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Simple models of short term synaptic plasticity that incorporate facilitation and/or

depression have been created in abundance for different synapse types and

circumstances. The analysis of these models has included computing mutual information

between a stochastic input spike train and some sort of representation of the

postsynaptic response. While this approach has proven useful in many contexts, for

the purpose of determining the type of process underlying a stochastic output train, it

ignores the ordering of the responses, leaving an important characterizing feature on

the table. In this paper we use a broader class of information measures on output only,

and specifically construct hidden Markov models (HMMs) (known as epsilon machines or

causal state models) to differentiate between synapse type, and classify the complexity

of the process. We find that the machines allow us to differentiate between processes

in a way not possible by considering distributions alone. We are also able to understand

these differences in terms of the dynamics of the model used to create the output

response, bringing the analysis full circle. Hence this technique provides a complimentary

description of the synaptic filtering process, and potentially expands the interpretation of

future experimental results.

Keywords: short term plasticity, epsilon machines, synaptic filtering, mutual information, interneuron-pyramidal

cell synapses, causal state splitting reconstruction

1. INTRODUCTION

Short term plasticity at the synapse level can have profound effects on functional connectivity
of neurons. Through repetitive activation, the strength, or efficacy, of synaptic release of
neurotransmitter can be decreased, through depletion, or increased, through facilitation. A single
synapse type can display different properties at different frequencies of stimulation.

The role of synaptic plasticity and computation has been analyzed and reported on in numerous
papers over the past 30 years. A review of feed-forward synaptic mechanisms and their implications
can be found in Abbott and Regehr (2004). In this paper Abbott and Regher state “The potential
computational power of synapses is large because their basic signal transmission properties can
be affected by the history of presynaptic and postsynaptic firing in so many different ways.” They
also outline the basic function of a synapse as a signal filter as follows: Synapses with an initial low
probability of release act as high pass filters through facilitation, while synapses with an initially high
probability of release exhibit depression and subsequently serve as low pass filters. Intermediate
cases in which the synapse can act as a band-pass filter, exist. Identifying synapse-specific molecular
mechanisms is currently an active area of research, involving subtle changes in expression of myriad
calcium sensor isoforms (synaptotagmins), subtly configured to alter the microscopic rates of
synaptic release, facilitation, depression, and vesicle replenishment (Fioravante and Regehr, 2011;
Chen and Jonas, 2017; Jackman and Regehr, 2017).
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The underlying mechanisms creating these effects may be
inferred by fitting an a priori model to synaptic response
data. We parameterize such a model combining the properties
of facilitation and depression (FD) at the presynaptic neuron
with experimental data from dual whole-cell recordings from
a presynaptic parvalbumin-positive (PV) basket cell (BC)
connected to a postsynaptic CA1 (Cornu Ammonis 1 subregion)
pyramidal cell, for fixed frequency spike trains into the
presynaptic PV BC (Stone et al., 2014; Lawrence et al., 2015).
We later examine the response of the model to an in vivo-like
Poisson spike train of input, where the inter-spike interval (ISI)
follows an exponential distribution, in Bayat et al. (submitted).
Here we investigate the information processing properties of
the synapse in question, following (Markram et al., 1998) and
using standard calculations of entropy and mutual information
between the input spike train and output response. This,
however, left us unsatisfied, as it did not indicate the history
dependence of the response, which we believe is one of the more
interesting features of plasticity models that involve presynaptic
calcium concentration. We attempted using multivariate mutual
information measures, but this very quickly collapses due to the
“curse of dimensionality” (Bellman, 1957). In this paper we try to
resolve the question usingmethods of ComputationalMechanics,
creating unifilar HMMs called epsilon machines, that represent
the stochastic process that our synapse model creates. As a bonus
we are using data itself (albeit synthetic data) to create models of
plasticity that can be used to classify properties of different types
of synapses.

As stated in the abstract, methods from Information theory
rely on distribution measures which inherently ignore the
ordering of the measured data stream. We seek to incorporate
this important feature of plasticity, the dependence of the
response of the synapse on the prior sequence of stimulation,
directly through the construction of causal state machines. This
can only add to the understanding of the process in cases
where the input stimulus train is known. In experiments where
only the output postsynaptic response is known, this technique
is particularly useful. While the machines themselves cannot
be interpreted in a physiological way, the information they
provide can be used to classify synaptic dynamics and inform the
construction of physiological models. The point of the analysis is
to gain as much accurate information from experiments in short
term synaptic plasticity as possible without imposing the bias
of an assumed underlying physical model. To create synthetic
data we use a very simple but otherwise complete model of
short-term plasticity that incorporates a “memory” effect through
the inclusion of calcium build-up and decay. This has roots in
a real physiological process (the flooding of calcium into the
presynaptic terminal can trigger the release of neurotransmitter),
but we are not interested per se in creating a biophysically

Abbreviations: BC, basket cell; CA1, Cornu Ammonis, early name for

hippocampus; FD, facilitation and depression; IPSC, inhibitory postsynaptic

current; ISI, interspike interval; KL, Kozachenko and Leonenko; KSG, Kraskov,

Stögbauer, and Grassberger; mAChR, muscarinic acetylcholine receptors; MCMC,

Monte Carlo Markov Chain; MI, Mutual Information; NT, neurotransmitter; PSR,

postsynaptic response; PV, parvalbumin-positive; HMM, Hidden Markov Model;

CSSR, Causal State Splitting Reconstruction.

complete model here. The calcium dynamics simply introduces
another time scale into the model, one that is physiologically
relevant.Wewish to explore the effect of this additional time scale
on the complexity of the process.

Computational Mechanics is an area of study pioneered by
Crutchfield and colleagues in the 1990s, (Crutchfield and Young,
1989; Crutchfield, 1994; Shalizi and Shalizi, 2002). Finding
structure in time series with these techniques has been applied
in such diverse arenas as layered solids (Varn et al., 2002),
Geomagnetism (Clarke et al., 2003), climate modeling (Palmer
et al., 2002), financial time series (Park et al., 2007), and more
recently ecological models (Boschetti, 2008) and large scale
multi-agent simulations (Parikh et al., 2016). In neuroscience,
to name a few only, we note one application to spike train data
(Haslinger et al., 2013), and a recent publication by Marzen et al.
on the time resolution dependence of information measures of
spike train data (Marzen et al., 2015).

We employ some of the simplest ideas from this body of
work, namely decomposing a discrete time-discrete state data
stream into causal states, which are made up of sequences of
varying length that all give the same probability of predicting
the same next data point in the stream. The data are discrete
time by construction, and made into discrete symbols through
a partition, so the process can be described by symbolic
dynamics. We use the Causal State Splitting Reconstruction
(CSSR) algorithm on the data to create the causal states and
assemble a HMM that represents the transitions between the
states, while emitting a certain symbol. This allows us to classify
the synapse types and gives an idea of the differences in the
history dependence of the processes as well.

