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Effective connectivity measures the pattern of causal interactions between brain regions.

Traditionally, these patterns of causality are inferred from brain recordings using

either non-parametric, i.e., model-free, or parametric, i.e., model-based, approaches.

The latter approaches, when based on biophysically plausible models, have the

advantage that they may facilitate the interpretation of causality in terms of underlying

neural mechanisms. Recent biophysically plausible neural network models of recurrent

microcircuits have shown the ability to reproduce well the characteristics of real neural

activity and can be applied to model interacting cortical circuits. Unfortunately, however,

it is challenging to invert these models in order to estimate effective connectivity from

observed data. Here, we propose to use a classification-based method to approximate

the result of such complex model inversion. The classifier predicts the pattern of

causal interactions given a multivariate timeseries as input. The classifier is trained on

a large number of pairs of multivariate timeseries and the respective pattern of causal

interactions, which are generated by simulation from the neural network model. In

simulated experiments, we show that the proposed method is much more accurate

in detecting the causal structure of timeseries than current best practice methods.

Additionally, we present further results to characterize the validity of the neural network

model and the ability of the classifier to adapt to the generative model of the data.

Keywords: causality, classification and prediction, cortical networkmodel, neural networks, connectivity, effective

connectivity, timeseries analysis

1. INTRODUCTION

To understand how the human brain works, it is fundamental to study the interactions among
its regions and not just their individual behavior (see Bullmore and Sporns, 2009). The pattern of
causal interactions between the temporal behavior of brain regions is called effective connectivity
(see Sporns, 2007; Friston, 2011). Inferring such pattern from observations, e.g., from functional
neuroimaging data, is a challenging task. Traditionally, the literature addresses this problem either
with non-parametric, i.e., model-free, or parametric, i.e., model-based, methods (see Chicharro,
2014). In particular, model-based methods define a generative model of the dynamics of the neural
system and then estimate the parameters of the model, e.g., the pattern of causal interactions, from
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the data, by inverting the model. The most well-known among
such models are the multivariate autoregressive (MAR) model
(Granger, 1969) and the dynamic causal model (DCM) for
functional MRI data (Friston et al., 2003).

Parametric methods are very popular when studying effective
connectivity in the brain. When the model used to parametrize
neural activity and their dependencies is biophysically plausible,
these models can be used not only to infer causal relationships
between neural circuits, but also to infer the mechanisms leading
to it. Nevertheless, common models are either simplistic with
respect to physiology (for example the MAR model is not
based on physiological mechanisms), or specific for certain
neuroimaging modality (DCM for fMRI), or they ignore, for
simplicity, some important aspects of neural dynamics. For
example, standard version of DCMs consider only the mean
field dynamics of these models and ignore the rich structure
of the neural dynamics that is not captured by mean field
approximations.

Recent progress in neural network modeling has made it
possible to generate models of recurrent microcircuits that have
biophysical and anatomical properties very similar to those of
real cortical circuits (see Brunel and Wang, 2003; Borisyuk and
Kazanovich, 2006; Mazzoni et al., 2008, 2010, 2015; Kirst et al.,
2016; Palmigiano et al., 2017). Moreover, when used to simulate
dynamical systems, these models generate statistics very close to
that of recorded cortical activity and of neural communication
(see Belitski et al., 2008). Besserve et al. (2015) including realistic
rapid fluctuations, such as gamma oscillations, that are not well-
captured by simplified solutions of neural dynamics, such as the
mean field. In principle, these realistic models could be used
for studying effective connectivity from observations. However,
unfortunately, estimating effective connectivity from observed
data, i.e., inverting these complex models, is a complex task with
no clear solutions available.

In recent years, the machine learning community has
proposed to recast the problem of causal inference as a statistical
learning theory problem (see Schölkopf et al., 2013; Lopez-
Paz et al., 2015a,b; Mooij et al., 2016). The underlying idea is
to use machine learning algorithms on observed data, using
a supervised learning paradigm. Different solutions have been
devised, even though not targeting causality betweenmultivariate
timeseries and not addressing generative models of brain activity.
Moreover, a limitation of these approaches is the lack of a large
amount of data for training the algorithms, an issue typical of
some domains of application, such as neuroscience.

In this work, we explore a possible new way to predict effective
connectivity taking advantage of biophysically plausible cortical
models. We first perform a novel extension of the neural network
model of Mazzoni et al. (2008) where we add interactions
between neural populations. We then propose a method to
address the limitations of (i) inverting complex generativemodels
to detect causality among timeseries and, jointly, (ii) of using
the supervised learning framework when observations are in
limited number. Notice that, here, we define causality as binary,
i.e., given one multivariate timeseries composed ofM timeseries,
its pattern of causality is a M × M binary matrix where entry
ij is 1 if timeseries i causes timeseries j, and 0 otherwise. Our

idea is to use the generative model to simulate a large number
of examples, where one example is a multivariate timeseries
together with its pattern of causality. We use the resulting dataset
of examples to train a classification algorithm that, given a new
multivariate timeseries as input, predicts its pattern of causality.
In this way, the proposed supervised method approximates the
result of model inversion [cf. (i)] and, moreover, does not require
any real observations to be trained but only simulated data [cf.
(ii)]. Of course, a crucial desideratum of the proposed method
is to provide accurate approximations, i.e., to accurately predict
effective connectivity.

