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Obtaining good quality image features is of remarkable importance for most computer

vision tasks. It has been demonstrated that the first layers of the human visual cortex

are devoted to feature detection. The need for these features has made line, segment,

and corner detection one of the most studied topics in computer vision. HT3D is

a recent variant of the Hough transform for the combined detection of corners and

line segments in images. It uses a 3D parameter space that enables the detection of

segments instead of whole lines. This space also encloses canonical configurations of

image corners, transforming corner detection into a pattern search problem. Spiking

neural networks (SNN) have previously been proposed for multiple image processing

tasks, including corner and line detection using the Hough transform. Following these

ideas, this paper presents and describes in detail a model to implement HT3D as a

Spiking Neural Network for corner detection. The results obtained from a thorough testing

of its implementation using real images evince the correctness of the Spiking Neural

Network HT3D implementation. Such results are comparable to those obtained with

the regular HT3D implementation, which are in turn superior to other corner detection

algorithms.
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1. INTRODUCTION

The Hough Transform (HT) (Hough, 1959) is a mathematical technique used as a means to detect
lines and other features in computer images. The original algorithm consists of a procedure where
pixels of interest (generally those corresponding to high frequencies) vote in a discretized parameter
space to all the features it might correspond to (for instance, the line parameter space). The points
of the parameter space with a number of votes above a threshold are considered actual features.
Since its proposal, multiple variations of the original algorithm have been proposed, and the most
widely-used line detection techniques rely on it.

The use of the HT for segment detection has been explored from different approaches over the
last few decades. Twomain approaches have been proposed. The first group of methods is based on
image space verification from the information of the HT peaks (Gerig, 1987;Matas et al., 2000; Song
and Lyu, 2005; Nguyen et al., 2008). The other group of methods deals with detecting properties of
segments by analyzing the data in the parameter space (Cha et al., 2006; Du et al., 2010, 2012; Xu
and Shin, 2014).

The Hough Transform has also been used for corner detection. Davies (1988) uses
the Generalized Hough Transform (Ballard, 1987) to transform each edge pixel into a
line segment. Corners are found in the peaks of the Hough space where lines intersect.
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Barrett and Petersen (2001) propose a method to identify line
intersection points by finding collections of peaks in the Hough
space through which a given sinusoid passes. Shen and Wang
(2002) present a corner identification method based on the
detection of straight lines passing through the origin in a local
coordinate system. For detecting such lines, the authors propose
a 1D Hough transform.

A variant using a three-dimensional parameter space named
HT3D designed for the detection of corners, segments and
polylines was presented in Bachiller-Burgos et al. (2017). The
difference that makes HT3D outperform other state of the art
algorithms is the voting process. Pixels vote for certain parts of
lines instead of for whole lines. This allows this new transform to
explicitly take into account segments and their endings. Although
the HT has proven to be a relevant technique for the detection
of multiple shapes and image features (Mukhopadhyay and
Chaudhuri, 2014), it is worth noting that other methods exist
for the joint detection of lines, contours, junctions, and corners.
A remarkable alternative is the work presented in Buades et al.
(2017) which, although biologically inspired, does not rely on
neural networks. For a given image, their proposal computes the
response of a pool of oriented filters and groups the result of
the filters in a way that enables detecting contours, corners and
T-junctions. Despite the aims of both methods being similar, in
comparison to HT3D, the proposal of Buades et al. is not as
versatile because it does not allow the direct detection of more
complex shapes such as polygons.

H.B. Barlow postulated the use of the HT for feature
detection in biological cortex in Barlow (1986), arguing that
such a technique would allow to detect lines even with a
limited capacity of neurons to establish connections with other
neurons. G.G. Blasdel described a similar structure in the
macaque monkey striate cortex in the context of orientation
selectivity (Blasdel, 1992) and D. McLaughlin provided a detailed
model using spiking neural networks (SNN) (McLaughlin et al.,
2000). Okamoto et al. (1999) physiologically confirmed the
existence of similar structures in macaque monkeys. Inspired
by biological systems, different spiking neural models have also
been proposed for different image processing tasks, including line
detection using the Hough transform. Brückmann et al. (2004)
presented a spiking neural network based on the HT for 2D
slope and sinusoidal shape detection. After a training stage, the
network is able to discriminate among different test patterns. A
three-layered spiking neural network for corner detection was
proposed in Kerr et al. (2011). The first layer corresponds to
On/Off-center receptors. The neurons in the second layer take
groups of adjacent neurons from the first layer as input and
fire upon the detection of edges. The neurons of the third layer
behave similarly with the neurons of the second layer and are
supposed to be responsive to corners. The model presented
in Weitzel et al. (1997) goes beyond biologically-plausible corner
and line detection and proposes a spiking neural network which
performs contour segmentation and foreground detection. It is
based on grouping rather than any variation of the HT. An
actual phenomenological interpretation for human vision was
provided in Jacob et al. (2016). The proposed network learns to
perform the HT and reproduces some optical illusions which also

occur in humans. Others have also followed similar approaches
to SNN performing the HT. That is the case of Wu et al. (2009),
where a SNN for line detection is presented. A SNN for feature
detection is also presented in Wu et al. (2007). In particular, the
paper deals with up-then-right right angle corners. D.G. Lowe
provides a biologically inspired model for object recognition in
IT cortex where the Hough transform is used to generate object
hypotheses (Lowe, 2000). A spiking neural network was applied
to a Dynamic Vision Sensor (an event-based camera which only
outputs changes in illumination) to detect and track lines using
the HT in the work presented in Seifozzakerini et al. (2016).

In this paper, a spiking neural model of HT3D for corner
detection is presented. The main motivation of our work is
to extend the hypothesis of Blasdel about the existence of
microcircuits performing the HT for orientation selectivity by
introducing a biologically plausible neural model based on the
HT for the detection of a variety of image features. The proposed
neural network is mainly devoted to the detection of corners.
Nevertheless, it provides the base topological neural structure on
which new neural computations can give rise to the detection of
more complex features. Likewise, the proposed SNN of HT3D
provides an additional benefit in relation to the regular method
from the point of view of a parallel execution. In this sense,
the spiking implementation constitutes a parallel approach of
the HT3D method that overcomes those aspects of the original
algorithm limiting its parallelization.

The remainder of this article is organized as follows. Section 2
describes the HT3D transform. Its implementation as a spiking
neural network is described in section 3. The experimental results
are presented in section 4. To conclude, a discussion of the
proposal and its performance is provided in section 5.