Using an a priori model for short-term synaptic dynamics
and fitting it to data, while a perfectly valid approach, allows
only for the discovery of the parameters in the model and
possibly a necessary model reduction to remove any parameter
dependencies (too many parameters in the model for the data set
to fit). The alternative approach is to allow the data itself to create
the model. From these “data driven” models, conclusions can
be drawn about the properties of the synapse that are explicitly
discoverable from the experimental data. The ultimate goal is a
categorization of the types of processes a synapse can create, and
an assignment of those to different synapse types under varying
conditions. Note that the complexity or level of biophysical detail
of our model synapse is not important to this end. In fact, the
best way to calibrate this method is using the simplest possible
model of the dynamics that captures the history dependence of
the plasticity. This is not consonant with the goal of incorporating
as many physiological features as possible, whether they affect
the dynamics significantly or not. In fact, in most cases the
limited data in any electro-physiological experiment precludes
identifying more than a handful of parameters in an a priori
model, a point we discuss in Stone et al. (2014). Our goal is
to classify the sort of filter the synapse creates under certain
physiological conditions, rather than to identify specific detailed
cellular level mechanisms.

We are motivated in this task by the work of Kohus
et al. (2016), in which they present a comprehensive data
set describing connectivity and synaptic dynamics of different
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interneuron (IN) subtypes in CA3 using paired cell recordings.
They apply dynamic stimulation protocols to characterize the
short-term synaptic plasticity of each synaptic connection across
a wide range of presynaptic action potential frequencies. They
discovered that while PV+ (parvalbumin positive) cells are
depressing, CCK+ (Cholecystokinin positive) INs display a range
of synaptic responses (facilitation, depression, mixed) depending
upon postsynaptic target and firing rate. Classifying such a wide
range of activity succinctly is clearly useful in this context. The
discovery that the rate of particular observed oscillations in these
cells (called sharp wave ripples) may be paced by the short-
term synaptic dynamics of the PV+BC in CA3 demonstrates the
importance of these dynamics in explaining complex network
phenomena.

The paper is organized as follows. The construct for an
experimental paper with section 2 and section 3 is not an
immediately obvious partition of our work, but we use it as best
we can. In the section 2 we describe the background on the
synaptic plasticity model, and some analysis of its properties.
We also cover the necessary background from Computational
Mechanics. Finally we show how the techniques are explicitly
applied to our data. In the section 3 we present the epsilon
machines created from data from three types of synapses
from our FD model: depressing, facilitating, and mixed, at
varying input frequencies. Here we also indicate similarities and
differences in the actual machines. In the section 4 we speculate
on the reasons for these features by referring back to the original
model. In the last section we indicate directions for future work.

2. MATERIALS AND METHODS

2.1. Model of Synaptic Plasticity
In Stone et al. (2014), we parameterize a simple model
of presynaptic plasticity from work by Lee et al. (2008)
with experimental data from cholinergic neuromodulation of
GABAergic transmission in the hippocampus. The model is
based upon calcium dependent enhancement of probability of
release and recovery of signalling resources (For a review of these
mechanisms see Khanin et al., 2006). It is one of a long sequence
of models developed from 1998 to the present, with notable
contributions byMarkram et al. (1998) and Dittman et al. (2000).
The latter is a good exposition of the model as it pertains to
various types of short term plasticity seen in the central nervous
system, and the underlying dependence of the plasticity is based
on physiologically relevant dynamics of calcium influx and decay
within the presynaptic terminal. In our work, we use the Lee
model to create a two dimensional discrete dynamical system in
variables for calcium concentration in the presynaptic area and
the fraction of sites that are ready to release neurotransmitter into
the synaptic cleft.

In the rest of this section we outline the model, which is used
to generate synthetic data for our study of causal state models, or
epsilon machines, of short-term plasticity.

In the model the probability of release (Prel) is the fraction of
a pool of synapses that will release a vesicle upon the arrival of an
action potential at the terminal. Following the work of Lee et al.

(2008), we postulate that Prel increases monotonically as function
of calcium concentration in a sigmoidal fashion to asymptote
at some Pmax. The kinetics of the synaptotagmin-1 receptors
that binds the incoming calcium suggests a Hill equation with
coefficient 4 for this function. The half-height concentration
value, K, and Pmax are parameters determined from the data.

After releasing vesicles upon stimulation, some portion of
the pool of synapses will not be able to release vesicles again
if stimulated within some time interval, i.e., they are in a
refractory state. This causes “depression;” a monotonic decay of
the amplitude of the response upon repeated stimulation. The
rate of recovery from the refractory state is thought to depend on
the calcium concentration in the presynaptic terminal (Dittman
and Regehr, 1998; Wang and Kaczmarek, 1998). The model has
a simple monotonic dependence of rate of recovery on calcium
concentration, a Hill equation with coefficient of 1, starting at
some kmin, increasing to kmax asymptotically as the concentration
increases, with a half height of Kr .

The presynaptic calcium concentration itself, [Ca], is assumed
to follow first order decay kinetics to a base concentration,
[Ca]base. At this point we choose that [Ca]base = 0, since
locally (near the synaptotagmin-1 receptors) the concentration
of calcium will be quite low in the absence of an action potential.

The evolution equation for [Ca] then is simply τca
d[Ca]
dt
=

−[Ca] where τca is the calcium decay time constant, measured in
milliseconds. Upon pulse stimulation, presynaptic voltage-gated
calcium channels open, and the concentration of calcium at the
terminal increases rapidly by an amount δ (measured in µm):
[Ca] → [Ca] + δ at the time of the pulse. Note that calcium
build-up is possible over a train of pulses if the decay time is long
enough relative to the ISI.

Asmentioned above, the probability of release Prel and the rate
of recovery, krecov, depend monotonically on the instantaneous
calcium concentration via Hill equations with coefficients of 1
and 4 respectively. Rescaling the calcium concentration by δ = δc
in the control case, we define C = [Ca]/δc. Then the equations

are Prel = Pmax
C4

C4+K4 , and krecov = kmin + 1k C
C+Kr

. The

variable Rrel is governed by the ordinary differential equation
dRrel
dt
= krecov(1 − Rrel), which can be solved exactly for Rrel(t).

Rrel(t) = 1 − (1 − R0)(
C0e
−t+Kr

Kr+C0
)1ke−kmint . Prel is also a function

of time as it follows the concentration of calcium after a stimulus.
We used experiments in hippocampus to parameterize

this model, as part of an exploration of the frequency
dependent effects of neuromodulation. Whole-cell recordings
were performed from synaptically connected pairs of neurons
in mouse hippocampal slices from PV-GFP mice (Lawrence
et al., 2015). The presynaptic neuron was a PV basket cell
(BC) and the postsynaptic neuron was a CA1 pyramidal cell.
Using short, 1–2 ms duration suprathreshold current steps
to evoke action potentials in the PV BC from a resting
potential of −60 mV and trains of 25 of action potentials
are evoked at 5, 50, and 100 Hz from the presynaptic basket
cell. The result in the postsynaptic neuron is the activation
of GABAA-mediated inhibitory postsynaptic currents (IPSCs).
Upon repetitive stimulation, the amplitude of the synaptically
evoked IPSC declines to a steady-state level. These experiments
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were conducted with 5, 50, and 100 Hz stimulation pulse trains,
with and without the neuromodulator muscarine, in order to test
frequency dependent short term plasticity effects.

The peak of the measured postsynaptic IPSC is presumed
to be proportional to the total number of synapses that receive
stimulation Ntot , which are also ready to release (Rrel), e.g.,
NtotRrel, multiplied by the probability of release Prel. That is, peak
IPSC ∼ NtotRrelPrel. Prel and Rrel are both fractions of the total,
and thus range between 0 and 1. Without loss of generality, we
consider peak IPSC to be proportional to RrelPrel.