The method presented in this work builds on our previous
work (see Benozzo et al., 2016, 2017), where we developed
a conceptually similar paradigm applied to a simple MAR
model, rather than to a complex biophysical model of neural
interactions. There, we proposed a novel feature space to encode
the multivariate timeseries and showed that effective connectivity
could be predicted at even better rates than those of state-of-
the-art solutions. Rather than using the MAR model, here we
propose a novel neural network generative model, which extends
the work of Mazzoni et al. (2008). By connecting several of
the recurrent microcircuits, as shown in section 2.2, we can
generate a simulated information flow among neural circuits that
has realistic statistical properties and for which we know the
ground truth of causal communication. Notice that, a method for
estimating the pattern of causality expressed by this model, from
observed data, is not available and it is not straightforward.

In order to set up a classification problem, here we adopt
the feature space that we designed in Benozzo et al. (2016,
2017), which is based on the Granger principles of temporal
precedence and predictability. With such feature space, we
obtain a more convenient representation of the multivariate
timeseries generated by the neural network model. Then, our
main result is to show that the resulting classifier can accurately
predict the pattern of causality of multivariate timeseries, even
in the case of the proposed complex generative model based on
neural networks, so demonstrating accurate approximate model
inversion. As additional result, we also provide evidence that
the neural network model proposed in section 2.2 implements
the Granger principles, despite being vastly different from a
MAR model. As a further result, we also compare the proposed
supervised method with the Granger Causality Analysis (GCA,
see Barnett and Seth, 2014) method, commonly used to detect
causality among timeseries from neural recordings.We show that
the proposed method vastly outperforms GCA.

In the remaining part of the article, we first describe
the proposed neural network model derived from Mazzoni
et al. (2008), that we extended by adding connections between
microcircuits rather than studying single isolated microcircuits
as in the original model (see section 2). Then, we briefly describe
the proposed method for detecting the pattern of effective
connectivity from observed timeseries, following Benozzo et al.
(2016, 2017). In section 3, we report the experiments conducted
in this work to support our claims. First, in section 3.1, we
characterize the proposed neural network model, showing that
it does generate timeseries according to the given pattern of
causality. Then, in section 3.2, on data generated by the neural
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network model, we present the main result, where we show the
clear superiority of the proposed supervised method with respect
to GCA. Additionally, in order to show the flexibility of the
supervised method in adapting to the generative model, we show
the effect of training on MAR data vs. neural network data. In
section 4, we discuss the experimental findings and their support
to our claims.

2. MATERIALS AND METHODS

In this section, after describing the causal configurations adopted
in this study, we explain in detail the novel generative model
for the activity of brain regions, based on neural networks.
There, we provide the details of the parameters to generate the
large set of examples, which was used to train and test the
proposed classification-based method for predicting causality.
Each example is composed of a multivariate timeseries and
its causal configuration matrix. The remaining part of the
dataset was used to estimate the quality of predictions, both for
the proposed method and for the Granger Causality Analysis
(GCA, see Barnett and Seth, 2014) method (see section 3),
for comparison. In the second part of this section, we briefly
present the proposed classification-based method for predicting
causality, following Benozzo et al. (2016, 2017). Before the second
part, we define the multivariate autoregressive (MAR) model,
that we use for generating a second dataset to further characterize
the proposed method, and a traditional causality measure: the
Geweke index, on which GCA is based.

2.1. Causality Configurations
In this work, we consider the causal relationships between
three timeseries. This is the minimum number to observe
complexmultivariate causal interactions. Even with such number
of timeseries, the amount of possible causal configurations is
remarkable. In principle, the number of distinct configurations
that M timeseries can exhibit with their (binary) causal
interactions is super-exponential: 2M(M−1). A straightforward
way to obtain this is to consider theM×M adjacency matrix A of
the directed graph describing such interactions, where each off-
diagonal element can assume a binary value: the element aij = 1
when timeseries i causes timeseries j and 0 otherwise.

In the literature of causality it is common to consider only a
subset of all directed graphs when describing causal relationships:
the directed acyclic graphs (DAGs) between labeled nodes.
This restriction is inherent to many causality frameworks, e.g.,
Bayesian networks (Pearl, 2009), because the representation of
probability distributions can leverage conditional independence
relations (see Spirtes et al., 2001). In this way, the conditional
independence properties that are inferred from data can be
interpreted as causal properties (see Dawid, 2010).

When restricting to DAGs, the number aM of possible
causal configurations of M timeseries is still super-exponential
(see Robinson, 1977)

aM =

M
∑

k = 1

(−1)k−1

(

M

k

)

2k(M−k)aM−k. (1)

FIGURE 1 | Possible DAGs exhibited among 3 labeled nodes.

In this work, we consider the causal interactions between
three timeseries and, specifically, those expressed by DAGs,
which amount to 25 configurations. In Figure 1, we list such
configurations, grouped as independent, univariate, bivariate and
trivariate.