2. AN OVERVIEW OF HT3D

The Standard HT for straight line detection does not provide a
direct representation of line segments, since feature points are
mapped to infinite lines in the parameter space (Duda and Hart,
1972). To deal with segment representation, HT3D provides a
3D Hough space (Figure 1) that, unlike SHT, uses several cells
to represent a line. This Hough space is parametrized by (θ ,
d, p), being θ and d the parameters of the line representation
(l(d, θ) ≡ d = x cos(θ) + y sin(θ)) as in the standard HT. The
additional parameter p defines positions of the possible segment
endpoints relative to each line. It is assumed that the origin of the
image coordinate system is located at its center. Thus, θ ∈ [0,π),
and d, p ∈ [−R,+R], with R being the half of the length of the
image diagonal. To compute the relative position p of each point
of a given line, a coordinate system local to the line is considered,
where the vertical axis coincides with the line and the horizontal
one passes through the image origin (see Figure 1A). Using this
local system, the relative position (p) of a point e = (x, y) of the
line l(d, θ) can be computed by determining the y-coordinate of
the point as follows:

p = −x sin(θ)+ y cos(θ) (1)
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FIGURE 1 | 3D Hough space representation. (A) Pixel coordinates and values of the parameter p for points of a line l(dl , θl ). The value of p is computed by

determining the y-coordinate of the point in a coordinate system local to the line l (dotted red lines). The image reference system (dotted blue lines) is situated at the

image center (O). (B) Points of the line l(dl , θl ) contribute to a subset of cells situated at dl in the Hough orientation plane H(θl ). Likewise, a point ei situated at a

position pi relative to the line l(dl , θl ) contributes to the subset of cells for which p ≥ pi .

In this new parameter space (see Figure 1B), a cell (θ , d, p)
represents an image segment of the line l(d, θ), defined by the
point pair e0 − e, with e0 being a fixed endpoint situated at
the smallest line position (p0 = −R) and e a variable endpoint
situated at any position p within the line l. Since p >= p0, an
image feature point ei = (x, y) belongs to the segment e0e if it
is a point of the line l (Equation 2) and its relative position in
the coordinates of the line (its corresponding pi parameter) is
lower or equal than p (see expression 3). Thus, any point (x, y)
contributes to those cells (θ , d, p) in the 3D Hough space that
verifies:

d = x cos(θ)+ y sin(θ) (2)

and

p >= −x sin(θ)+ y cos(θ) (3)

According to this, in order to perform the HT3D transform, each
feature point must vote for those cells verifying expressions 2
and 3 for every orientation plane (H(θ)). Since this voting process
is computationally expensive, it is divided into two steps:

• In the first step, feature points only vote for the first segment
they could belong in each orientation plane (i.e., p is computed
using only the equality of expression 3)

• Once the first vote of each feature point for every orientation
plane has been performed, starting from the second lower
discrete value of p, each cell in H(θd, dd, pd) accumulates with
H(θd, dd, pd−1), being θd, dd and pd discrete values of θ , d and
p, respectively.

This reduces the computational cost of this phase of the
algorithm, producing the same result as the complete voting
scheme in which each image point votes for all the cells fulfilling
expressions (2) and (3).

2.1. Feature Representation in the 3D
Hough Space
The 3D Hough space provides a compact representation of any
image feature that can be defined in terms of line segments. This
representation emerges from the implicit relation between image
line segments and Hough cells. Thus, for any pair of pixels, there
is an associated pair of Hough cells that allows the estimation
of the number of points included in the corresponding image
segment. Specifically, given two points ei = (xi, yi) and ej =

(xj, yj) of a line l(dl, θl) and being pi and pj the relative positions of
ei and ej within the line l according to Equation (1), the number
of feature points included between ei and ej can be computed as:

Hi↔j = |H(θl, dl, pi)−H(θl, dl, pj)| (4)

with H being the 3D Hough space.
This measure can be used to determine the likelihood of

the existence of an actual image segment between both points.
In a similar way, for more complex image features, such as
polygons, the combination of information provided by different
orientation planes gives rise to a quantification of the degree
of presence of that feature in each image region. This has
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FIGURE 2 | Cell patterns of the 3D Hough space for non-intersection endpoints (A) and corners (B).

been applied to rectangle detection in Bachiller-Burgos et al.
(2017).

Besides the representation of line segments and polylines,
the 3D Hough space provides a distinctive representation
of characteristic image points such as corners, since they
can be treated as segment intersections that produce specific
configurations of cells in the Hough space. Thus, in general,
any segment endpoint, including corners, can be detected from
local cell patterns of the Hough space, as described in the next
section.

2.2. Detection of Segment Endpoints With
HT3D
Segment endpoints are classified into two groups in HT3D:
corners and non-intersection endpoints. Corners are line
segment intersections. Non-intersection segment endpoints
correspond to endpoints which do not meet other segments.
Considering the image line segments defining both kind of
points, specific cell patterns can be observed in the 3D Hough
space. These cell patterns are depicted in Figure 2.

Image line segments characterizing a corner or endpoint
transform into vertical segments of cells in the corresponding
orientation planes of the 3D Hough space, since the value of
the parameter d remains constant for all the points of the
same image line. This fact is represented by the black cells of
Figure 2, which correspond to cells whose values differ from
the ones above them. To limit the size of the cell patterns, a
fixed length is considered for the piece of segments taking part
in corner and endpoint detection, since it is not necessary to
check complete segments for determining the existence of both

kind of points. Beside black cells, corner and endpoint patterns
include white cells representing empty line sections1, i.e., cells
with similar content, and gray cells that correspond to cells
whose content can be ignored. For each kind of pattern, a flipped
version is also considered in order to cover the orientation range
[π , 2π).

To check patterns of corner and non-intersection endpoints,
cells in the 3D Hough space are grouped into vertical full (black
cells) or empty (white cells) segments. A vertical full segment
verifies that the difference between its last and first cell is
greater than a threshold τF . On the other hand, this difference
must be lower than a near to zero threshold (τE) in an empty
segment. Thus, given a certain position in the discrete Hough
space (θd, dd, pd) and taking η as the number of cells of a full
piece of segment in the Hough representation, to verify if that
position contains, for instance, a corner, the following must be
fulfilled:

H(θd, dd, pd)−H(θd, dd, pd − η) > τF (5)

and

H(θd, dd + 1, pd − 1)−H(θd, dd + 1, pd − η) < τE (6)

or

H(θd, dd − 1, pd − 1)−H(θd, dd − 1, pd − η) < τE (7)

1White cells situated beside black cells allow reducing the number of false corners

and endpoints caused by nearby image segments.
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FIGURE 3 | General structure of the proposed spiking neural model. The 3D

Hough space is implemented as a 3D SNN connected to an input edge

detection layer and an output endpoint detection layer. Connections between

the HT3D SNN and the other two layers are established according to the

relation between Hough cell positions and image positions.

for the plane H(θd) and the same expressions for the
corresponding position of the plane H((θ + ϕ)d), given a certain
range of ϕ and assuming θ < π and (θ + ϕ) < π .