From the continuous time functions describing C, Rrel, and
Prel, we constructed a discrete dynamical system (or “map”) that
describes PrelRrel upon repetitive stimulation. Given an ISI of T,
the calcium concentration after a stimulus is C(T) + 1 (1 =
δ/δc), and the peak IPSC is proportional to Prel(T)Rrel(T), which
depend uponC. After the release, Rrel is reduced by the fraction of
synapses that fired, e.g.,Rrel → Rrel−PrelRrel = Rrel(1−Prel). This
value is used as the initial condition in the solution to the ODE
for Rrel(t). A two dimensional map (in C and Rrel) from one peak
value to the next is thus constructed. To simplify the formulas we
let P = Prel and R = Rrel. The map is

Cn+1 = Cne
−T +1, (1)

Pn+1 = Pmax

C4
n+1

C4
n+1 + K4

, (2)

Rn+1 = 1− (1− (1− Pn)Rn)(
Cne
−T + Kr

Kr + Cn
)1ke−kminT . (3)

Following this notation the peak value upon the nth stimulus is
Prn = RnPn, where Rn is the value of the reserve pool before the
release reduces it by the fraction (1− Pn).

Data from the experiments were fitted to the map using the
Matlab package lsqnonlin, and with Bayesian techniques (Haario
et al., 2006). The value of Pmax was determined by variance-
mean analysis, and is 0.85 for the control data and 0.27 for the
muscarine data. The common fitted parameter values for both
data sets are shown in Table 1.

For the control data set 1 = 1, and the muscarine data
set has the fitted value of 1 = 0.17. From this result it is
clear that the size of the spike in calcium during a stimulation
event must be much reduced to fit the data from the muscarine
experiments. This is in accordance with the idea that mAChR
activation reduces calcium ion influx at the terminal.

TABLE 1 | Parameter values.

Parameter Fitted value

K 0.2

kmin 0.0017 1/ms

kmax 0.05171/ms

Kr 0.1

τca 1.5 ms

2.1.1. Analyzing the Map
It is common in the experimental literature to classify a synapse
as being “depressing” or “facilitating,” depending upon its
response to a pulse train at some relevant frequency. Simple
models can be built that create each effect individually. The
model here combines both mechanisms so that, depending
upon the parameters, both facilitation and depression and a
mixture of the two can be represented (Lee et al., 2008). Note
that facilitation is built into this model through the calcium
dependent P value and rate of recovery. For instance, by
varying the parameters we can create a “mock” facilitating
synapse, where the size of the response increases with increasing
frequency of input stimulation, or a “mixed” synapse, where the
response is depressed for low and high frequency, but increases
comparatively for moderate values of the frequency.

We are able to “tune” the parameters in themap from the fitted
values to realize these cases, and the results are shown in Table 2.
To attain more complicated dynamics we must first increase the
calcium decay time to 30 ms, a much larger value that has never-
the-less been found in fitting the model to electrophysiological
data from other synapses (Lawrence lab, unpublished results).
The build-up of calcium means a larger recovery rate, but the
probability of release ranges only up to Pmax = 0.6, and over
a larger concentration range of the calcium (K = 4.0 for
facilitating and K = 1.0 for mixed), off-setting the effect of the
larger amount of calcium from the build-up to a varying degree.
The competition between increasing probability of release and
decreasing R creates the local maximum in the mixed case, which
is also present in the facilitating case, but for frequencies outside
the physiological range.

The map has a single attracting fixed point, and the collapse
to this fixed point from physiological initial conditions is very
rapid (Stone et al., 2014). The value of the fixed point depends
on the frequency (1/T), and plotting this is a good way to
represent the different types of synaptic dynamics. In Figure 1

we plot the expression for the fixed point (Pr = P × R
or PR) of the deterministic map vs. rate for three cases. For
instance, the depressing synapse fixed point decreases from
Pmax (for one stimulus, or zero frequency) monotonically, with
a quick decay over 0–10 Hz, and a slower decay to zero
following. The facilitating synapse fixed point increases over
the physiological range shown, but decreases for larger values
of the frequency. The mixed synapse fixed point starts at a
base value of 0.3 for one stimulus, increases to a local max
near 50 Hz and decays thereafter. The “resonance” indicated by

TABLE 2 | Parameter values for “mock” synapses.

Parameter Facilitating Mixed

K 4.0 1.0

kmin 0.002 1/ms 0.002 1/ms

kmax 6.0 1/ms 6.0 1/ms

Kr 0.1 0.1

τca 30 ms 30 ms
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FIGURE 1 | Fixed point values of normalized postsynaptic response for three

synapse models of “depressing,” “mixed,” and “facilitating” stimulated by

Poisson spike trains with mean firing rates ranging from 0.1 to 250.

the local maximum gives the mixed synapse more complicated
linear filtering properties than the other two in the physiological
frequency range.

2.1.2. The Depressing Synapse
The interplay of the presynaptic probability of release and the
rate of the recovery can create a non-linear filter of an incoming
stimulus train. To investigate this idea, in Bayat et al. we
consider the distribution of values of Pr created by exponentially
distributed random ISIs for varying rates λ, or mean ISI, denoted
< T >= 1/λ for the depressing synapse. Doing so explores the
filtering properties of the synapse when presented with a Poisson
spike train. We also present results from numerical studies to
determine of the effect of varying the mean rate of the pulse train.
The information processing properties, in the form of mutual
information and multivariate mutual information, of the synapse
at physiological frequencies are compared. We found that the
mutual information peaked around 3 Hz, when the entropy of
the Pr distribution was at its maximum, for both muscarine and
control parameter sets.

We also determined that the random variable describing the
calcium concentration has a closed form distribution, and indeed
a well-known distribution. However, this is not the case for the
variable R due to the complexity of the map, and so a closed
form for the distribution of Pr = PR is not possible. However,
we can understand it partially by considering the mechanisms
involved, and using some information from the deterministic
map, namely the expression for the fixed point. If the Pr value is
directly determined by the fixed point value for the ISI preceding
it, we would be able to convert the distribution of the ISIs into
that of the Prs by using composition rules for distributions of
random variables. We examine this when the calcium decay time
(τca) is notably smaller than the ISI (T). With this approximation
C, P, and R have time in between pulses to decay to their steady
state value before another pulse. This means that the fixed point

value for a rate given by 1/T where T is the preceding interspike
interval is more likely to give a good estimate of the actual value
or Pr = PR.

It was shown in Stone et al. (2014) that in this case C→ 1 as
T increases and hence P → Pmax. Therefore, the fixed point for
R, (R) is then

R =
1− e−kminT

1− (1− Pmax)e−kminT
.

With this simplification we found the probability density
function (PDF) of R given an exponential distribution of the
variable T. For simplicity of notation, we use X = R and Y = PR.

If X is a random variable, then an analytic expression for its
PDF is given by

f
(

x|λ, c, kmin

)

=
λ(1− c)

kmin
(1− x)−(1−λ/kmin)(1− cx)−(1+λ/kmin),

(4)
where c = 1 − Pmax, λ > 0 is the mean Poisson rate and kmin >

0 is the baseline recovery rate. The distribution is supported
on the interval [0, 1]. Similarly, we can compute the analytical
expression of the PDF of fixed point Y . We will refer to this in
what follows as the stochastic fixed point. Hence, the PDF for the
stochastic fixed point is

f
(

y|λ, c, kmin

)

=

λPmax(1− c)

kmin
(Pmax − y)−(1−λ/kmin)(Pmax − cy)−(1+λ/kmin). (5)

This distribution is supported on the interval [0, Pmax].
Figure 2 shows this expression for different mean input ISI, in
milliseconds.