2.2. Neural Network (NN) Model and
Dataset
In this subsection, we describe the biophysically plausible neural
network model of causal communications between areas that we
propose. We used such model to make inferences about brain
connectivity from simultaneous measures of activity of multiple
neural circuits. To develop this model, we took the model
previously developed by Mazzoni et al. (2008) for describing the
dynamics of individual neural circuits, and we generalized it to
model multiple circuits connected to each other.

The single circuit model of Mazzoni et al. (2008) was shown to
produce simulated timeseries that are very similar to the statistics
of physiological recordings, both at the level of Local Field
Potentials (LFP). The LFP is a graded potential that measures
the mass activity of a local neural circuit around the tip of the
electrode (see Einevoll et al., 2013). In Mazzoni et al. (2008),
the authors presented a model of a cortical network composed
of leaky integrate and fire neurons and they showed that this
model produces activity with characteristics very similar to that
recorded from primary visual cortex, both during spontaneous
activity and during naturalistic visual stimulation. For our
purpose, here we built a new model made of three such models
of individual neual circuits, X, Y, and Z, separately. Then,
we connected the three circuits according to three different
connectivity configurations (see Figures 1, 2). In this work, we
study the causal interactions between these three circuits. Then,
the high level graph of causal interactions comprises three nodes,
each related to one circuit.

Each circuit is composed of N = 5,000 neurons. 80%
of the neurons are excitatory and the remaining 20% are
inhibitory (see Braitenberg and Schüz, 1991). Each individual
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FIGURE 2 | The connectivity of the network and the high-level structure of neural circuits. Both circuits of neurons, with each circuit made of interconnected excitatory

and inhibitory neurons, have connections within the circuit and also with other circuits. Each neuron may also receive an external input, representing incoming

information from neural circuits other than those modeled. In the first circuit (circuit X, right panels) the external input is a simulated spike train and is thought to

represent input from the visual periphery (the Lateral Geniculate Nuclues, which in turn receives visual information from the eye). In other circuits (circuits Y and Z), this

external input represents inputs from other possible cortical circuits non included in the model. Finally, if a connection between individual circuits is present (arrows),

there are directed connections from the excitatory circuit of the sender to both excitatory and inhibitory neurons in the receiving network. (A) represents univariate

connection from network X to network Y. (B) depicts bivariate connection between networks. The information flows from network X to network Y and from there to

network Z.

circuit has randomly distributed connections. The within-circuit
connection probability between any directed pair of cells is 0.2
(Sjöström et al., 2001; Holmgren et al., 2003). In case of an
inter-network directed connection, there is also 0.2 probability
of connection between any pair composed of any cell from
the receiver network and an excitatory cell from the sender
network (see Figure 2). Both pyramidal (excitatory) neurons
and interneurons (inhibitory) are described by leaky integrate
and fire (LIF) dynamics (Tuckwell, 1988). Each neuron k is
described by its membrane potential Vk that evolves according
to

τm
dVk

dt
= −Vk + IAk − IGk (2)

where τm is the membrane time constant (20 ms for excitatory
neurons, 10 ms for inhibitory neurons (see McCormick et al.,
1985), IAk are the (AMPAtype) excitatory synaptic currents
received by neuron k, while IGk are the (GABA-type) inhibitory
currents received by neuron k. Note that, in Equation (2),
we have taken the resting potential to be equal to zero.
When the membrane potential crosses the threshold Vthr ,
i.e., 18 mV above resting potential, the neuron fires, causing
the following consequences: (i) the neuron potential is reset
at a value Vres, i.e., 11 mV above resting potential, (ii)

the neuron can not fire again for a refractory time τrp,
i.e., 2 ms for excitatory neurons and 1 ms for inhibitory
neurons.

Synaptic currents are the linear sum of contributions induced
by single pre-synaptic spikes, which are described by a difference
of exponentials. They can be obtained using auxiliary variables
xAk, xGk. AMPA and GABA-type currents of neuron k are
described by

τdA
dIAk

dt
= −IAk + xAk (3)

τrA
dxAk

dt
= −xAk + τm

(

Jk−exc

∑

exc

δ(t − tk−exc − τL)+

+ Jk−int

∑

int

δ(t − tk−int − τL−int)

+ Jk−ext

∑

ext

δ(t − tk−ext − τL)

)

(4)

τdG
dIGk

dt
= −IGk + xGk (5)

τrG
dxGk

dt
= −xGk + τm

(

Jk−inh

∑

inh

δ(t − tk−inh − τL)

)

(6)
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where tk−exc/inh/int/ext is the time of the spikes received
from excitatory neurons/inhibitory neurons/inter-network
excitatory neurons (if a connection from another network is
present) connected to neuron k, or from external inputs, as
explained see below. τdA (τdG) and τrA (τrG) are respectively the
decay and rise time of the AMPA-type (GABA-type) synaptic
current. τL = 1ms and τL−int = 3 ms are latencies of post-
synaptic currents for intra- and inter-network connections
respectively. Jk−exc/inh/int/ext is the efficacy of the connections
from excitatory neurons/inhibitory neurons/inter-network
excitatory neurons/external inputs on the circuit of neurons to
which k belongs.