Once Hough cells containing corners and non-intersection
endpoints are detected, the intensity image is used to find the
most likely pixel position associated with the corresponding
position in the Hough space. To this end, the set of image
positions corresponding to the Hough cell H(θd, dd, pd)
is approximated using an image window centered on
(xc, yc):

xc = d cos(θ)− p sin(θ) (8)

yc = d sin(θ)+ p cos(θ) (9)

with θ , d, and p being the real values associated with θd, dd,
and pd. The window size is defined by the resolutions of p and
d used to create the discrete Hough space. Considering this
window, the pixel position of a corner or endpoint is located
by searching for that pixel maximizing some corner/endpoint
criterion. Specifically, the minimum eigenvalue of the covariance
matrix of gradients over the pixel neighborhood is used. This
coarse-to-fine approach avoids applying any threshold related to
changes of intensity in the point local environment, which allows
the identification of feature points that cannot be detected by
other methods.

FIGURE 4 | Hough orientation layer of the HT3D SNN.

3. THE PROPOSED SPIKING NEURAL
MODEL FOR CORNER DETECTION

This section details the proposed spiking neural model for corner
detection based on HT3D. Besides corners, the proposal includes
the detection of non-intersection segment endpoints because
some corners may present a great correspondence to the Hough
patterns of this kind of points. This is the case of corners with low
intensity in one of their edges and corners with low acute angles.

The general structure of our neural model is depicted in
Figure 3. The 3D Hough space is represented by a 3D network
of spiking neurons, receiving its input from an edge detection
layer and sending its output to an endpoint detection layer. The
neurons in these two layers are directly related to the image points
in the x−y plane. Thus, each neuron of these layers represents an
image position. On the other hand, neurons of the HT3D SNN
represent discrete positions of the 3D Hough space of the form
(θ , d, p). This way, connections between this SNN and the two
x − y arrays are established according to the relation between
(θ , d, p) and (x, y).

Spiking neurons in our proposal are implemented using the
Leaky Integrate and Fire (LIF) neuron model (Burkitt, 2006).

Thus, given a spiking neuron n with N inputs (n
(I)
j ), being each

input a spike train, and an output (n(O)), n produces a spike
whenever its membrane potential Pn reaches a certain threshold
2n. According to the LIF model, at time t, the membrane
potential Pn(t) is updated as follows:

Pn(t) = P′n(t)+

N∑

j=1

wjnn
(I)
j (10)
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with wjn the synaptic weight of the jth input and being P′n(t)
defined by:

P′n(t) = sign(Pn(t − 1ts))max(|Pn(t − 1ts)| − λ1ts, 0) (11)

The last equation models the “leak” of the membrane potential,
being 1ts the time interval between the last input spike and the
current one and λ the rate of linear decay (Seifozzakerini et al.,
2016).

From a computational point of view, the following aspects are
also considered in the spiking neuron model employed:

• The membrane potential is updated only when an input spike
is received (Lee et al., 2016).

• Once a spike is generated in the output of the neuron, the
membrane potential is reset to zero (resting potential). A zero
refractory period is applied for simplicity.

• Despite synaptic weights of biological neurons are non-
negative (Maas, 1997) , both positive and negative weights are
considered in our neuron model with the aim of reducing the
number of required neurons2.

The proposed neural architecture is composed of these basic
neural units. The values of synaptic weights and firing thresholds
are established according to the specific function of the neurons
in the network.

3.1. The HT3D Spiking Neural Network
The main structure of the HT3D spiking neural network consists
of a series of decoupled layers of spiking neurons (Hough
orientation layers), acting as Hough orientation planes of the
3D parameter space. Thus, for a given orientation layer, all its
neurons represent a discrete value of θ . In addition, orientation
layers as a whole represent the complete range of angles between
0 and π .

Neurons of these orientation layers, called Hough neurons,
represent cells of the 3DHough space.Within each layer, neurons
are disposed in different columns (see Figure 4), being each
column an image line representation in the parameter space.
Thus, neurons of the same column share a common discrete
value of the parameter d. Likewise, adjacent columns represents
a separation of 1d in the value of d, being 1d the quantization
step of such a parameter. In a given column, neurons correspond
to different values of the parameter p of the associated line.

The output of each Hough neuron hθdp must provide a
spiking encoding of the votes associated to the corresponding cell
(θ , d, p), according to expressions 2 and 3. This entails defining
a temporal relation between votes of a Hough cell and spikes
generated by its neural counterpart. To this end, neurons are
firstly excited at once by the outputs of the edge detection layer
through the synapses established by the following equations:

d = x cos(θ)+ y sin(θ) (12)

p = −x sin(θ)+ y cos(θ) (13)

2Signed weights can be substituted by pairs of excitatory and inhibitory

neurons (Maas, 1997).

These synapses correspond to the contribution of features points
to the first segment they could belong to in a given line (equality
of expression 3). As in the original algorithm, this only covers the
first stage of the voting process. To deal with the contribution of
feature points to the remainingHough cells defined by the greater
operator in expression 3, each neuron sends its output to the
next neuron of the same column through a feedforward synapse.
This synapse provides a propagation of the signals received by a
given neuron along the subsequent neurons of the same column,
which equates to the accumulation stage of the voting process of
the original HT3D algorithm. Through spike propagation, votes
of a Hough cell are processed by the corresponding neuron in
different time steps. Thus, each neuron generates a spike train
that represents the votes of the associated Hough cell.

In order to maintain a near 1 to 1 correspondence between
cell votes and spikes generated by the corresponding neuron,
each neuron of a column represents an increase of 1 pixel in the
value of p with respect to the previous neuron. Nevertheless, a
quantization step for p (1p) greater than 1 pixel can be used
for representing the discrete Hough space. In such case, only
the outputs of certain rows are used by the neural units in
charge of processing the information of Hough neurons, while
the function of the neurons of the remaining rows is limited to
spike propagation (see Figure 4).

3.2. Neural Processing of Pieces of
Segment of Corner and Endpoint Patterns
As in the original HT3D, corner and endpoint pattern detection
requires checking every full or empty piece of segment of
the different kind of patterns by separately analyzing the
corresponding pairs of cells of the 3D Hough space. This is
accomplished in the proposed SNN by a new type of spiking
neurons, called subpattern neurons.

