of
all links in descending order, then constructs the MST with the
largest link weight, and finally adds the following largest link
weights until all nodes are connected in an acyclic subnetwork
consisting of links. This link is ignored, if the addition of a link
forms a loop.

gSpan
Because it is difficult to get the discriminative subnetworks
directly, we need to mine the frequent subgraph firstly. We use
the gSpan algorithm tomine frequent subnetworks from theMST
the brain network. gSpan finds frequent subnetworks by using a
depth-first-search method. In this regard, some preliminaries are
discussed below.

Definition 2 (Undirected labeled network). For an
undirected labeled network G = (V, E, L), V represents the
set of nodes; E ⊆ V× V, the set of edges; L, the set of labels.

Definition 3 (Subnetwork). Given two undirected labeled
networks G = (V, E, L) and Gs = (Vs, Es, Ls), if Vs ⊆ V, Ls ⊆

L and Es ⊆ E , Gs is a subnetwork of G.
Definition 4 (Subnetwork frequency). For a given network

set G = {G1,G2, · · ·Gn}, n is the number of networks. The
frequency fq of a subnetwork gs is defined as follows:

fq
(

gs|G
)

=
|gs is subgraph of G and G ∈ G|

|G|
(1)

Definition 5 (Frequent subnetwork mining). For a given
undirected labeled network set G and frequency thresholding
value s where 0 ≤ s ≤ 1, the process of finding all subnetworks
of G with frequency of at least s is called frequent subnetwork
mining.

Discriminative Subnetworks Selection
In fact, there are a large number of frequent subnetworks
in a network, but only a small portion of the frequent
subnetworks have discriminability. Therefore, the most
discriminative subnetworks were selected by using the further
feature selection method based on their respective frequency
differences. The greater the frequency difference, the stronger
the discriminability. Then, the brain network is reconstructed
using the most discriminative subnetworks. Specifically, for a
network, we only need to delete edges that do not appear in any
discriminative subnetworks. In this way, the topology of the
brain network and the discriminative subnetworks are preserved.

Graph Kernel PCA
If the discriminative subnetworks are directly used for
classification, the topological properties of the brain network
will be lost. Therefore, it is necessary to extract the topological
properties of the brain network.

In this section, graph kernel PCA is used to extract the
topological features from rebuilt brain networks. Based on the
rebuilt brain networks, the graph kernel is used to map the brain
network from the original network space to the feature space and
measure the similarity between two brain networks by comparing
their topological structures. In this study, we use the Weisfeiler–
Lehman (WL) subtree kernel (Shervashidze et al., 2011) because
it can effectively capture topological information and measure
similarity of networks (Du et al., 2016).

For a pair of brain networks G and H, the basic process of the
WL subtree kernel is as follows: firstly, each node in the brain
network is labeled as their original ROI label. Then, the label of
node is updated according to its previous label and the label of its
neighboring node, and this process is repeated until the number
of iterations reaches a predefined maximum value h. Finally, the
WL subtree kernel on two graphs G and H with h iterations are
defined as Equation (2) (Shervashidze et al., 2011):

k(G,H) =< ϕ (G) ,ϕ (H) > (2)

where,

ϕ (G) = (σ0 (G, s01) , · · · , σ0
(

G, s0|L0|
)

, · · · , σh (G, sh1) , · · · ,

σh
(

G, sh|Lh|
)

)

and

ϕ (H) = (σ0 (H, s01) , · · · , σ0
(

H, s0|L0|
)

, · · · , σh (H, sh1) , · · · ,

σh
(

H, sh|Lh|
)

)

with σi
(

G, si,j
)

and σi
(

H, si,j
)

are the numbers of occurrences of
the label si,j in G and H, respectively. si,j denotes the label of i-th
node in iteration j. And |Li | is the number of labels in iteration
i. Li denotes the set of labels of G and H in iteration i. L0 denotes
the set of the initial labels of G and H. K is the kernel matrix of
n× n and n is the number of brain networks.

After computing the graph kernel matrix, kernel PCA is
performed to extract features. The kernel PCA is given by
Equation (3):

λα = Kα, α = (α1,α2, · · · ,αN)T (3)
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where λ and α are the eigenvalue and corresponding eigenvector
of K. N is the number of networks. K is the kernel matrix
computed using the WL subtree kernel.