As noted above, each neuron is receiving an external
excitatory synaptic input, see the last term in the r.h.s. of
Equation (4). These synapses are activated by random Poisson
spike trains, with a time varying rate which is identical for all
neurons. This rate is given by

νext(t) =
[

νsignal(t)+ n(t)
]

+
(7)

where νsignal(t) represents the signal, and n(t) is the noise. [· · · ]+
is a threshold-linear function, [x]+ = x if x > 0 and 0 otherwise,
to avoid negative rates which could arise due to the noise term.
We use constant signal defined by

νsignal(t) = ν0 (8)

where ν0 is a constant rate equal to 2 spikes/ms. The noise
represented by n(t) in Equation (7) is generated according to an
Ornstein-Uhlenbeck process.

The activity of each network was summarized by generation of
simulated local field potential (LFP), as timeseries. To capture in
a simple way the fact that pyramidal cells contribute the most to
LFP generation, the LFPs are modeled as the sum of the absolute
values of AMPA and GABA currents (|IA| + |IG|) on pyramidal
cells in every time point of the simulation.

In previous studies, it was shown that this simple
approximation of LFP, in terms of synaptic currents, is
sufficiently accurate. It captures a large part of the variance, of
the order of 95%, of complex LFPs generated by the sum of the
dipoles generated in networks of model neurons with complex
3-dimensional structures and parameters closely matching those
of real cortical neurons (see Mazzoni et al., 2015).

In all scenarios of Figure 1 we simulated three networks with
the same set of parameters. However, their internal connections
and external inputs were generated independently. All the
parameter values were set in agreement with the original work
of Mazzoni et al. (2008), with addition of synaptic efficacies for
inter-network connections Jk−int , that were equal for excitatory
and inhibitory neurons. These values were drawn from a uniform
distribution in the interval [0, 0.18], for every pair of networks in
every trial.

The set of three LFP timeseries obtained from simulation
together with its causal configuration are called example. We
generated 1,000 examples, each with three timeseries of 6,000
timepoints, for each of the 25 causal configurations described in

section 2.1. The whole set of examples defined a dataset that we
call NN dataset from now on.

A Matlab implementation of the neural network
model that generates the NN dataset is available at:
https://github.com/FBK-NILab/causality_

prediction_cortical_model.

2.3. MAR Model and Dataset
The multivariate autoregressive (MAR) dataset is composed
of multiple examples. Each example comprises a multivariate
timeseries X together with its causal configuration A, defined
below. The multivariate timeseries X = {X (t), t = 0, 1, . . . ,N −

1},X (t) ∈ R
M×1 is defined as the linear combination of two

M-dimensional multivariate time series Xs and Xn

X = (1− γ )Xs + γXn (9)

whereXs carries the causal information (signal),Xn represents an
additive noise corruption and γ ∈ [0, 1] tunes the signal-to-noise
ratio. Each time point of Xs and Xn is computed by following the
stationary MAR model

Xs(t) =

p
∑

τ=1

A(τ )⊤
s Xs(t − τ )+ εs(t)

Xn(t) =

p
∑

τ=1

A(τ )⊤
n Xn(t − τ )+ εn(t)

(10)

where p is the order of the MAR model and represents the
maximal time lag. εs(t) and εn(t) are the innovation processes,
defined as realizations from a diagonal M-dimensional standard

normal distribution. A
(τ )
s ,A

(τ )
n ∈ R

M×M , τ = 1, . . . , p are the
coefficient matrices modeling the influence of the signal values
at time t − τ on the current signal values, i.e., at time t. The

coefficient matricesA
(τ )
s defines the process of causal-informative

data generation. They are computed by corrupting with uniform
noise the non-zero elements of the M × M binary matrix A,
called causal configuration matrix, where aij = 1 means signal i
causes signal j and 0 otherwise. In essence,A represents the causal
graph that defines the MAR model, as described in section 2.1.

Differently, A
(τ )
n described the noisy part of the signals and they

are obtained by randomly generating p diagonal matrices.
As for the NN dataset, in the experimental setup we chose

M = 3, i.e., X = (X,Y ,Z), p = 10 and N = 6, 000 and
generated a dataset of examples. Each example consisted in three
timeseries of 6,000 timepoints each, generated by theMARmodel
of order 10, together with the related causal configuration A. For
each of the 25 possible causal configuration matrices described in
section 2.1, we generated 1000 examples. From now on, we refer
to this dataset as theMAR dataset.