In order to provide the necessary information about the pieces
of segment composing corner and endpoint patterns, the neurons
that represent discrete positions of the Hough space, according to
a quantization step of 1p for the parameter p, send their outputs
to subpattern layers. Specifically, neurons of each column of a
Hough orientation layer located with a separation of 1p in the
row position are connected to a subpattern layer representing the
same orientation. Subpattern layers are in charge of processing
significant pieces of the patterns of corners and non-intersection
endpoints. With this aim, three types of subpattern neurons are
considered in these layers: u–type, s–type and c–type neurons
(Figure 5). Neurons of these three types “count” the number of
votes of a piece of segment of a certain length from a given
position of the 3D Hough space. Thus, u-type neurons consider
a length of 1p and correspond to cells on the top and at the
bottom of an endpoint pattern in its normal and flipped form,
respectively (see Figure 2A). Likewise, s-type neurons are related
to the empty pieces of segment at both sides of the corner patterns
(Figure 2B). The neurons of this type consider a segment length
of (η − 1)1p, with η the number of cells of a full piece of
segment in both, corner and endpoint patterns. Lastly, c-type
neurons accumulate votes for pieces of segment with a length
of η1p providing information about empty pieces of segment at
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FIGURE 5 | Subpattern neurons. (A) Connections between a column of a Hough orientation layer and the corresponding subpattern neurons; (B) types of subpattern

neurons.

both side of the endpoint patterns, as well as about full pieces of
segment at the central column of every pattern.

The three types of subpattern neurons produce spike trains
that represent the difference of votes between the Hough cells
H(θ , d, p) and H(θ , d, p − l), being l the length of the piece of
segment considered by the specific type of neuron. To this end,
each neuron has an excitatory input and an inhibitory one. The
excitatory input is connected to the output of the Hough neuron
hθdp, representing the Hough cellH(θ , d, p). The inhibitory input
is connected to the output of the neuron hθdp−l through a synapse
with a negative weight of the same magnitude than the one of
the excitatory synapse. To synchronize the spike trains of both
inputs, the inhibitory synapse introduce a delay in the signal
related to the value of l. For instance, assume that two spikes
are simultaneously generated by the neurons hθdp and hθdp−1p

and travel through the synapses that connect these two neurons
to the u-type neuron uθdp. If the spike from hθdp influences
the neuron uθdp at time t, the effect of the spike from hθdp−1p

on the neuron uθdp occurs at time t + tms1p, being tms the
minimum time interval between two consecutive spikes. This
synaptic delay, along with the complementary excitatory and
inhibitory connections, cancels the spikes representing common
votes of the Hough cells H(θ , d, p) and H(θ , d, p − 1p). As a
consequence, uθdp generates a spike train that can be interpreted

as the votes received by the piece of segment of the line l(θ , d)
defined between the relative positions p and p − 1p. Figure 6
shows an example of this behavior for several u-type and c-type
neurons, considering 1p = 2 and η = 3. A complete description
of this figure is provided in the next section.

3.3. Neural Detection of Corners and
Non-intersection Endpoints in the 3D
Hough Space
Complete patterns of corners and non-intersection endpoints
are detected by another group of neurons (pattern neurons)
that combine the outputs of subpattern neurons. Each pattern
neuron generates a spike whenever the pieces of segment that
have been processed by the corresponding subpattern neurons
fit the associated pattern. Two types of pattern neurons are
considered: p1 neurons, in charge of verifying the patterns of
non-intersection endpoints, and p2 neurons, which check corner
patterns of one of the two orientation planes defining the point.
Figure 7 illustrates these two types of neurons and the subnet
connections that give rise to the final stage of the detection
process. In this figure, sign and magnitude of synaptic weights
are symbolized by arrows with different style and thickness.
Specifically, negative weights are represented by dotted-line
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FIGURE 6 | Neural response to a segment endpoint. (A) Segment endpoint in the image space; (B) output of the neurons taking part in the detection process.

arrows, while continuous-line arrows refer to positive weights.
In addition, line thickness is an indicator of the magnitude of the
weight. Thus, the greater the thickness of the line, the greater the
magnitude of the weight.

Pattern detection is accomplished by p1 and p2 neurons,
for each position of the discrete Hough space, considering the
information of the different pieces of segment defining the
corresponding pattern. This information is obtained from the
outputs of subpattern neurons and is organized in three columns,
two lateral columns and a central one, as is depicted in Figure 2.
The central column corresponds to the column of the orientation
layer where the pattern is checked. The lateral columns are the
two adjacent columns to the central one.

For the detection of an endpoint pattern, a p1 neuron

considers two different pieces of segment for each column: the

one defined by the top cell of the column (bottom cell in the

flipped version of the pattern) and the one defined by the

remaining η cells of the column. As can be observed in Figure 2A,

for the three columns, the top cells in the normal version

of the pattern or the bottom cells in the flipped one should

represent empty pieces of segment. To check this condition,
pattern neurons of type p1 are connected to the u-type neurons
representing the three top/bottom cells through highly inhibitory
weights (see Figure 7). This implies that the three cells have to
represent empty pieces of segment to fit the pattern.

The information about the pieces of segment defined by the
remaining η cells of the three columns of an endpoint pattern is
obtained from the outputs of the corresponding c-type neurons.
As is shown in Figure 2A, lateral cells should not represent full
pieces of segment at both sides of an endpoint pattern. With
the aim of identifying this situation, lateral c-type neurons are
connected to p1 through inhibitory synapses, but in this case,

the magnitude of the weights is much smaller than the one
of the connections from u-type neurons. This means that the
detection of lateral pieces of segment has a penalization effect
over the detection of an endpoint pattern, but this penalization
does not prevent from detecting the pattern. It just suppresses
neural responses to points corresponding more likely to edges
rather than segment endpoints. Regarding the η cells of the
central column, they have to represent a full piece of segment
to fit an endpoint pattern. To verify this condition, a p1 neuron
is connected to the c-type neuron associated to the central
column through an excitatory synapse. Weights of the inhibitory
connections are established on the basis of the weight of this
excitatory synapse according to the following equations:

wuI = −η1pwcE (14)

wcI = −ρp1 wcE (15)

with wcE being the weight of the excitatory synapse, wuI the
weight of the connection from a u-type neuron, wcI the weight of
the inhibitory synapses from a lateral c-type neuron and ρp1 the
penalization factor associated with lateral pieces of segments. The
firing threshold of a p1 neuron (2p1) is related to the length of the
piece of segment of the central column taking also into account
the leak term of the neuron, the tolerance to segment gaps and the
allowed penalization for points in adjacent segments. Assuming
wcE = 1, 2p1 can be set to η1p − ξp1, with ξp1 being a
value quantizing the aforementioned causes of reduction of the
membrane potential.