Let α1,α2, · · · ,αm(αm =
{

αm
1 ,α

m
2 , · · · ,α

m
N

}T
) is the

normalized eigenvector of the top-m biggest eigenvalues in
Equation (3). Then, Um =

∑n
i = 1 αm

i ϕ (Gi) is the solution of
Equation (3).

Therefore, for a network G, the new feature vector can be
computed by Equation (4):

(Um)T · ϕ (G) =
∑n

i = 1
αm
i ϕT (Gi) · ϕ (G)

=
∑n

i = 1
αm
i K(Gi, G) (4)

Moreover, in graph kernel PCA, we simply use the top-m biggest
eigenvalues. To evaluate the effect of m, we perform a list of MCI
classification tasks with different values, the results of which are
shown in Figure 2. This figure clearly shows that for m = 7 or
8, the accuracy is the highest in the classification of MCI and
NC. At this point, m just satisfies the formula

∑m
i = 1 |λi| >

0.9×
∑n

i = 1 |λi| (where n is the number of networks). It contains
enough discriminative information. Therefore, in graph kernel
PCA, we simply use the top-m biggest eigenvalues so that
∑m

i = 1 |λi| > 0.9×
∑n

i = 1 |λi|.

SVM and Cross-Validation
Finally, a simple SVM classifier (Chang and Lin, 2011) was
adopted to identify AD patients and MCI patients from NCs.
To evaluate the performance of this method, a 10-fold cross-
validation (Chang and Lin, 2011) is adopted. Specifically, the
subject dataset was randomly divided into 10 parts, one of
which was left as the testing set, while the remaining nine were
used as training sets. In this study, 10-fold cross-validation was
performed 100 times to obtain more accurate results. Finally, we
computed the arithmetic mean of the 100 repetitions as the final
result.

FIGURE 2 | Classification accuracy of MCI for different m value. m represents

the top-m biggest eigenvalues in graph kernel PCA.

Implementation Details
In our study, The MST brain network containing 90 nodes is
constructed by the MST method based on the fully connected
network obtained by preprocessing. In gSpan, the support value
s is set as 0.7 to mine the frequency subnetwork in the MST
brain network. The most discriminative subnetworks are selected
from frequency subnetworks, and the brain network is rebuilt
according to the most discriminative subnetworks. In the WL
subtree kernel, the parameters h and n are set as 5 and 1,
respectively. In the kernel PCA, the parameter target_dim m is
set as 8, 20, and 18 for MCI vs. NC, AD vs. NC, and AD vs. MCI,
respectively.

In our experiments, the classification performance of
different methods was evaluated using accuracy, sensitivity,
specificity and area under receiver operating characteristic
(ROC) curve (AUC). Specifically, the accuracy measures the
proportion of subjects that are correctly predicted among all
subjects, the sensitivity represents the proportion of positives
that are predicted correctly, and the specificity denotes the
proportion of negatives that are predicted correctly. The ROC
curve is a graphical plot that shows the diagnostic ability
of a binary classifier system. It is created by plotting the
sensitivity against 1-specificity over all possible values of the
marker.

RESULTS

Classification Results
In this experiment, the MST was constructed, and frequent
subnetwork was defined as the feature, while graph kernel PCA
was used for feature selection. For classification of AD and
MCI, the accuracy was 77.3%, the specificity was 100% and the
sensitivity was 54.1%, AUC was 0.97. For classification of MCI
and NC, the accuracy was 98.3%, the specificity was 100% and
the sensitivity was 96.6%, AUC was 0.99. For classification of AD
and NC, the accuracy was 91.3%, the specificity was 100% and the
sensitivity was 82.5%, AUC was 1 (see Table 2). Figure 3 shows
the ROC curve of the proposed method. The results showed
that the classification method with subnetwork selection and
graph kernel principal component analysis based on MST brain
functional network could accurately distinguish AD, MCI, and
NC subjects.

Most Discriminative Subnetworks
In feature extract, frequent subnetwork were mined from MST
brain network by gSpan (support is set as 0.7). Figure 4 depicts
frequent subnetwork of MCI, AD, and NC.

In feature selection, we choose those subnetworks with
the highest frequency difference as the most discriminative
subnetworks for classification. Figures 5, 6 show most
discriminative regions.