In Figure 3 are histograms of Pr-values obtained numerically
from the map with very small τca, with an exponentially
distributed T random variable and other parameters from the
control set, as in Figure 2. The similarity between the two is
evident. Apparently this approximation captures the shape of the
distribution and how it changes with varying input spike train
rate.

We are now convinced that we understand the primary driver
of the variation of the probability distribution of the response
to the input mean rate. However, as mentioned before, the
creation of a distribution automatically ignores the causality in
the sequence of the responses. In the next section we describe
a method for assessing this causality directly from the response
data.

2.2. Computational Mechanics Background
We can use distribution to compute measures of information
transfer between input spike trains and output Prs. However,
the question of how far back in a spike train the synapse
“remembers,” or, how far back in the spike train is important
for predicting the output, is difficult to answer, even using
multivariate mutual information measures. Instead we propose
a method for describing the process in terms of output only, with
the goal of classifying the complexity of the underlying synaptic
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FIGURE 2 | Probability density function of the normalized postsynaptic response fixed point PR for six interspike interval variants of 10, 50, 100, 120, 330, and 2,000

ms under analytic expression. Minimum recovery rate kmin is 0.0013 and maximum probability of release Pmax is 0.85 under the control condition in depressing

synapse model.

FIGURE 3 | Frequency distributions of normalized postsynaptic response for varying presynaptic interspike interval values of (A) 10, (B) 50, (C) 100, (D) 120, (E) 330,

and (F) 2,000 in milliseconds. We consider very small calcium decay time τca under the control condition. We can observe the similarity with Figure 2 which indicates

the agreement with the analytic expression.
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dynamics. This method relies on the ideas of “computational
mechanics” developed by Crutchfield and colleagues in the 1990s.

The material presented in this section is drawn from many of
the seminal papers by Crutchfield et al. (Crutchfield and Young,
1989; Crutchfield, 1994; Shalizi and Shalizi, 2002), much of which
is quite technical. In what follows we outline the key ideas
that we have used in our analysis, but note that the theoretical
underpinnings of the ideas are completely described in this
body of work and we refer the reader to these papers for more
detail.

Imagine a black box experimental system and itsmeasurement
channel. Inside the black box is a three state system or process.
The measurements are a sequence of symbols (0, 1) generated
upon transitions between the unseen states in the black box.
The measurement channel itself acts to map the internal state
sequence · · ·BCBAA · · · to a measurement sequence of symbols
· · · 01110 · · · . The black box system is assumed to be Markovian,
meaning that the transition probability from one state to another
depends only upon the current state. The observed symbol
sequence, generated upon transitions between states, make the
system a hidden Markov process. From the point of view of
the observer, how many of the system’s properties be inferred
from the observed symbol sequence? Can a model of the hidden
process be created from this data stream? Can the model be used
to predict the future symbols in the sequence?

Let the symbol sequence be represented by S. With

information from the past
←−
S , we want to make a prediction

about the future
−→
S . The formative idea is to find past sequences

of measurements (histories) leading to the same future. Once
these states are identified, the transitions between them can be
inferred from S. The states themselves and the transition matrix
are called the ǫ-machine for the process. A finite state ǫ-machine
is a Unifilar Hidden Markov Model given by M = {S , {T(s), s ∈
A}} where unifilar means for each state σi ∈ S and each symbol
x ∈ X there is at most one outgoing edge from state σi and output
symbol x.

An ǫ-machine captures the (temporal) patterns in the
observations and reflects the causal structure of the process. With
this model, we can extrapolate beyond the original observations
to predict future behavior of a system. The ǫ-machine is
further defined to be the unique, minimal and maximally
optimal model of the observed process. It can model stationary
stochastic processes with states that represent equivalence classes
of histories with no significant difference in their probability
distribution over the future events.

2.2.1. Epsilon Machine Construction
Consider a portion of a contiguous chain of random variables:
Xn :m = XnXn+1 · · ·Xm, m > n. A semi-infinite chain is
either: Xn : = XnXn+1 · · · , which is called the future, or X: n =

· · ·Xn−2Xn−1, the past. The bi-infinite chain of random variables
is denoted X:. A process is specified by the distribution Prob(X:).

Assume the process is stationary and that a realization of
length L has this property: Prob(X1 : L) = Prob(Xn : L+n−1) for all
n ∈ Z. The values of Xi, the xi, are drawn from a finite alphabet,
A. In our case we use two symbols, 0 and 1, and a sample

finite realization of the process would look like: 00111001001, for
instance.

A causal state σ+ ∈ S+ is a set of pasts grouped by the
equivalence relation∼+:

x: 0 ∼
+ x′

: 0 <=> Prob(X0 :|X: 0 = x: 0) = Prob(X0 :|X: 0 = x′
: 0)

Two histories are equivalent if and only if they have the same
conditional distribution of futures. Groups of specific blocks,
e.g., 011, 10, 1011 might all be in the same causal state. At a
time t, S+t is a random variable drawn from σ+ ∈ S+ and
· · · S+−1S

+
0 S
+
1 · · · S

+
t is a causal state process. Each causal state has

a future morph Prob(Xt :|σ
+
t ), the conditional measure of futures

that can be generated from it. Each state inherits a probability
π(σ+t ) from the processes measure over all pasts Prob(X: t). A
generative model is constructed out of the causal states by giving
the causal state process transitions:

T
(x)
σσ ′
= Prob(S+t+1 = σ ′,Xt = x|S+t = σ )

that give the probability of generating the next symbol x and
while starting from state σ and ending in state σ ′. A process’
forward-time ǫ-machine is the tuple {A,S+, {T(x)

: x ∈ A}} For
a discrete time, discrete alphabet process, the ǫ machine is its
minimal unifilar HMM. Minimal means the smallest number of
states, and unifilarity means the next state is known given the
current state and the next symbol. E.g., the probability of the
transition Prob(S+t+1|Xt = x,S+t = σ ) has support on a single
causal state. The statistical complexity of an epsilon machine is
defined to be the entropy of the causal state distribution, e.g.,
H[S+].

The task of creating the epsilon machine is not a simple one
and generally is quite computationally intense. There has been
much work on creating code for this purpose, and we rely on
available software. For instance, in these preliminary results we
use the Causal-State Splitting Reconstruction Algorithm (CSSR)
(Shalizi and Klinkner, 2004) to create the machine from blocks
of length L starting with L = 1 and increasing up to an
appropriate maximum. We note that there packages created by
Crutchfield’s group that use a Bayesian approach for finding
machines, resulting in distributions of possible machines on
the level transition probabilities for fixed model topology or
for inferring the model topology itself (Travers and Crutchfield,
2011; Strelioff and Crutchfield, 2014).

2.3. Distributions
To create approximations to the distribution of Pr-values we
computed 215 samples from the stochastic map, after discarding
a brief initial transient. The values, ranging between 0 and 1,
were placed into evenly spaced bins. The histograms, normalized
to be frequency distributions, were computed for a range of
mean frequencies (or rates) in the theta range, gamma range,
and higher (non-physiological, for comparison). We tested the
three different synapse types: depressing, facilitating, and mixed.
For parameter values of each, see Tables 1, 2. The histograms
themselves are shown in Figures 4–6.