Neurons of type p2, devoted to checking corner patterns in
a given orientation plane, take their inputs from s-type and
c-type neurons (Figure 7). Through these connections, a p2
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FIGURE 7 | Neural components taking part in the final stage of the corner and endpoint detection process. Pattern neurons (p1 and p2) combine the outputs of

subpattern neurons, producing a spike whenever a corner or endpoint pattern is detected. These neural responses excite the endpoint detection layer by means of

synapses that provide a mapping between Hough positions and image positions.

neuron processes the pieces of segment of the three columns
of the pattern (Figure 2B) applying the same principles used in
p1 neurons for the detection of endpoint patterns. Specifically,
connections from s-type neurons provide information about
the pieces of segment of the lateral columns of the corner
pattern. These connections are inhibitory, penalizing the pattern
detection in a similar way as lateral c-type neurons do in endpoint
detection. The excitatory synapse from a c-type neuron to the
corresponding p2 neuron facilitates the identification of the full
piece of segment of the central column of a corner pattern.
Excitatory (wcE) and inhibitory (wsI) presynaptic weights of a p2
neuron maintain a similar relation to the one of Equation (15):

wsI = −ρp2 wcE (16)

Equation (16) represents the corresponding penalization
introduced by non-empty pieces of segments at both sides of a
corner pattern, taking ρp2 as the penalization factor. Similarly
to p1 neurons, for wcE = 1, the firing threshold 2p2 can be
established as η1p − ξp2, with ξp2 being a quantization of
the tolerance to line gaps and non-empty adjacent segments,
considering the leak term of the neuron as well.

Complete detection of corners is accomplished by combining
the outputs of the p2 neurons of the different orientation
layers according to the range of angles defining a corner point.
Specifically, the response of a p2 neuron of the orientation layer
that represents an angle θ is multiplied (neuron n5) by the linked
response (neuron n6) of the p2 neurons representing the same

image position in the 3D Hough space for the range of angles
[θm, θM], with (θm−θ) and (θM−θ) theminimum andmaximum
angles of a corner, respectively. Thus, an active neural response
representing the detection of a corner in a certain position will
only take place in the presence of at least two firing neurons of
p2 type, one of them associated with an angle θ and another one
representing an angle in the range [θm, θM].

To illustrate the whole neural process taking part in the
detection of a segment endpoint, Figure 6 shows an example
of the neural behavior of the HT3D SNN considering the
endpoint marked in green in Figure 6A. The image space
representation of Figure 6A also shows the relation between
image and Hough positions of the concerned line segment. Thus,
as can be observed, the position in the 3D Hough space of the
marked endpoint that is relevant for its detection correspond
to (θ , d, p). This means that the endpoint detection produces a
neural response in the neuron p1θdp.

In this example, values of 2 and 3 are considered for
1p and η, respectively. Therefore, the pattern neuron p1θdp

receives its inputs from the subpattern neurons uθd−1p+2, uθdp+2,
uθd+1p+2, dealing with the top cells of the endpoint pattern,
and cθd−1p, cθdp and cθd+1p, in charge of processing the lateral
and central pieces of segment of the pattern. Likewise, each
u-type neuron is connected to two neurons of a column of
the corresponding Hough orientation layer. These two neurons
represent a separation of 2 (1p) of the parameter p. Thus, for
instance, the neuron uθdp+2 is connected to the neuron hθdp+2

through an excitatory synapse and to the neuron hθdp through
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an inhibitory one. Similarly, c-type neurons are fed by two
Hough neurons that represent a separation of 6 (η1p) within
the corresponding column of the 3D Hough space. This way, the
neuron cθdp is connected to hθdp and hθdp−6.

Figure 6B shows the output of all the aforementioned neurons
considering the line segment of Figure 6A. The output of each
Hough neuron represents the votes of the corresponding cell of
the 3DHough space. The neurons of the lateral columns produce
no spike since there are no feature points in the associated lines
of the image. On the other hand, neurons of the central column,
the one associated to the line segment of the endpoint, generate
spike trains that correspond to the accumulation of votes of each
Hough cell. Regarding subpattern neurons, they produce spike
trains representing the number of points of a piece of segment
from the associated Hough position. u-type neurons consider
pieces of segment of length 2 and c-type units segments with
a length of 6 pixels. As can be observed, since the input of
the inhibitory synapse of these neurons is delayed according to
the length of the associated piece of segment, neuron uθdp+2

remains inactive. The absence of a neural response indicates that
the top cell of the central column is empty. On the contrary,
the neural processing of neuron cθdp generates a spike train
formed by 6 spikes, which represents the existence of a full
piece of segment in the central column. All the subtpattern
neurons connected to p1θdp, excepting cθdp, are inactive during
the time window required for pattern detection. Since the only
excitatory connection of p1θdp is the one that links the pattern
neuron to cθdp, the membrane potential of the pattern neuron
increases with every spike generated by the subpattern neuron.
Considering a firing threshold of 4 and taking into account the
membrane potential decay, the neuron p1θdp fires once the fifth
spike from cθdp is received. The generated spike constitutes the
neural response to the detection of a segment endpoint in the
Hough position (θ , d, p).

3.4. Neural Detection of Corners and
Non-intersection Endpoints in the Image
Space
The detection of corners and non-intersection endpoints at this
stage of the neural process results in the identification of the
positions of the 3D Hough space that match the corresponding
patterns. In order to produce neural responses that identify
detected features in the image space, neural detectors of segment
endpoints of the HT3D SNN send their outputs to the endpoint
detection layer.

The neurons of the endpoint detection layer represent pixel
positions and are laterally connected to provide surround
inhibition. Connections between the HT3D SNN and this
layer are established according to the coordinate transformation
expressed in Equations (1) and (2), taking into account the
discretization of the parameter space. Thus, a detector neuron of
the HT3D SNN representing a Hough position (θ , d, p) sends its
output to those neurons of the endpoint detection layer (exy) that
represent pixel coordinates (x, y) for which the corresponding
discrete position in the Hough space for an angle θ , (θd, d

′
d
, p′

d
),

coincides with (θd, dd, pd), the discrete counterpart of (θ , d, p).

Through these connections, a neuron exy increases its membrane
potential according to the evidence of the existence of a segment
endpoint in its near surrounding area. Thus, neurons that exhibit
the greatest membrane potential in their local neighborhoods
represent the most likely pixel positions of corners and non-
intersection endpoints.

Responses from neurons of the endpoint detection layer
representing non-maximum locations of segment endpoints are
suppressed using a local lateral inhibition approach. Thus, each
neuron is connected to the neighboring neurons located within a
window of size w× w. By means of these connections, whenever
a neuron fires, its surrounding neurons are reset, suppressing any
possible active response from them. To improve the accuracy of
the detection results and reduce false positives, neurons taking
part in this non-maximum suppression process can be limited
to those neurons representing edge pixel positions. This can be
achieved by connecting each neuron of the edge detection layer
to the corresponding neuron of the endpoint detection layer.
These connections allow “enabling” only certain neurons of the
endpoint detection layer and ensure that every detected point
corresponds to an edge pixel.

This strategy for locating segment endpoints in the image
space is similar to the one presented by Barrett and Petersen
(2001). Despite this approach differs from the final stage of the
original HT3D algorithm, the idea of a reverse voting from the
Hough space to the image space adapts in a direct and simple
way to SNN and produces similar results to the ones obtained by
the regular implementation of HT3D.