The result shows that the most discriminative subnetworks
obtained using our proposed method include the precentral
gyrus, orbitofrontal cortex, insula, superior occipital gyrus,
hippocampus, and fusiform gyrus; these findings are consistent
with those of previous studies.
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DISCUSSION

In this article, we proposed a classification framework based on
MST brain functional networks to automatically identify AD
patients, MCI patients, and NC. This framework used MST to
construct a brain network, gSpan to mine frequent subnetworks,
and graph kernel PCA to select the most discriminative
subnetwork for classification. The classification performance was
evaluated by using 10-fold cross-validation. The experimental
results show that our proposed method can achieve significantly
improved classification performance compared to other state-of-
the-art methods.

Classification Performance
The human brain is a very complex system. Brain diseases
cause a series of changes in the brain. Recently, connectivity-
network-based classification methods have been proposed for
the diagnosis of AD, MCI, and NC. In the conventional
classification methods, the researchers extracted features from
the threshold network and formed long vector to train a classifier
for classification. For example, the clustering coefficient was
extracted as feature for MCI classification (Wee et al., 2011).
The local network measures were extracted as feature for
MCI classification (Wee et al., 2012a,b). The weights between

TABLE 2 | Comparison of classification performance from different methods.

Method Task ACC (%) SEN (%) SPE (%) AUC

Jie et al., 2014b MCI/NC 91.9 100 88 0.94

Jie et al., 2016 MCI/NC 94.6 91.7 96.0 0.96

Guo et al., 2017a AD/NC 98.2 98.9 96.7 0.998

Proposed method MCI/NC 98.3 96.6 100 0.99

AD/NC 91.3 82.5 100 1

AD/MCI 77.3 54.1 100 0.97

AD, Alzheimer’s disease; NC, Normal control; MCI, Mild Cognitive Impairment; ACC,

Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, The area under the receiver operating

characteristic curve.

the regions of interest pairs were extracted for classification
(Chen et al., 2011). However, one disadvantage of those
methods is that some useful network topological information
was not fully considered, which limits the further improvement
of classification performance. Jie et al. (2014b) used the
topological information to identify MCI patients. Jie et al.
(2014a) proposed a framework to integrate network topological
and connectivity properties for improving the classification
performance. However, in the construction of a threshold
network, threshold setting will affect the performance of the
classification to a certain extent.

In our study, brain functional network is constructed by
using an MST brain network and topological information
are extracted from MST networks for final classification. We
compared our method with existing methods. Table 2 shows the
classification performances of different methods. As can be seen
from the Table 2, the proposed method has the best classification
accuracy, sensitivity, specificity, and AUC value, especially in
the classification of MCI and NC. Specifically, for classification
of MCI and NC, the proposed method achieves classification
accuracy of 98.3%, sensitivity of 96.6%, specificity of 100%, and
AUC of 0.99; in comparison, for other classification methods,
the best accuracy is only 94.6%, best sensitivity is 100%, best
specificity is 96%, and best AUC is 0.96. However, we also
observed the low sensitivity of the proposed method for AD/MCI
classification. There may be two reasons for this. Firstly, MCI
was considered a transitional stage between NC and early AD.
MCI is a stage of progressive global cognitive decline, including
the loss of memory, reasoning, and language. According to a
study by Liu et al. (2018), abnormalities in functional integrity
and functional compensation coexist in patients with MCI, so
the difference between AD and MCI was not obvious. Secondly,
in our experiment, the number of most discriminative regions
between AD and MCI was 17, but 13 of them also appeared
in AD and NC, and only 4 of them appeared in MCI and NC.
That is to say, most discriminative regions between AD and MCI
covered the typical damaged brain regions in AD patients. So
the classifier can accurately identify typical AD patients without

FIGURE 3 | The ROC curve of different methods. The ROC curve of different methods on MCI vs. NC (A), AD vs. NC (B), and AD vs. MCI (C) classification. Multiple

threshold, Multiple thresholded functional brain network; Hyper-network, Hyper-connectivity of functional brain networks; Hon-mst, Minimum spanning tree high-order

functional brain network.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 May 2018 | Volume 12 | Article 31

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Cui et al. Classification Method for Brain Functional Network

FIGURE 4 | Frequent subnetworks of NC, AD and MCI. Frequent subnetwork mined by gSpan for MCI (A), AD (B), and NC (C) groups. PreCG.L, L Precental gyrus;