A Python implementation of the MAR model
that generates the MAR dataset ia available at:
https://github.com/FBK-NILab/causality_

prediction_cortical_model.
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2.4. Geweke Index of Causality
Consider a system of three stationary stochastic processes Xt ,Yt ,
and Zt , under the assumption of multivariate autoregressive
model. The traditional pair-wise conditional approach to causal
inference examines whether Y has a direct influence on X given
the presence of Z by decomposing

Xt =

∞
∑

i=1

axx,iXt−i +

∞
∑

i=1

axy,iYt−i +

∞
∑

i=1

axz,iZt−i + εx,t . (11)

An alternative reduced representation of X, which assumes that
Y has no influence, is instead

Xt =

∞
∑

i=1

a′xx,iXt−i +

∞
∑

i=1

a′xz,iZt−i + ε′x,t . (12)

The Geweke index of causality in time domain, FY→X|Z , estimates
which of the two regressions (11) and (12) better models the
process Xt by computing the log-ratio of the residual variances:

FY→X|Z = ln
6′

xx

6xx
(13)

where 6′
xx = var(ε′xx) and 6xx = var(εxx) are the residual

variances of theMARmodels (Equations 11 and 12), respectively.
Equation (13) is interpreted as the variation in prediction error
when the past of Y is included in the regression.

Frequently, FY→X|Z is considered during the process of causal
inference. The common practice is to look at FY→X|Z as the
test statistic of a log-likelihood ratio test. In particular, under
the null hypothesis of no causality, i.e., H0 : axy,i = 0,∀i,
the Geweke measure has an asymptotic χ2 distribution up
to a scaling factor which depends on the sample size and
with degree of freedom equal to the difference in the number
of parameters between Equations (11) and (12). Under the
alternative hypothesis, the scaled test statistic has an asymptotic
non-central χ2 distribution, with non-centrality parameter that
corresponds to the scaled casual measure. See Barnett and Seth
(2014) for further details.

2.5. Supervised Causal Detection Between
Timeseries
Recently, the machine learning literature has started to address
the problem of causality (see Schölkopf et al., 2013). In Benozzo
et al. (2017), we presented the first method to detect causality
among timeseries, based on supervised learning and tested on the
MARmodel. Here we summarize that method, which we propose
to use in conjunction with the NN model of section 2.2, instead
of the MAR model.

Given three timeseries {x, y, z}, the set of all possible causal
interactions considered in this study comprises 25 configurations
(see Figure 1). In a supervised learning setting, we aim at
creating a classifier that, given {x, y, z}, accurately predicts their
causal configuration, among the 25 alternatives. Such classifier
can be obtained in two steps: first, by designing a convenient
feature space where to represent the set of timeseries in terms

TABLE 1 | Given x as effect, we report the seven possible causality scenarios that

can be obtained from the three timeseries x, y, and z, when considered as causes.

Causes Effect

1 x x

2 y x

3 z x

4 x, y x

5 x, z x

6 y, z x

7 x, y, z x

of potentially useful causal quantities. Second, by training a
classification algorithm on a large dataset of known examples,
where one example is a set of timeseries represented in the feature
space together with its causal configuration. In sections 2.2 and
2.3, we described how to generate two alternative large datasets
of examples, the first based on a novel neural network model and
the second on the traditional MAR model.

The feature space that we proposed in Benozzo et al. (2017)
is based on the idea of precedence and predictability, typical of
the Granger causality framework. For each single timeseries, e.g.,
x, we quantify its degree of predictability according to different
causality scenarios, as illustrated in Table 1. A causality scenario
is a possible causal relationship that can explain the observed x.
For example, in scenario 4 of Table 1, (x, y) are jointly causes of
the effect x. We quantify the plausibility of each scenario with
a measure of how good the fit of a plain multivariate linear
regression of the effect is, at each timestep, from the past of
the given causes. Following the previous example, for each t,
we regress the value of xt from past values of x and y, i.e.,
(xt−p, . . . , xt−1, yt−p, . . . , yt−1), and measure the goodness of fit
with a score, such as the mean squared error. The lower the
mean squared error, the higher the likelihood of such causality
scenario at that timepoint. Notice that, in Benozzo et al. (2017),
the past of the causes is taken into account till p time steps
before t. There, the parameter p was introduced because the
generative model considered there was the MAR model of order
p. Such parameter, used to build the feature space, can be set
to a value specific for the model that generated the timseries.
In our case, for the parameter p, we can use one value for
the MAR dataset and a different value for the NN dataset (see
section 3.2).

The average score that is obtained over all timesteps
represents the likelihood of such scenario for the whole
multivariate timeseries. Such number is one feature of the vector
representation of the multivariate timeseries, i.e., it is one of
the dimensions of the feature space designed in Benozzo et al.
(2017). In this way, the 7 causality scenarios of Table 1 generates
21 feature values, i.e., 7 for x, 7 for y and 7 for z. We adopted
three scores: the mean squared error (mse), the coefficient of
determination R2 and the Granger Causality index1 (gci), thus
increasing the total number of feature values2 to 48. To this set

1See GrangerAnlayzer in NiTime, http://nipy.org/nitime
221 features for mse, 21 for R2 and 6 for gci, because it operates on pairs of

timeseries.
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of features we applied standard feature engineering techniques,
i.e., we created additional features meant to help the classification
system to learn non-linear effects in the data. As in Benozzo et al.
(2017), we adopted the square root, second and third power of
all previous features, i.e., 48× 3 additional features, as well as all
pairwise products of the features within each score, i.e., 210+ 210
+ 15= 435 additional features. The final vector representation of
the initial multivariate timeseries consisted of 627 features. To
conclude, each example of both the NN dataset and the MAR
dataset was transformed into this feature space. In these newly
transformed datasets, an example consists of a vector labeled
with one of the 25 causality configurations that generated the
corresponding set of timeseries.