In order to create epsilon machines, the Pr-values must be
partitioned into a sequence of 0’s and 1’s, which requires the
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FIGURE 4 | Causal state machines (CSMs) reconstructed and their corresponding relative frequency distributions obtained from depressing FD model. Model is

stimulated by Poisson spike trains with mean firing rates (A) 0.1, (B) 2, (C) 5, and (D) 100 Hz. The transitions between states are indicated with symbol emitted during

the transition (1, large synaptic response; 0, small synaptic response) and the transition probability. In both (A,D), CSMs for 0.1 and 100 Hz Poisson spiking process

consist of a single state “1” which transitions back to itself, emitting a large response with probabilities 0.9 and 0.06 for low and very high mean firing rates,

respectively. In both (B,C), 2-state CSMs reconstructed for 2 and 5 Hz Poisson spiking process emit large response with nearly similar probabilities.

adoption of a threshold value. The choice of this threshold
impacts the result, as might be expected. We explore this
dependence in Appendix 2, where we show that most of the
machines are robust within a finite interval around the chosen
threshold. This partition of the output of a real valued map
on the interval [0, 1] into a discrete symbol sequence is known
as a “symbolic dynamic” and has been studied extensively in
dynamical systems theory. For an introductory reference to the
mathematical ideas, see Katok’s excellent textbook (Katok and
Hasselblatt, 1997). If this mapping can be uniquely reversed, the
infinite symbol sequence uniquely determines the initial value of
the orbit in phase space. This can be proven by finding what is
known as a “generating partition” for the iterated map. In the
case of the binary shift map, for instance, the partition into two
halves of the interval is such a generating partition, because the
symbol sequence obtained by following an orbit beginning at x0
is exactly the binary expansion of x0. For a general map it is not
clear if such a partition exists, or how to find it. The practice is
rather to create an equipartition of the phase space (in this case
the interval), knowing that as the number of subintervals in the
partition increases the accuracy of the representation increases.
Here we take a coarse partition, but have limited ourselves to
comparing epsilon machines created from symbol sequences
from the same partition only to each other, not to any external
case. This is similar to the problem of computing the entropy of
a distribution with a histogram, which depends explicitly on the

number of bins. Finally we note that describing orbits of iterated
maps on the unit interval with a symbol sequence by partitioning
the interval is common and considered to be generally applicable
and advantageous if the iterates are obtained from a numerical
simulation or from experimental data. This idea is taken up in
Beck and Schögl (1993), and a good introductory textbook on
symbolic dynamics for scientists is Lind and Marcus (1995).

2.4. Partition
We have considered several options for the thresholding choice.
One idea would be to set the threshold at one half Pmax,
differentiating between small and large responses. However, this
might obscure some of the more interesting dynamics in the
process, so we could make a decision based on the mean, or
median of the distribution. Alternatively we can use the fixed
point value for the deterministic map, which is close to the mean
in low frequency cases. However, if the goal is to uncover as much
of the dynamics as possible, we choose the threshold that gives
a machine with the maximum statistical complexity. To do so,
we computed machines for varying threshold levels in each case,
computed the statistical complexity, and took the one with the
largest value. We also need to make sure we were not resolving
the noise in the process, which guides us to choose a threshold
with care if the support of the distribution is quite small, say
less than 0.2. This occurs for very low and very high frequencies
typically.
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FIGURE 5 | Causal state machines (CSMs) reconstructed and their corresponding relative frequency distributions obtained from facilitating FD model driven by

Poisson spike train with mean firing rates (A) 50, (B) 77, (C)100, (D) 125, (E) 200, and (F) 250 Hz. State “0” is the baseline state. Similar graph structure is seen for

mean firing rates of 50 and 70 Hz. Under mean firing rate of 100 Hz, the graph structure is more complex with more edges, vertices, and one set of parallel edges

from state “3” to “6”. This increase in complexity is somewhat not surprising as this is inflection point where the concavity of the normalized response fixed point for

this synapse model changes at this firing rate, (see Figure 1). In non-physiological range from 125 to 250 Hz, the complexity of graph structure decreases.

See Appendix 2 for an investigation of the effect the
partition has upon the resulting machine. For simpler cases
finite changes in threshold do not change the topology, only the
probabilities. For the facilitating case in mid-range frequencies
the machine changes more dramatically as the threshold is
varied. Because the statistical complexity measure quantifies
the degree of structure present in the data, choosing the
machine that maximizes the statistical complexity ensures that it
represents the maximum structure present in the data. Then the
resulting machines can be compared across the input frequency
range.

2.5. Machines
After partitioning, the Pr time series becomes a sequence of 0’s
and 1’s that can be used to create HMMs. We apply the CSSR

algorithm (Shalizi and Klinkner, 2004), using the Matlab package
in the Causal State Modeller Toolbox (available online at http://
www.mathworks.com/matlabcentral/fileexchange/33217) (Kelly
et al., 2012).

CSSR has two user-specified parameters. The significant level
α, assigned by χ2 or Kolmogorov-Smirnov (KS) tests, determines
whether the estimated conditional distribution of histories over
the next-symbol is significantly different from all of the state’s
other morphs. In case of a significant difference, new states
are formed for these subsequences. By varying the significance
level α, we control the risk of seeing structure that is not there
and states merely created due to sampling error, rather than
the actual differences between their morphs. Some common
choices of α that work well in practice are 0.001, 0.01, 0.1, and
0.05. In our study we set α = 0.01. Also, the CSSR algorithm
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FIGURE 6 | Causal state machines (CSMs) reconstructed and their corresponding relative frequency distributions obtained from mixed FD model driven by a Poisson

spike train with mean rates (A) 5, (B) 25, (C) 50, (D) 125, and (E) 250 Hz. In (A,C,D), CSMs for mean firing rates of 5, 50, and 125 Hz consist of two states with

similar structure, emitting successive large responses followed by small responses. 3-State CSM for mean firing rate 25 Hz has more complex graph structure. Note

that this is inflection point for this synapse model (see Figure 1).

depends crucially on another user-set parameter, Lmax, which
is the maximum subsequence length considered when inferring
the model structure. It is important to find the correct value
of Lmax as it defines the exponent of the algorithm complexity.
Setting Lmax too large results in data shortage for long strings,
the algorithm tends to produce too many states and hence the
results become unreliable. On the other hand, if Lmax is too small,
the algorithm won’t be able to capture all statistical dependencies
in the data and the state structure of the inferred machine may
not be useful. Finding an optimal choice of Lmax is not straight
forward. Here we determine the history length according to the
relationship derived from Hanson (1993). Based on this formula,
for a given number of data points N, and fixed significance

level α, we choose the maximum length of subsequence L such
that

√

|A|Lmax

N − Lmax
= α.

where A is the alphabet size. For instance, for N = 105 and α =

0.01 this formula gives Lmax = 3 as a starting value. Sometimes
it is still too large and another check on Lmax is whether every
state in the resulting machine contains at least one sequence of
that length. If not, the machine is not valid and Lmax should be
decreased. For a discussion of this see (Shalizi et al., 2002). Here
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we have two-symbol alphabet A = {0, 1}, and we use Lmax = 3
and α = 0.01.

For cases with less complex dynamics the machine can be
resolved with L = 2 (maximum of 4 causal states possible),
and increasing to L = 3 gives the same result. For the more
complex cases L = 3 (maximum of 8 causal states possible)
was needed to capture the dynamics. In each case we checked
that the machines had converged in the sense that they did not
change significantly when larger data sets are considered.We also
checked that the machines were well-conceived using Shalizi’s
rule of thumb above.