3.5. Computational Requirements of the
Proposed Spiking Neural Network
In order to provide an analysis of the computational
requirements of the proposed spiking neural network, three
different measures are considered: number of neurons, number
of input connections of each neuron and firing latency period,
measured as the time interval that a neuron takes to process the
sequences of incoming spikes until it finally fires. The different
types of neurons are organized in layers representing orientation
steps. For each type of layer, the computational requirements are
specified below, taking n and m as the number of discrete steps
of the parameters d and p, respectively, and 1tp as the minimum
time interval taken by a neuron to process all its inputs. It is
assumed that 1tp does not depend on the number of inputs of a
neuron, since that number is one of the measures of this analysis.

• Hough orientation layers: the number of neurons of each
layer of this type is n × m × 1p, since, for each column,
discrete steps of 1 pixel are considered for the parameter p.
Each neuron has ne + 1 inputs, with ne being the number of
connections from the edge detection layer according to the
coordinate transform between image and Hough spaces. The
additional input corresponds to the feedforward connection
that provides the propagation of spikes (votes) through the
neurons of each column. Regarding the firing latency, neurons
of these layers can fire with a period of 1tp, since their basic
function is to propagate every incoming spike through their
corresponding columns.
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FIGURE 8 | First representative subset of images used to evaluate the proposed neural model. Original images are shown in the left column. Right column depicts

the corresponding edge images.

• Subpattern layers: layers of this type consist of
n × m × 3 neurons, as three subpatterns have to be
processed for each position of the discrete Hough
space. Each neuron has two inputs, one excitatory
and one inhibitory, and a firing latency period of
1tp.

• Patterns layers: for each position of the discrete Hough
space, patterns of corners and endpoints have to be checked
in both normal and flipped versions. In addition, corner
detection requires 2 more neurons (n6 and n5). Thus, the
number of neurons of each pattern layer is n × m × 8.
Neurons of type p1 and p2 have, respectively, 6 and 3
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inputs and require a processing time of η ∗ 1tp, being
this time interval an upper bound. The two additional
neurons used to confirm complete corner patterns, n6 and
n5, process lc and 2 inputs, respectively, with lc being the
number of orientation planes defining the rank of angles of
corners. Both types of neurons fire with a latency period of
1tp.

The total number of layers of each type is given by the angular
resolution 1θ . Following the original HT3D algorithm, the
maximum angular resolution is defined by the next equation:

1θ = arctan
1

η1p
(17)

This provides an inverse relation between the number of neurons
of each layer and the total number of layers. Thus, the increase in
the number of neurons of each layer produced by low values of
1p is compensated with a reduction of the number of layers.

Besides this 3-dimensional neural structure, the endpoint
detection layer is composed of w × h neurons, with w and
h being the width and height of the image. Considering only
the connections from the HT3D SNN, the neurons of this
layer receive four inputs from each pattern layer, representing
the neural responses in the presence of corners and non-
intersection endpoints. Assuming that all these neural responses
are simultaneously received, the firing latency of these neurons is
1tp.

As can be observed, in general, the different types of neurons
of the HT3D SNN have a reduced number of inputs, which
indicates that the computational cost of the neural processing of
each individual neuron is certainly low. Nevertheless, the total
number of required neurons is clearly high, producing a global
computational cost that exceeds the one of many other existing
methods for corner detection. A sequential programming
approach could consider the existence of many inactive neurons
or even entire columns of theHough orientation layers associated
to image lines with few or no edge pixels. This would reduce
the processing times of a sequential implementation, however
the number of operations would still be superior to those of
the original algorithm, since the regular HT3D can process a
corner/endpoint subpattern using a single subtraction operation
while the firing latency of pattern neurons is proportional to η.

The main advantage of the spiking implementation emerges
when considering a parallel implementation using specific
hardware (Schuman et al., 2017). Thus, even using a parallel
implementation, certain phases of the original HT3D algorithm
must be sequentially performed, such as the accumulation
stage of the voting process. On the contrary, a parallel spiking
implementation allows the overlap of the different phases
of the algorithm. This way, the propagation of spikes/votes
through the columns of the Hough orientation layers, which
is the equivalent neural process to the accumulation of votes,
can be carried out at the same time as the detection of
corner/endpoint patterns. Considering an extension of the
proposed neural model for the detection of more image features
such as line segments and rectangles, the phase overlapping
provided by the spiking execution would increase even more

the difference in performance between the original and the
spiking implementation of HT3D, since all the different image
features could be detected in the time window needed for spike
propagation.

4. RESULTS

A simulated model of the proposed spiking neural network
has been tested using the YorkUrbanDB dataset (Denis et al.,
2008). This dataset is formed by 102 marked images of urban
environments. Each image has an associated set of ground truth
line segments corresponding to the subset of segments satisfying
the Manhattan assumption (Coughlan and Yuille, 2003). To
evaluate our proposal, detected corners and endpoints of the
proposed neural model have been compared with the segment
endpoints of the ground truth data. In order to show how our
approach can outperform intensity-based detection methods,
results from the Harris corner detector (Harris and Stephens,
1988) have also been obtained, comparing the set of detected
points with the ground truth data.

In this section, a quantitative evaluation of our method
obtained using the whole YorkUrbanDB dataset is presented. In
addition, detailed detection results for a representative subset of
images are shown. This subset corresponds to the eight images of
Figures 8, 9. These figures also show an image representation of
the edge detection layer feeding the HT3D SNN for each test.

Figures 10, 11 show the detection results for the eight test
images using Harris (left column) and the proposed SNN (right
column). For the Harris detector, a window size of 5 pixels and
a sensitive factor of 0.04 have been chosen. For the proposed
HT3D SNN, a value of 2 has been fixed for 1d and 1p3 and a
total of 79 orientation steps (1θ = 0.04) have been considered.
Also, the number of cells of full pieces of segments in the
patterns of corners and non-intersection endpoints (η) has been
set to 6 and an angle range between 35 and 145◦ has been used
for corner detection. According to the original algorithm, the
angular resolution for corner and endpoint detection can be
established using (Equation 17), which, for the chosen values of
η and 1p, produces an approximate angular resolution of 0.08.
Nevertheless, we use half of this angle for 1θ in order to ensure
each feature is detected in more than one orientation layer.
This way, neurons of the endpoint detection layer representing
actual positions of corners and non-intersection endpoints are
excited by more neurons of the HT3D SNN than those of the
surrounding area of true corners/endpoints.

Regarding synaptic weights and neuron parameters, results
presented here have been obtained considering the following:

• The rate of decay of the membrane potential (λ) has been set
to 0.2/tms, with tms being the minimum time interval between
two consecutive spikes.