The second step of the supervised method for causality
detection is based on training a classification algorithm, such
as logistic regression, see for example Bishop (2013), on the
obtained dataset. In case of successful training, the resulting
classifier is then ready to accurately predict which of the 25 causal
configurations a new set of timeseries belongs to. Of course, such
new set of timeseries will have to be represented in the feature
space described above in order to be presented to the classifier. In
section 3 we will show the practical application of this process to
the simulated datasets.

3. EXPERIMENTS AND RESULTS

In this section we describe the two main experiments that
we conducted in order to support the claims of the paper,
together with some additional findings. The first experiment
consists in characterizing the proposed neural network model
with traditional metrics, in order to provide meaningful sanity
checks for the simulations produced by the model. The second
experiment compares the proposed supervised classification
method for causality detection with the Granger Causality
Analysis (GCA, see Barnett and Seth, 2014), commonly used to
detect causality among timeseries from neural recordings. The
ability of the two methods to detect the causal configurations
among timeseries are compared on the data generated by the
neural network model. In order to show the ability of the
proposed supervised method to adapt to the given generative
model, we also train the classifier on the MAR dataset and show
that, in this case, it behaves similarly to GCA.

3.1. Traditional Analyses
We conducted two traditional analyses on the sets of timeseries
of the NN dataset, in order to show that the proposed neural
network model generates timeseries in agreement with the
causality architecture of the neural circuits. As described in
section 2.2, the activity of each circuit in the neural network
model was represented as the LFP generated by that circuit.
Using the LFP representation of network activity is meaningful
for several reasons: first, LFPs are a commonly-applied measure
of the mass activity of neural circuits that samples neurons
in regions roughly of the size of the circuits modeled here
(see Buzsáki et al., 2012; Einevoll et al., 2013). Second, LFP
captures a wide range of frequencies of neural activity (Buzsáki
et al., 2012; Einevoll et al., 2013) that have been implicated in

the coding of cortical information and in transmission of this
information to other cortical areas (see Singer, 1999; Fries, 2005;
Womelsdorf et al., 2007; Belitski et al., 2008; Ray and Maunsell,
2011; Jia et al., 2013; van Kerkoerle et al., 2014; Besserve et al.,
2015; van Vugt et al., 2018).

The first analysis is based on observing the cross-correlation
between two timeseries in presence and absence of causality link.
The second analysis is based on quantifying the Geweke index
of causality, that we described in section 2.4. On average, on
all timeseries, we expect an higher degree of cross-correlation
between timeseries in case there is a causal link between them.
In the same way, the value of the Geweke index should show the
presence/absence of causal link.

3.1.1. Cross-Correlation

We computed the cross-correlation between pairs of timeseries
under some causality scenario, specifically the univariate and
bivariate cases. In Figure 3, we show the two causal graphs
describing those scenarios, the related sample of LFPs activity and
the averaged cross-correlation graph between pairs of timeseries.

In Figure 3A, we report the univariate case (X → Y) and
in Figure 3B the bivariate case (X → Y → Z). In both
cases, we observe a peak of cross-correlation between timeseries
with causal link, peaking at −3 ms, which matches the latency
of inter-network connection defined in the proposed neural
network model (see section 2.2). The standard deviation of cross-
correlation, not reported in Figure 3, is always lower than 0.05
for X → Y and always lower than 0.045 for X → Z and Y → Z.
For X → Y , the cross-correlation at the peak is 1.007, while the
corresponding one when there is no causal link is 1.001. Such
difference of means is significant when tested with a t-test3. It
is interesting to note that, in the bivariate case, i.e., X → Y → Z,
there are significant peaks at−3 ms both for X → Y and Y → Z,
but also a shallow peak for X → Z at−6 ms, indicating anecdotal
evidence of the indirect causal link between X and Z.

3.1.2. Geweke Index

We computed the Geweke index of causality, introduced in
section 2.4, between pairs of timeseries for all examples of the
NN dataset belonging to three causality scenarios: univariate,
bivariate and trivariate. For each scenario, we obtained the p-
value distribution of such index for all possible ordered pairs,
i.e., X → Y , X → Z, Y → X, Y → Z, Z → X, and
Z → Y (see Figure 4). Given two timeseries in one example,
the p-value of their Geweke index was computed considering the
asymptotic χ2 distribution mentioned in section 2.4. The actual
value was obtained with the Granger Causality Analysis (GCA)
Toolbox (see Barnett and Seth, 2014). For each causality scenario,
the approximate distributions of the p-value were obtained by
computing such values over the related 1,000 examples available
in the dataset.