We show machines for the three different types of synapse
next. What we find gives us confidence in the both the algorithm
for constructing the machine, and the machine itself as a
representative of the dynamics. Furthermore, we are able to
use these to illustrate some of the pitfalls in relying only on
histograms to elucidate the underlying dynamics of the stochastic
process.

3. RESULTS

Results for the depressing synapse are shown in Figure 4 and
details for all these machines can be found in Appendix 1.
We indicate on the histograms where the maximum statistical
complexity is with a red line. For low frequencies, the probability
of getting a large Pr value (or a “1”) is quite large, and its
epsilon machine captures that dynamic with one state. Similarly
for high frequencies the probability of getting a small Pr value
(or a “0”) is quite large and a one state machine results with
the probabilities reversed. For intermediate frequencies, near the
maximum entropy value of 2–3 Hz, the epsilon machine has 2
states, indicating a more complicated sequence of low and high
Pr-values. Both 2 and 5 Hz have identical machines in structure
with slight variations in the transition probabilities.

The words in each causal state indicate the kind of sequences
that are typical of the synapse. For 2 and 5 Hz, state 0 contains the
sequences 00, 10, 000, 010, 100, and 110. State 1 contains 01, 11,
001, 011, 101, and 111. Between the two, all possible sequences
of length 2 and 3 are represented. The probability of getting a
0 or a 1 is more or less equally likely from both states. State 0
contains more zeros overall, so it is the lower Pr state. Note that
the transition from state 0 to state 1 occurs with the emission of a
1, so the occurrence of a 1 in the sequence drives the dynamic to
state 1, and visa versa. This is a kind of sorting of sequences into
words with more zeros and those with more 1’s. There is nothing
particularly “hidden” in this HMM. For us it means the dynamics
of the synapse are best understood in terms of the histograms.
There is nothing particularly complex in the filter produced by
the map.

We have already seen that the histograms for the depressing
synapse are well represented by the stochastic fixed point
distribution. And even though the distribution sloshes around as
the frequency is varied, there is little change in complexity in the
epsilon machines through this range. There are several ways to
interpret this result. One is that the very short τca means there is
little correlation in calcium time series, which in turn determines

the correlation in P and, indirectly and directly, R. We examine
this idea further in section 4. Another way is to consider the
histograms themselves which are either fairly flat, or with a single
peak at smaller Pr-values and an exponential type tail to the right.
The structure is simple, and can be understood as a “stochastic
fixed point” filter of the incoming Poisson spike train. All this is
in contrast with the results for the facilitating synapse, which we
show in Figure 5.

Histograms of the output Pr are shown in Figures 5A–F,
for 50, 77, 100, 125, 200, 250 Hz, respectively, along with their
corresponding epsilon machines of L = 3. For frequencies less
than 50 Hz the machine has one state. Starting at ν = 50,
all the machines can be described by referring to a persistent
“inner cycle” and “outer cycle.” With the exception of the 100
Hz machine, which has a third cycle, they can be related to
one another by graph operations as the frequency is varied.
For instance, at 50 and 77 Hz, the machines are topologically
similar, with small variations in the transition probabilities. Note
however that the histograms are not similar in any obvious way;
the epsilon machine identifies the underlying unifying stochastic
process. The outer cycle connects state 0 to 1 to 2 and back
to 0. The inner cycle connects states 1 to 3 to 4 to 2 and back
to 1. An additional transition exists between state 3 and 2, bi-
passing state 4. State 4 is notable for its self-connecting edge that
emits a “1.” This state also appears in all the other machines. The
machine found at 125 Hz is very similar to these: the outer cycle
is preserved, though now it connects states 0 to 1 to 3 and back
to 0. The inner cycle can be derived from the inner cycle in the
lower frequency machines by removing state 3, and sharing an
edge with the outer cycle, the one connecting states 1 to 3.

The 200 Hz machine has the same inner cycle as the 125 Hz
machine (connecting states 1 to 3 to 2 and back to 1, with a shared
edge with the outer cycle from state 1 to state 2). The outer cycle
can be made from the 125 Hz outer cycle with the addition of a
state between 1 and 3 in that graph, and another edge from the
new state back to 1. The machine for 250 Hz is the simplest, and
can be derived from the machine at 125 Hz by merging state 1
and 2.

This leaves the most complicated structure, at 100 Hz, with 7
states. However, note that there is still an outer cycle from states
0 to 1 to 3 to 5 and back to 0. The inner cycle connects states
1 to 2 to 4 to 5 and back to 1. The third cycle runs from states
2 to 4 to 6 and back, connecting with the outer cycle at state 3.
This connection gives the process another path back to state 0.
The point of this rather tedious exercise is to see there is indeed
an underlying structure to the overall dynamics of the synapse,
with more states and transitions being revealed as the frequency
is increased through 100 Hz.

The mixed synapse dynamics are surprisingly less complex,
see Figure 6. We set the parameters of the map so that the fixed
point spectrum has a local max at physiological frequencies, but
apparently this can occur without creating much structure in
the histograms, or complexity in the dynamics. The machines
at 5, 50, and 125 Hz have 2 states and are the same as the
machines at 2 and 5 Hz in the depressing case, with small
variation in the transition probabilities. At 25 and 250 Hz the
machines are topologically similar with different probabilities on
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the transitions. They have three states, and state 1 is the same as
state 1 in the two state machines. States 0 and 2 together contain
the sequences in state 0 of the two state machines. To move from
the two state machine to the three state machine another state is
added between state 1 and 0 (on that edge) and also linked back
to state 1. The machine is also topologically similar to the 250 Hz
machine for the facilitating synapse, though the causal states are
created with L = 2 in the facilitating case.

FIGURE 8 | Statistical complexity values obtained from average amount of

information of the distribution over causal states as a function of mean firing

rates for synapse models, “depressing,” “facilitating,” and “mixed”.

The hierarchy of the machines for each set of parameter values
is evident, and it is possible to visualize transformations of one
machine into another as the firing rate is changed. To sum up
these results we plot the statistical complexity of the machines as
a function of frequency in each case. See Figure 7. We now seek
to connect this back to properties of the synapse model itself.

4. DISCUSSION: INTERPRETATION OF
RESULTS

The depressing synapse is the simplest of the three cases, and
through this investigation it is clear that the formulation of the
distribution of the Pr in terms of the “stochastic fixed point” gives
an almost entire description of the dynamics. For very small and
very large frequencies the data points are almost all 1’s or 0’s,
respectively, so the machine has one state. In the small frequency
range where the distribution slides from being concentrated at
Pmax to be concentrated at zero, the epsilon machine shows that
the dynamics are still simple, and can be explained by two causal
states, one withmostly 0’s and the other withmostly 1’s. Changing
frequency affects the transition probabilities on the edges only.