PreCG.R, R Precental gyrus; SFGdor.L, L Superior frontal gyrus, dorsolateral; SFGdor.R, R Superior frontal gyrus, dorsolateral; ORBsup.L, L Superior frontal gyrus,

orbital part; MFG.R, R Middle frontal gyrus; ORBmid.L, L Middle frontal gyrus, orbital part; ROL.R, R Rolandic operculum; SMA.R, R Supplementary motor area;

OLF.L, L Olfactory cortex; OLF.R, R Olfactory cortex; SFGmed.L, L Superior frontal gyrus, medial; SFGmed.R, R Superior frontal gyrus, medial; ORBsupmed.L, L

Superior frontal gyrus, medial orbital; ORBsupmed.R, R Superior frontal gyrus, medial orbital; REC.L, L Gyrus rectus; REC.R, R Gyrus rectus; INS.L, L Insula; INS.R, R

Insula; ACG.R, R Anterior cingulate and paracingulate gyri; DCG.L, L Median cingulate and paracingulate gyri; DCG.R, R Median cingulate and paracingulate gyri;

PCG.L, L Posterior cingulate gyrus; PCG.R, R Posterior cingulate gyrus; HIP.L, L Hippocampus; HIP.R, R Hippocampus; PHG.L, L Parahippocampal gyrus; CAL.R, R

Calcarine fissure and surrounding cortex; CUN.L, L Cuneus; CUN.R, R Cuneus; LING.L, L Lingual gyrus; LING.R, R Lingual gyrus; SOG.L, L Superior occipital gyrus;

SOG.R, R Superior occipital gyrus; MOG.L, L Middle occipital gyrus; MOG.R, R Middle occipital gyrus; IOG.L, L Inferior occipital gyrus; IOG.R, R Inferior occipital

gyrus; FFG.L, L Fusiform gyrus; PoCG.L, L Postcentral gyrus; PoCG.R, R Postcentral gyrus; SPG.L, L Superior parietal gyrus; SPG.R, R Superior parietal gyrus;

IPL.R, R Inferior parietal, but supramarginal and angular gyri; PCUN.R, R Precuneus; PCL.L, L Paracentral lobule; PCL.R, R Paracentral lobule; CAU.L, L Caudate

nucleus; CAU.R, R Caudate nucleus; PUT.L, L Lenticular nucleus, putamen; PUT.R, R Lenticular nucleus, putamen; PAL.L, L Lenticular nucleus, pallidum; THA.R, R

Thalamus; HES.L, L Heschl gyrus; TPOmid.L, L Temporal pole: middle temporal gyrus.

misdiagnosis. However, due to the existence of compensation
mechanism, the degree of brain damage in some AD patients
was not significant, resulting in the missed diagnosis of some AD
patients.

In order to avoid the influence of different data sets on
the results, the network construction methods and classification
features of the existing studies (Jie et al., 2014b, 2016; Guo
et al., 2017a) were used in the experiment, and the classification
performance was compared with the same data sets. Table 3
shows the classification performances of different methods with
same dataset. Figure 3 shows the ROC curve of these different
methods. The result showed that the proposedmethod is superior
to the other three methods, especially in MCI/NC classification,

which indicates that this method can capture the early features
of disease. In addition, the specificity of proposed method is
100%, which indicates that the method can accurately identify
the patients without misdiagnosis. In addition, compared with
the proposed methods, these methods were more complex in
network construction and feature selection. Specifically, in Jie
et al’s. (2014b) method, it was necessary to construct several
functional connectivity networks with different thresholds, and
extract topological properties of the network as features to
classify. In Jie et al.’s (2016) method, hyper-networks was
constructed by sparse representation, and three different types
of clustering coefficients was used as feature to classify. In
Guo et al.’s (2017a) method, the low-order and high-order
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FIGURE 5 | Most discriminative regions that were selected using the proposed method in AD.

networks must be constructed firstly, then the MST high-
order functional connectivity network can be constructed. In
addition, appropriate threshold need to be set for feature
selection. The selection of threshold will affect the performance
of classification. These factors increase the complexity of the
methods.

In conclusion, the results showed that the simple, unbiased
brain network constructed byMST and the topological properties
of the network captured by graph kernel PCA can improve the
classification performance. Therefore, our proposed method can
achieve better results while using the unbiased brain networks
and fewer features.