3We used the Welch’s t-test for unequal variances. Since each causal configuration

comprises 1,000 examples, the p-value is 0.0024, which can be considered

significant even with modern, more stringent, standards (Benjamin et al., 2017).
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FIGURE 3 | Properties of the data generated by the NN model. The top panel describes the architecture of the two causal configuration graphs, the middle one

shows a sample of the activity of those networks and finally the last panel show the average cross-correlation between the activity. (A) In case of the univariate

connection, it can be observed that activity of Y follows activity of X, which is also confirmed by the cross-correlation peak at the time equal to the transfer delay, 3

ms. (B) Also in the case of bivariate transfer, it can be observed that the activities follow each other, according to the causal configuration graph, which is also

confirmed by the cross-correlation graph. The peak of cross-correlation between X and Z is at 6 ms because of the double delay between them.

It is known that, when the null hypothesis is true, the
distribution of the p-value is uniform4. When the null hypothesis
is false, such distribution is different from the uniform one. In
our case, when the null hypothesis of no causal link between two
timeseries is true, the corresponding approximate distribution
of the Geweke index is expected to be uniform, and non-
uniform when such hypothesis is false. In Figure 4, we show
the approximate distributions of the log(p)-value computed on
pairs of timeseries in case of presence and absence of such
causal link, for the univariate (Figure 4A), bivariate (Figure 4B),
and trivariate (Figure 4C) cases. It is clearly visible that such
distributions are non-uniform only when the causal link exists.
Expectedly, in that case they exhibit a highly peaked shape for
low-p-values.

3.2. Supervised Causality Detection
In contrast to the previous experiment, which characterized
causality on average on all dataset, in this experiment we tested
the ability of the supervised causality method, described in
section 2.5, to detect the full pattern of causal configurations from
a single multivariate timeseries, under the assumption of being
generated by the neural network model proposed in section 2.2.
In order to show the ability of the supervised method to adapt
to the assumed generative model of the data, we tested both the
case when the training of the underlying classifier was conducted
on the NN dataset and on the MAR dataset. Additionally,
we compared the results with the commonly adopted Granger

4This is a classical result. Given a test statistic T, with a certain null distribution

F(T), its p-value P = F(T) has the following probability distribution: Pr(P <

p) = Pr(F−1(P) < F−1(p)) = Pr(T < t) = p. Which means that P has uniform

distribution.

Causality Analysis method (GCA, see Barnett and Seth, 2014),
based on the Geweke index of causality of section 2.4, that is used
as state-of-the-art benchmark when detecting causality between
neural recordings.

We transformed the NN dataset and MAR dataset, initially
generated as described in sections 2.2 and 2.3, into datasets
of class-labeled vectors using the feature space representation
described in section 2.5. For the MAR dataset, for the features
obtained through regression of the signal p-timesteps before, we
selected p = 10 according to the value used to generate the
dataset. For the NN dataset, we set p = 3 according to the inter-
network connection parameter, τL−int , defined in section 2.2 and
the results in Figure 3.

With a 5-fold cross-validation scheme, we split five times the
NN dataset in train set and test set. The first one was used to
train the Logistic Regression classifier of the supervised method
and the second one to test its predictions. At the same time,
we used GCA on the the NN dataset to compare the ability of
detection of the two methods5. In analogy to the results that we
presented in Benozzo et al. (2016), in Figure 5 we present the
receiver operating characteristic (ROC) curve6 of the obtained

5Notice that GCA is an unsupervised method which, differently from classification

algorithms, does not require a train set. A fair comparison between GCA and the

proposed supervised method requires the same test set. This is the reason why we

used a cross-validation scheme for the supervised method.
6GCA predicts a score for each entry of the causal configuration matrix A, which is

the likelihood of aij = 1. We set a threshold on the score and, for each example

in the test set, we counted FPs and TPs. By averaging over all the test set, we

obtained a point (FPR,TPR) and, by varying the threshold, the whole ROC curve.

Supervised[MAR] and Supervised[NN] jointly predict the likelihood of the 25

possible causal configuration matrices. We set a threshold on the likelihood value

and combined the matrices over threshold into one, such that aij = 1 if one of
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FIGURE 4 | The approximate distributions, in log-scale, of the p-value of the Geweke test statistic between pairs of timeseries. Three causality configurations were

considered: (A), bivariate (B), and trivariate (C). In case of causal link between two timeseries, the distribution of p-value is expected to be non-uniform.

predictions for the supervised method (solid line) and GCA
(dashed line). Additionally, in order to show the ability of the
supervised method to adapt to the generative model of the data
and its dependence on it, we trained the Logistic Regression
algorithm on the MAR dataset and tested it again on the NN
dataset. The ROC curve of its predictions is reported in Figure 5

(dashed-dotted line). To conclude, we report in Table 2 the AUC
values of the ROC curves presented in Figure 5, together with
their bootstrap-estimated confidence interval.

Python code of the proposed method for this experiment
is available at: https://github.com/FBK-NILab/

causality_prediction_cortical_model.

4. DISCUSSION AND CONCLUSIONS

In this section, we discuss the results obtained in the experiments
presented in section 3 with respect to our claims. Additionally, we
present current limitations of the proposed method and future

them has aij = 1, and 0 otherwise. Then we computed FPs, TPs, FPR, TPR and the

ROC curve like for GCA.

perspectives. At the end of the section, we conclude the article
describing this work.