• Presynaptic weights of p1 pattern neurons have been fixed
according to expressions 14 and 15, considering a value of
1 for wcE and a penalization factor ρp1 of 0.25. Thus, the

3The images of the YorkUrbanDB dataset have a resolution of 640× 480. Thus, the

real values of d and p range between−400 and 400.
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FIGURE 9 | Second representative subset of images used to evaluate the proposed neural model. Left column shows the original images. The corresponding edge

images are shown in the right column.

inhibitory weightswuI andwcI have been set to−12 and−0.25,
respectively.

• Presynaptic weights of pattern neurons of p2 type have been
established, as in p1 neurons, using (Equation 16) for wcE = 1
and ρp2 = 0.25.

• The firing thresholds of the two types of pattern neurons have
been set to 6.5 for 2p1 and 8 for 2p2. The difference between
both thresholds is motivated by the fact that endpoint patterns
detected by neurons of p1 type include more adjacent cells
than corner patterns.
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FIGURE 10 | Detection results of the first subset of images using the Harris corner detector (left column) and the proposed SNN (right column).

From Figures 10, 11, the differences between the detection
results of the Harris detector and the proposed HT3D-
based neural model can be appreciated. While right angle
corners are correctly detected by both methods, only the
proposed model performs well in the detection of obtuse angle
corners. In addition, as expected, only our approach detects

non-intersection endpoints. These points are mainly found in
the intersections between image segments and image limits,
but they also correspond to corners with low intensity in one
direction.

The differences between both methods are more noticeable
when the detection results are compared to the ground truth
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FIGURE 11 | Detection results of the second subset of images using the Harris corner detector (left column) and the proposed SNN (right column).

data, as can be observed in Figures 12, 13. These figures show
the segment endpoints of the ground truth data and their
correspondences with the detections of the Harris method (left
column) and the proposed neural model (right column). To
obtain the correct matchings between detected and ground truth
endpoints, a maximum euclidean distance of 3 pixels between

each pair of points has been considered. Distances have been
rounded to integer values in order to approximate the acceptance
area to a circular image patch. The resulting correct matchings
are shown as green squares. Blue squares represent ground truth
endpoints with no correspondence with any detected endpoint
according to the distance criterion. As can be seen in these
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figures, the hit rates of the HT3D-based model are around 15 −
25% over the ones obtained by Harris in all the test images.
This difference is mainly related to the aforementioned additional
points detected by our approach, although some difference in
accuracy can also be observed. Thus, in some cases, despite
a Harris corner is detected in a near position to a ground
truth endpoint, the distance between them is above the allowed
distance, which denotes a greater accuracy of our proposal in
comparison to the Harris method.

The above observations can be extended to the great majority
of images of the dataset as can be appreciated in Figure 14. This
figure shows, for each image, the ratio between the number of
correct matchings with the ground truth (NEpc) and the total
number of detected points (NEpd) and the hit rate, i.e., the ratio
betweenNEpc and the number of ground truth endpoints (NEpg).
A maximum rounded distance of 3 pixels between detected
and ground truth points has been established to compute NEpc.
The two ratios have been obtained for the proposed spiking
neural model, the Harris corner detector and the original HT3D
algorithm4. The ratio NEpc/NEpd produces moderate values for
the three methods since the ground truth endpoints correspond
to a subset of corners and segment endpoints and all the
methods detect additional points. Nevertheless, this measure
acts as a validity indicator of the hit rate. Thus, a low value
of this ratio for one detector in relation to other methods
suggest a high number of false positives that invalidate a high
hit rate. In general, the three methods produce comparable
ratios between the correct matchings and the total number
of detections, although larger values can be observed for
HT3D in both the spiking implementation and the original
one (Figure 14A). This is mainly due to the fact that the
number of correct matchings with the ground truth is noticeably
superior in the HT3D approach as indicated by the hit rate
(Figure 14B). Regarding the two implementations of HT3D,
only small variations of the two ratios are appreciated between
the two methods. Thus, the accuracy of both approaches can
be considered similar, proving the correctness of the proposed
neural model.

Performance of an HT-based approach is strongly tied to the
discretization of the parameter space. Thus, choosing suitable
values for1d,1p, and1θ is crucial to obtain reliable results. The
decision is not as simple as reducing these resolutions as much
as possible, since fine quantizations increase noise sensitivity. In
order to reach an equilibrium between accuracy of the results
and robustness against image noise, parameter resolutions must
be established according to the nature of the image. In HT3D,
the distribution of edge points determines the proper values
of 1d and 1p. Thus, close parallel line segments can only be
correctly represented in the 3D Hough space using low values
of these quantization steps. However, if edge point chains are

4Higher ratios than those presented in Bachiller-Burgos et al. (2017) can be

observed due to two main factors. The first one is that, in this study, we use a

rounded integer distance to accept matchings between detected and ground truth

endpoints. In addition, ground truth endpoints situated at a distance less than 1

pixel from each other are considered to be situated at the same image position,

which reduces the size of the validation set.

more sparsely distributed in the image, larger values produce
comparable detection results.

This fact can be observed in Table 1. This table shows the
values ofNEpd (number of detected corners/endpoints) andNEpc
(number of correct matchings) for the 8 test images using the
HT3D SNN with different quantization steps. The total number
of ground truth endpoints is shown in the first column as a
reference. As can be appreciated, increasing 1d and 1p affects
the hit rates of images 4 and 7 to a greater extent, since they
are the most complex images in terms of edge distribution, while
the hit rates of the remaining images do not suffer so significant
variations. Indeed, the number of correct matchings of images 5
and 6 remains almost constant.

Regarding the angular resolution 1θ , a proper value for
corner/endpoint detection can be established by means of
Equation (17), once 1p and η have been fixed. This provides an
upper bound for this quantization step, although smaller values
could favor the non-maximum suppression neural process of the
endpoint detection layer as previously stated. Table 1 illustrates
this point. The last two columns of this table show the number
of detected points and correct matchings using the maximum
angular resolution for 1p = 2 and η = 6 (0.08 radians). As it
can be observed, in general, the hit rates diminish with regards to
the results obtained using an angular step of 0.04. Nevertheless,
this reduction is much less noticeable in comparison with the one
produced when increasing the other two quantization steps. In
addition, the number of operations considerably decreases with
respect to the other two configurations of Table 1, producing an
additional benefit in terms of computational requirements. For
images with amoderate density of edge points, further reductions
of the size of the Hough space can lead to similar results. Thus,
for images 5 and 6, fixing a value of 3 for 1d and values of 2 and
0.08 for 1p and 1θ , respectively, produces equivalent hit rates to
the ones obtained with the first configuration, using one third of
the neurons required by such configuration.

5. DISCUSSION

SNN have gained an increasing interest in fields such as
image processing and computer vision. These models are more
biologically plausible and have proven to be more powerful than
those of the previous generations of neural networks. Biological
findings about the existence of cortical structures performing
similar computations to that of the Hough Transform have
inspired various spiking neural models for line and corner
detection.