Discriminative Brain Regions
The regions selected in the course of classification by our method
are in agreement with previous studies and include the precentral
gyrus (Lenzi et al., 2011), orbitofrontal cortex (Wee et al., 2012b),
insula (Wee et al., 2012b), posterior cingulate cortex (Zhang et al.,
2007, 2010), superior occipital gyrus (Wee et al., 2012b), Fusiform
gyrus (Whitwell et al., 2007), hippocampus (Shen et al., 2010),
and parahippocampal gyrus (Wee et al., 2012b), Putamen of
lenticular nucleus (de Jong et al., 2008).

Specifically, the orbitofrontal cortex participates in the
cognitive process of the brain during decision-making and
reflects emotion and reward in the decision-making (Supekar
et al., 2008). If the prefrontal cortex is damaged, it will affect the

brain’s control of emotion and mood. The posterior cingulate
cortex is the hub node in the default mode network and
participates in various functions of the brain network. It plays
a prominent role in pain and memory (Nielsen et al., 2005).
The precentral gyrus involved in the transfer of attention and
eye movement (Lenzi et al., 2011). The insula are believed to
be involved in consciousness and play an important role in
perception, motor control, self-awareness, language, cognitive
functioning, emotions, and interpersonal experience. Fusiform
gyrus has been linked with various neural pathways related
to recognition. The hippocampus plays important roles in
spatial memory and in the consolidation of information from
short-term memory to long-term memory. The hippocampus
demonstrated a significantly negative correlation to episodic
memory performance (Bai et al., 2009). The Parahippocampal
gyrus plays an important role in the encoding and recognition
of environmental scenes (Machulda et al., 2001). The main
function of the putamen is to regulate movements and influence
learning.

Additionally, the other observation is that the hippocampus,
parahippocampal gyrus, and insula are the first regions of the
brain to suffer damage. It is agree with the fact that Alzheimer’s
disease is always forgetting recent events and decline in attention,
language, and executive in early stage. As the disease advances,
some regions were damaged, such as L Orbital part of superior
frontal gyrus, L Orbital part of middle frontal gyrus, Posterior

Frontiers in Computational Neuroscience | www.frontiersin.org 8 May 2018 | Volume 12 | Article 31

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Cui et al. Classification Method for Brain Functional Network

FIGURE 6 | Most discriminative regions that were selected using the proposed method in MCI.

TABLE 3 | Classification performance of different methods with the same dataset.

Method Research Task ACC (%) SEN (%) SPE (%) AUC

Multiple threshold Jie et al., 2014b MCI/NC 75.7 74.3 78.1 0.81

AD/NC 78.5 73.3 85.6 0.9

AD/MCI 74 90 42.2 0.9

Hyper-network Jie et al., 2016 MCI/NC 80.8 76.7 80 0.94

AD/NC 88.3 91.7 86.7 0.95

AD/MCI 77.5 60 95 0.85

Hon-mst Guo et al., 2017a MCI/NC 82.6 84.1 87.5 0.93

AD/NC 94.2 95.1 95.4 0.95

AD/MCI 80.7 73.3 85 0.89

MST Proposed method MCI/NC 98.3 96.6 100 0.99

AD/NC 91.3 82.5 100 1

AD/MCI 77.3 54.1 100 0.97

Multiple threshold, Multiple thresholded functional brain network; Hyper-network, Hyper-connectivity of functional brain networks; Hon-mst, Minimum spanning tree high-order functional

brain network; MST, Minimum spanning tree functional brain network; AD, Alzheimer’s disease; NC, Normal control; MCI, Mild cognitive impairment; ACC, Accuracy; SEN, Sensitivity;

SPE, Specificity; AUC, The area under the receiver operating characteristic curve.

cingulate cortex, L Fusiform gyrus, L Postcentral gyrus and
Putamen. This loss results in some problems with disorientation,
cognitive decline, mood swings, incapable of self-care, loss of
motivation, and behavioral problems. And, these regions were
parts of default mode network (DMN). It proves that the
dysfunction of DMN is closely related to AD.

Effect of MST
To investigate the effect of MST on the classification
performance, we performed the same experiment on threshold
networks and MST networks. A study has shown (Zanin et al.,
2012) that a brain function network with sparsity of 40%
demonstrated higher classification performance. Therefore, a
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TABLE 4 | Classification performance of threshold-based and MST-based

methods.