The other two cases are much less simple. More complicated
dynamics are possible as the input firing changes. The complexity
of the machines for the facilitating synapse compared to the
depressing and mixed synapse can be understood by comparing
the “decomposed” fixed point spectrum. See Figure 8. Plotting
the fixed points in R and P along with Pr shows a striking
difference between the three cases. The depressing synapse Pr
fixed point is entirely controlled by the variation in R, as P

FIGURE 7 | Fixed point values for release probability P, fraction of readily releasable pool R and normalized postsynaptic response Pr for varying mean firing rates

ranges from 0.1 to 100 Hz for (A) depressing synapse and from 0.1 to 250 Hz for (B) facilitating and (C) mixed synapse.
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remains constant over the range of frequencies, and the P
variation happens in a very small range of frequencies near
zero. The facilitating synapse has a range of R-values across the
spectrum, as well as a range of P-values. The mixed synapse has
a very little variation in P. The more complicated machines in
both cases occur at frequencies where there is the largest variation
in both. Obviously, having a range of response in both P and R
creates the complexity of the machines, however indirectly.

Another way to view this difference is through the calcium
decay time. For the depressing synapse τca is very short, and
there is very little correlation in the calcium time series in all but
very high frequencies (which are not physiological). The synapse
simply filters the Poisson spike train process. In the mixed case,
while the calcium time series is more correlated, the lack of
variation of the P response flattens out any downstream effect on
Pr. The facilitating case is really in the “goldilocks zone” where
the correlation in the calcium time series can effect Pr through the
variation in P. A synapse might be expected to be amore complex
filter if there is a hidden time dependent variable, such as calcium,
that links the two processes of facilitation and depression, as it
does in this model for larger τca or higher frequencies. The exact
details of the relationship between the probability of release, and
the rate of recovery of R as they depend upon C must line up to
produce sensitivity in the fixed point values for each in the same
frequency range.

Finally, we note that the histograms themselves, from which
many information measures are constructed, do not tell the
whole story. There is a much more complicated dynamic
occurring in the facilitating synapse than the depressing synapse,
though comparing the histograms themselves in the two cases
does not suggest this. We have also seen the converse, where
the machines are the same, even though the distributions are
quite different. This implies that both are needed to have a full
understanding of such a stochastic process.

5. CONCLUSIONS

In this paper we demonstrate the validity of using causal
state models to more completely describe stochastic short-term
synaptic plasticity. These models rely only upon output data
from a synaptic connection, knowledge of the input stimulus
stream is not required. This will expand the arena of experiments
where data can directly inform models, and more importantly
uses the data itself to create models. While these models are
not physiologically motivated per se, we have shown how
we can connect the structure of the model to complexity
of the mechanisms involved, a useful first step in a more
complete categorization of short term plasticity. Interpreting
synaptic plasticity in the language of computation could also
be exploited in the construction of large scale models of neural
processes involving many thousands of neural connections, and
potentially lead to a more complete theoretical description of the
computations possible.

Our results also draw direct connections between the causal
state models and the deterministic dynamics of the underlying
model used to create the data. Specifically, they point to the

importance of having variability in both probability of release
and the recovery rate of resources with frequency in creating a
more complex synaptic filter. This finding can be reversed (at
some peril, we realize) to imply that a more complicated machine
results from a synapse with such variability. This in turn could
be used to inform the development of physiologically accurate
models, or direct future experimental design. Interested reader
may receive any/all of the code use to create these results by
contacting Elham Bayat-Mohktari.

6. FUTURE WORK

The model of the synapse we used to create the data was
parameterized from experimental data from an actual depressing
synapse in the hippocampus. The experiments gave the synapse
uniformly spaced stimuli at fixed frequencies. Our work suggests
that a more comprehensive understanding of the dynamics of
the synapse could be found by using a predetermined stochastic
input, such as a Poisson spike train. The distributions of
the responses could then be fit if the desire was to estimate
parameters of an a priori model. This fitting could be done using
Bayesian techniques as well as standard statistical methods.

The other approach would be to let the data from such
an experiment create the model itself, in the form of epsilon
machines or perhaps some other form of HMM. We have seen
here that the machine reconstruction process can be used for
classification purposes, and can uncover features not obvious
from the distributions of the response. It is also possible
to describe such short term synaptic plasticity as a simple
computing operation, or Turing Machine (Copeland, 2004) but
the graph model of this is not unifilar, so making a simple
connection between it and epsilon machines, or creating a non-
unifilar HMMs from data, are topics for further investigation.

Finally, describing the evolution of one epsilon machine to
another as a parameter is varied in terms of graph operations
could give one more description of an entire range of behavior
of a short term plasticity filter, as a parameter is varied. We are
currently investigating this approach.

AUTHOR CONTRIBUTIONS

EB did all the statistical and computational mechanics analyses
in the study; JL carried out all experiments and preliminary data
analysis; ES conceived of the study, developed the design, and
analyzed the results. All authors read and approved the final
manuscript.

FUNDING

Electrophysiology experiments were performed in the laboratory
of Chris McBain with intramural support fromNational Institute
of Child Health and Human Development. Later work was
supported by National Center for Research Resources Grant
P20-RR-015583, National Institutes of Health Grant R01069689-
01A1, and start-up support from the University of Montana
Office of the Vice President for Research (to JL).

Frontiers in Computational Neuroscience | www.frontiersin.org 13 May 2018 | Volume 12 | Article 32

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Bayat Mokhtari et al. Data Driven Models of STP

ACKNOWLEDGMENTS

We acknowledge David Patterson for his helpful comments on
some of the statistical techniques.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2018.00032/full#supplementary-material

REFERENCES

Abbott, L. F., and Regehr, W. G. (2004). Synaptic computation. Nature 431,

796–803. doi: 10.1038/nature03010

Beck, C., and Schögl, F. (1993). Thermodynamics of Chaotic

Systems: An Introduction. Cambridge: Cambridge University Press.

doi: 10.1017/CBO9780511524585

Bellman, R. (1957). Dynamic Programming. Princeton, NJ: Princeton University

Press.

Boschetti, F. (2008). Mapping the complexity of ecological models. Ecol. Complex.

5, 37–47. doi: 10.1016/j.ecocom.2007.09.002

Chen, C. and Jonas, P. (2017). Synaptotagmins: that’s why so many.Neuron 94, 694

– 696. doi: 10.1016/j.neuron.2017.05.011

Clarke, R. W., Freeman, M. P., and Watkins, N. W. (2003). Application of

computational mechanics to the analysis of natural data: an example in

geomagnetism. Phys. Rev. E 67:016203. doi: 10.1103/PhysRevE.67.016203

Copeland, B. J. (2004). The essential Turing : SeminalWritings in Computing, Logic,

Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of Enigma.

Oxford; New York, NY: Oxford University Press.

Crutchfield, J. P. (1994). The calculi of emergence: computation, dynamics and

induction. Phys. D 75, 11–54. doi: 10.1016/0167-2789(94)90273-9

Crutchfield, J. P. and Young, K. (1989). Inferring statistical complexity. Phys. Rev.

Lett. 63, 105–108. doi: 10.1103/PhysRevLett.63.105

Dittman, J. S., Kreitzer, A. C., and Regehr, W. G. (2000). Interplay between

facilitation, depression, and residual calcium at three presynaptic terminals.

Journal of Neuroscience, 20:1374–1385.

Dittman, J. S. and Regehr,W. G. (1998). Calcium dependence and recovery kinetics

of presynaptic depression at the climbing fiber to purkinje cell synapse. J.

Neurosci. 18, 6147–6162. doi: 10.1523/JNEUROSCI.18-16-06147.1998

Fioravante, D. and Regehr, W. G. (2011). Short-term forms of presynaptic

plasticity. Curr. Opin. Neurobiol. 21, 269–274. doi: 10.1016/j.conb.2011.02.003

Haario, H., Laine, M., Mira, A., and Saksman, E. (2006). DRAM: efficient adaptive

MCMC. Stat. Comput. 16, 339–354. doi: 10.1007/s11222-006-9438-0

Hanson, J. E. (1993). Computational Mechanics of Cellular Automata Ph.D. thesis,

University of California, Berkeley.