Based on a novel variant of the Hough Transform (HT3D)
that provides a combined detection of corners, line segments and
polylines, we have presented in this paper a new spiking neural
network for corner detection that can be naturally extended
for the detection of additional image features. HT3D employs
a 3D Hough space that offers a compact representation of
line segments. This parameter space also encloses canonical
configurations of segment endpoints, distinguishing between
two kinds of points: corners and non-intersection endpoints.
Through these cell configurations, the detection of these
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FIGURE 12 | Matching between ground truth endpoints of images in Figure 8 and detected corners/endpoints using the Harris corner detector (left column) and the

proposed SNN (right column). Green squares represent correct matchings. Ground truth endpoints with no correspondence with detected points are drawn as blue

squares.

feature points can be solved by means of a pattern matching
strategy.

The proposed spiking neural model consists of a 3D spiking
neural network (HT3D SNN) connected to two layers of
neurons representing image positions (the edge detection layer

and the endpoint detection layer). The edge detection layer
feeds the HT3D SNN with the outputs of an edge detection
neural network. The endpoint detection layer responds to the
identification of Hough patterns of segment endpoints in the
image space. Neurons of the HT3D SNN represents discrete
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FIGURE 13 | Matching between ground truth endpoints of images in Figure 9 and detected corners/endpoints using the Harris corner detector (left column) and the

proposed SNN (right column). Correct matchings are represented as in Figure 12.

positions of the Hough space. Thus, connections between the
HT3D SNN and the other two layers of neurons of the neural
model are established according to the relation between Hough
cell positions and image positions. In the proposed HT3D SNN,
the 3D Hough space is implemented as decoupled layers of
spiking neurons associated to possible discrete values of a line

orientation. Each column of these layers corresponds to an image
line representation in the Hough space. Spikes generated by a
given neuron are propagated to the subsequent neurons of the
same column. Through this propagation, each neuron generates
a spike train that encodes the votes of the corresponding cell of
the Hough space. Pairs of these spike trains are fed to another
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FIGURE 14 | Quantitative results obtained from the whole YorkUrbanDB dataset for the Harris detector, the original HT3D algorithm and the proposed SNN. (A) Ratio

between the number of correct matchings with the ground truth (NEpc) and the total number of detections (NEpd ); (B) ratio between the number of correct matchings

and the total number of ground truth points (NEpg).

TABLE 1 | Detection results of the HT3D SNN for the 8 test images using different values of 1d, 1p, and 1θ .

1d = 2 1p = 2 1θ = 0.04 1d = 3 1p = 3 1θ = 0.04 1d = 2 1p = 2 1θ = 0.08

NEPg NEPd NEpc NEPd NEpc NEPc NEpd

1 111 232 86 189 79 211 83

2 199 495 156 467 146 458 153

3 190 1,179 152 838 134 983 146

4 959 1,572 611 1,101 497 1,373 575

5 69 842 57 634 57 731 56

6 63 370 37 324 36 325 35

7 219 1,596 149 1,068 89 1,296 131

8 127 732 92 532 83 561 84

For each configuration, the table shows the total number of detected corners/endpoints (NEpd ) and the number of correct matchings with the ground truth (NEpc). The number of

ground truth points (NEPg ) is shown in the first column.

group of neurons called subpattern neurons. These neuronal
units are in charge of processing significant pieces of segment
of corner and endpoint patterns. Specifically, they produce spike
trains representing the difference in votes of two Hough cells,
i.e., the number of votes of a given piece of segment, using
complementary inhibitory and excitatory presynaptic weights

along with synaptic delays. Outputs of subpattern neurons are
connected to other neurons responsible of detecting corner and
non-intersection endpoint patterns. Spikes generated by this set
of neurons excite the endpoint detection layer through synapses
that provide a mapping between Hough positions and image
positions. Neurons of this final layer are responsive to corners
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and non-intersection endpoints in the image space and are
laterally connected in order to suppress responses from neurons
representing non-maximum locations of segment endpoints.

The proposed neural model has been tested by means of
a software simulation using a set of real images labeled with
ground truth line segments. A comparison with the Harris
corner detector has also been conducted to show the benefits
of our approach in relation to intensity-based corner detection
methods. Results obtained are comparable to the ones provided
from the original algorithm which demonstrates the correctness
of our neural model. Comparison with the ground truth evinces
superior hit rates of our proposal with regard to the Harris
detector, which are mainly related to non-intersection endpoints
and obtuse angle corners, but also denote greater accuracy of our
neural approach. We have also shown the influence of the size
of the Hough space in the detection results. According to the
experiments, for non-complex images, a significant reduction on
the number of neurons can lead to comparable hit rates.

As shown in the experiments, the spiking implementation of
HT3D does not provide additional benefits in terms of accuracy
in relation to the original algorithm. Nevertheless, a hardware
implementation of the proposed SNN can improve the time
performance of a parallel execution of the regular HT3Dmethod.
Thus, sequential stages of the algorithm can overlap with other
stages in the spiking implementation. This overlapping allows
a better exploitation of the parallelism, which leads to lower
processing times.

From both theoretical and experimental perspectives, we
have demonstrated that the principles that associate the neural
processes taking place in orientation selectivity to cellular
microcircuits implementing a Hough-like transform can be
extended to create neural structures responsive to other kind
of features. The proposed spiking neural network constitutes a
base neural structure that maps visual stimuli sets onto neural
representations of a variety of line-based features. Although our
model is mainly focused on corner detection, it provides the basic
neural organization to address the identification of other image
features. Thus, as in the regular HT3D method, line segment
information is encoded in pairs of neurons (Hough cells) of each
column of a Hough orientation layer. According to this, a similar

approach to the one employed by subpattern and pattern neurons
to process and detect pieces of segment can be used to extend
the proposed model to the detection of more complex features
such as line segments and polygons. Thus, for a given pair of
image points ei and ej of a line l(θ , d), neural responses to a line
segment between those points can be obtained by means of a new
neural unit taking its inputs from the associated pair of neurons
of the corresponding column of the HT3D SNN representing
the line l. Combining synaptic delays, complementary excitatory
and inhibitory synapses and an appropriate relation between
the length of the line segment and the firing threshold of the
neuron, neural units exhibiting a suitable behavior for segment
detection can be implemented. This constitutes a direct extension
of our model, although it should be complemented with an
appropriate neural representation of the additional detected
image features. In this sense, a more complex neural model
than the one used in the current approach should be applied to
provide a generalized neural representation of image features. An
interesting line of exploration is related to the theories supporting
the temporal correlation of neural activity as a mean of dealing
with perceptual grouping and sensory segmentation (von der
Malsburg and Buhmann, 1992; von der Malsburg, 1994; Singer
andGray, 1995). Our future work points to this direction with the
main objective of providing a complete neural implementation of
HT3D.
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