Method Task ACC (%) SEN (%) SPE (%) AUC

Threshold-based MCI/NC 63.3 73.3 65 0.65

AD/NC 87.5 85 76.7 0.92

AD/MCI 65.8 66.7 81.7 0.76

Proposed method MCI/NC 98.3 96.6 100 0.99

AD/NC 91.3 82.5 100 1

AD/MCI 77.3 54.1 100 0.97

Threshold-based denotes a brain function network with the sparsity of 40%; AD,

Alzheimer’s disease; NC, Normal control; MCI, Mild cognitive impairment; ACC,

Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, The area under the receiver operating

characteristic curve.

brain function network with the sparsity of 40% was constructed
for comparison. Specifically, a functional full connected
network obtained by preprocessing can be represented as
the correlation matrix. The threshold is set according to the
sparsity (40%) of the network, and then the correlation matrix
of the fully connected network is transformed into binary
matrix according to the threshold. That is, if the weight is
greater than the threshold, the corresponding element of the
binary matrix is 1, otherwise it is 0. Thus, a brain function
network with the sparsity of 40% was constructed. Finally,
the discriminative subnetwork selection method and graph
kernel PCA method were used to extract features, a linear SVM
was trained for classification. Table 4 shows the classification
performances.

Obviously, these results indicated that the choice of threshold
affects the structure and properties of the network, and affects
the performance of the classification to a certain extent. The
uniqueness of MST facilitates a comparison between brain
networks. This conclusion is consistent with previous results
(Tewarie et al., 2015).

Effect of KPCA
To evaluate the effect of feature extraction based on graph kernel
PCA, we directly use discriminative subnetworks as features for
classification. Specifically, let fij denote the jth feature of the
network Gi. If the jth discriminative subnetwork is a subnetwork
of the network Gi, then fij is 1, otherwise it is 0. Accordingly,
we can obtain feature vectors for every brain network. Then, we
use SVM for classification. Table 5 summarizes the classification
performances.

As shown in Table 5, the results of our proposed method
are better than those of the method in which discriminative
subnetworks are directly used as features in terms of accuracy,
sensitivity, specificity, and AUC. These results show that feature
extraction based on graph kernel PCA plays an important
role in our proposed method. This is because graph kernel
PCA can not only measure the similarity between two brain
networks by comparing the topological structure of the network,
but also can map the feature data from high dimension to
low dimension, so as to cover most of the data information
with very few features. More recently, some researchers have

TABLE 5 | Classification performance when directly using discriminative

subnetworks and that of our proposed method.

Method Task ACC (%) SEN (%) SPE (%) AUC

Discriminative

subnetwork

MCI/NC 78.3 66.7 80 0.78

AD/NC 88.2 82.3 94.1 0.97

AD/MCI 69.1 71.2 67.4 0.76

Proposed

method

MCI/NC 98.3 96.6 100 0.99

AD/NC 91.3 82.5 100 1

AD/MCI 77.3 54.1 100 0.97

Discriminative subnetwork denotes directly use discriminative subnetworks as features;

AD, Alzheimer’s disease; NC, Normal control; MCI, Mild cognitive impairment; ACC,

Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, The area under the receiver operating

characteristic curve.

used graph kernels in neuroimaging studies. For example,
Du et al. (2016) used graph kernel PCA to select features
for classification of Attention Deficit Hyperactivity Disorder
(ADHD) patients.

Limitations
Through the experimental analysis, our method has obtained
higher classification accuracy and specificity, but the
sensitivity needs to be improved. In the actual diagnosis,
the doctor should combine the image data with the result
of neuropsychological questionnaires to make a diagnosis.
Therefore, the combination of image data and data of
neuropsychological questionnaires may further improve
the performance of the classification, which will be explored
in the future. In addition, because of the small amount of data
used in the experiment, the results of the classification are lack of
generality. This method is applied to larger AD dataset in future
work.

CONCLUSION

In this paper, we have proposed an MST classification
framework to identify AD patients, MCI patients, and
NCs. The proposed method mainly used the MST method,
gSpan, and graph kernel PCA. Specifically, MST was used
to construct the brain functional connectivity network;
gSpan, to extract features; and graph kernel PCA, to select
features.

In experiments with the ADNI dataset, our proposed method
not only can significantly improve classification performance
in terms of accuracy, sensitivity, specificity, and AUC value,
but also can potentially detect the ROIs that are sensitive
to disease pathology. In future work, we will explore the
combination of image data and data of neuropsychological
questionnaires.
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