Haslinger, R., Gordon, P., Lewis, L. D., Danko, N., Ziv, W., and Brown, E. (2013).

Encoding through patterns: regression tree-based neuronal population models.

Neural Comput. 25, 1953–1993. doi: 10.1162/NECO_a_00464

Jackman, S. L. and Regehr, W. G. (2017). The mechanisms and functions of

synaptic facilitation. Neuron 94, 447–464. doi: 10.1016/j.neuron.2017.02.047

Katok, A. and Hasselblatt, B. (1997). Introduction to the Modern Theory

of Dynamical Systems. Encyclopedia of Mathematics and its Applications.

Cambridge, UK: Cambridge University Press.

Kelly, D., Dillingham, M., Hudson, A., and Wiesner, K. (2012). A new method

for inferring hidden markov models from noisy time sequences. PLoS ONE

7:e29703. doi: 10.1371/journal.pone.0029703

Khanin, R., Parnas, I., and Parnas, H. (2006). On the feedback between

theory and experiment in elucidating the molecular mechanisms

underlying neurotransmitter release. Bull. Math. Biol. 68, 997–1009.

doi: 10.1007/s11538-006-9099-3

Kohus, Z., Káli, S., Rovira-Esteban, L., Schlingloff, D., Papp, O., Freund,

T. F., et al. (2016). Properties and dynamics of inhibitory synaptic

communication within the ca3 microcircuits of pyramidal cells and

interneurons expressing parvalbumin or cholecystokinin. J. Physiol. 594,

3745–3774. doi: 10.1113/JP272231

Lawrence, J. J., Haario, H., and Stone, E. F. (2015). Presynaptic cholinergic

neuromodulation alters the temporal dynamics of short-term depression

at parvalbumin-positive basket cell synapses from juvenile ca1 mouse

hippocampus. J. Neurophysiol. 113, 2408–2419. doi: 10.1152/jn.00167.2014

Lee, C.-C. J., Anton, M., Poon, C.-S., and McRae, G. J. (2008). A kinetic

model unifying presynaptic short-term facilitation and depression. J. Comput.

Neurosci. 26, 459–473.

Lind, D. andMarcus, B. (1995).An Introduction to Symbolic Dynamics and Coding.

New York, NY: Cambridge University Press.

Markram, H., Wang, Y., and Tsodyks, M. (1998). Differential signaling via the

same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. U.S.A. 95,

5323–5328.

Marzen, S. E., DeWeese, M. R., and Crutchfield, J. P. (2015). Time resolution

dependence of information measures for spiking neurons: scaling and

universality. Front. Comput. Neurosci. 9:105. doi: 10.3389/fncom.2015.

00105

Palmer, A. J., Schneider, T. L., and Benjamin, L. A. (2002). Inference

versus imprint in climate modeling. Adv. Complex Syst. 5, 73–89.

doi: 10.1142/S021952590200050X

Parikh, N., Marathe, M., and Swarup, S. (2016). “Summarizing simulation results

using causally-relevant states,” in Autonomous Agents and Multiagent Systems,

eds N. Osman and C. Sierra (Cham: Springer International Publishing), 71–91.

Park, J. B., Lee, J. W., Yang, J.-S., Jo, H.-H., and Moon, H.-T. (2007). Complexity

analysis of the stock market. Phys. A Stat. Mech. Appl. 379, 179–187.

doi: 10.1016/j.physa.2006.12.042

Shalizi, C. R. and Klinkner, K. L. (2004). “Blind construction of optimal nonlinear

recursive predictors for discrete sequences,” in Uncertainty in Artificial

Intelligence: Proceedings of the Twentieth Conference (UAI 2004), eds M.

Chickering and J. Y. Halpern (Arlington, VA: AUAI Press), 504–511.

Shalizi, C. R., and Shalizi, K. L. (2002). Bayesian structural inference for hidden

processes. J. Mach. Learn. Res. 02–10.

Shalizi, C. R., Shalizi, K. L., and Crutchfield, J. P. (2002). An algorithm for pattern

discovery in time series. arXiv:cs/0210025.

Stone, E. F., Haario, H., and Lawrence, J. J. (2014). A kinetic model for the

frequency dependence of cholinergic modulation at hippocampal gabaergic

synapses.Math. Biosci. 258, 162–175. doi: 10.1016/j.mbs.2014.09.013.

Strelioff, C. C. and Crutchfield, J. P. (2014). Bayesian structural inference for

hidden processes. Phys. Rev. E 89:042119. doi: 10.1103/PhysRevE.89.042119

Travers, N. F. and Crutchfield, J. P. (2011). Exact synchronization for finite-state

sources. J. Stat. Phys. 145, 1181–1201. doi: 10.1007/s10955-011-0342-4

Varn, D. P., Canright, G. S., and Crutchfield, J. P. (2002). Discovering

planar disorder in close-packed structures from x-ray diffraction: beyond

the fault model. Phys. Rev. B 66:174110. doi: 10.1103/PhysRevB.66.

174110

Wang, L.-Y. and Kaczmarek, L. K. (1998). High-frequency firing helps replenish

the readily releasable pool of synaptic vesicles. Nature 394, 384–388.

doi: 10.1038/28645

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Bayat Mokhtari, Lawrence and Stone. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 14 May 2018 | Volume 12 | Article 32

https://www.frontiersin.org/articles/10.3389/fncom.2018.00032/full#supplementary-material
https://doi.org/10.1038/nature03010
https://doi.org/10.1017/CBO9780511524585
https://doi.org/10.1016/j.ecocom.2007.09.002
https://doi.org/10.1016/j.neuron.2017.05.011
https://doi.org/10.1103/PhysRevE.67.016203
https://doi.org/10.1016/0167-2789(94)90273-9
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1523/JNEUROSCI.18-16-06147.1998
https://doi.org/10.1016/j.conb.2011.02.003
https://doi.org/10.1007/s11222-006-9438-0
https://doi.org/10.1162/NECO_a_00464
https://doi.org/10.1016/j.neuron.2017.02.047
https://doi.org/10.1371/journal.pone.0029703
https://doi.org/10.1007/s11538-006-9099-3
https://doi.org/10.1113/JP272231
https://doi.org/10.1152/jn.00167.2014
https://doi.org/10.3389/fncom.2015.00105
https://doi.org/10.1142/S021952590200050X
https://doi.org/10.1016/j.physa.2006.12.042
https://doi.org/10.1016/j.mbs.2014.09.013.
https://doi.org/10.1103/PhysRevE.89.042119
https://doi.org/10.1007/s10955-011-0342-4
https://doi.org/10.1103/PhysRevB.66.174110
https://doi.org/10.1038/28645
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Data Driven Models of Short-Term Synaptic Plasticity
	1. Introduction
	2. Materials and Methods
	2.1. Model of Synaptic Plasticity
	2.1.1. Analyzing the Map
	2.1.2. The Depressing Synapse

	2.2. Computational Mechanics Background
	2.2.1. Epsilon Machine Construction

	2.3. Distributions
	2.4. Partition
	2.5. Machines

	3. Results
	4. Discussion: Interpretation of Results
	5. Conclusions
	6. Future Work
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