4.1. Implications of Our Main Findings
The neural networkmodel proposed in section 2.2, that combines
three interacting neuronal circuits, was built by extending the
neural circuit model introduced in Mazzoni et al. (2008) to the
multiple-area case. One important finding of this work is to
show that the proposed model is sound and produces timeseries
of LFPs in agreement with the causality architecture designed
in the network. This is a useful finding in the context of our
work, because it is known that there is not always a one-to-
one correspondence between the structure of the anatomical
connections and the resulting causal functional interactions.
In Figure 3, we presented the cross-correlation between the
timeseries from the NN dataset, averaged over all examples.
There and in section 3.1.1, we showed that the average cross-
correlation has a clear peak at −3 ms, when there is a causal link
between the respective circuits, e.g., X → Y of Figure 3A. This
value perfectly matches the designed inter-network latency of
post-synaptic currents, τL−int = 3 ms, introduced in section 2.2.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 June 2018 | Volume 12 | Article 38

https://github.com/FBK-NILab/causality_prediction_cortical_model
https://github.com/FBK-NILab/causality_prediction_cortical0_model
https://github.com/FBK-NILab/causality_prediction_cortical_model
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Olivetti et al. Predicting Causality for Realistic Cortical Timeseries

FIGURE 5 | ROC curves for the predictions of the supervised method trained

on the NN dataset (solid line), on the MAR dataset (dashed-dotted line), and of

GCA (dashed line).

TABLE 2 | AUC-values of the ROC curves presented in Figure 5, i.e., for GCA,

for the supervised method trained on the NN dataset and trained on the MAR

dataset.

GCA Supervised (NN) Supervised (MAR)

AUC 0.8160 ± 0.0008 0.9139 ± 0.0005 0.8178 ± 0.0007

The highest AUC score is indicated in bold face.

Such peak is present both in case of univariate and bivariate
causal configurations. Conversely, when there was no causal link
between circuits, the peak was absent, e.g., X → Z in Figure 3A.
Additionally, in case of bivariate causal configuration, e.g., X →

Y → Z, see Figure 3B, the analysis of cross-correlation revealed
a shallow peak at −6 ms between the timeseries X and Z, giving
anecdotal evidence that, on average, Z required 6 ms to show the
behavior caused by X. Indeed, this peak is at twice the latency
τL−int = 3 ms, i.e., once for X → Y , plus once for Y → Z, in
agreement with the designed causality among the three neuronal
circuits.

The results reported in Figure 3 are reassuring but not
sufficient to confirm causality, since correlation does not mean
causation. The results presented in Figure 4 are meant to analyze
more in detail the timeseries generated by the proposed neural
network model. There, we report the approximate distribution
of the p-value of the Geweke index of causality between pairs
of timeseries, across the NN dataset for univariate, bivariate
and trivariate causal configurations. By definition, under the
null hypothesis of no causal link between two timeseries, such
distribution is uniform. Figure 4 clearly shows that, at an
aggregate level over all examples for a given causal configuration,
the presence of causality between two timeseries creates strongly
non-uniform distributions, in all cases. As a consequence, we
can state that LFPs generated by the proposed neural network
model showed the expected patterns of Granger causality. This
is a notable result, because the Granger assumption was not

directly used in defining the proposed neural network model (see
section 2.2).

The results discussed so far analyzed causality between
timeseries at an aggregate level, i.e., as a summary over all
examples belonging to one causal configuration. However, in
practical cases, we are faced with the more difficult task of
estimating the causal configuration of a single multivariate
timeseries, usually measured during experiments. The GCA
method of Barnett and Seth (2014) and the proposed supervised
method, are meant to predict the causal configuration of single
multivariate timeseries. The ROC curves in Figure 5 and the
AUC values in Table 2 clearly show that the proposed supervised
method, when trained on examples from the NN dataset, vastly
outperforms GCA in detecting causality, increasing AUC from
0.81 to 0.91 (see curve and values labeled as Supervised[NN]).
This finding is due to the fact that the supervised method is
designed to adapt to the generative model through the simulated
dataset, specifically in the training phase of the classifier.
Conversely, GCA is designed on the assumptions of the MAR
model, which substantially differs from the NN model. Such
difference, prevents GCA to be accurate on NN data.

A further element in support to the claimed ability of the
supervised method to adapt to the generative model, is the
result regarding the ROC curve and the AUC value, labeled
as Supervised[MAR] in Figure 5 and Table 2. In that case, the
supervised method was trained on examples from the MAR
dataset and tested on examples from the NN dataset. We clearly
see that the results are equivalent to those of GCA: the two
ROC curves, labeled as Supervised[MAR] and GCA, mostly
overlap and the respective AUC values are almost equal. In
essence, the supervised method is similar to GCA when trained
on MAR data and much superior to GCA when trained on NN
data.

4.2. Limitations and Possible Extensions in
Future Work
A limitation of the work presented here is that we considered only
networks of up to three nodes. An interesting question regards
how this approach would scale-up when consideringmore nodes.
As noted in section 2.1, the number of possible connectivity
patterns between the nodes grows super-exponentially (see
Equation 1). This is an intrinsic problem when studying causality
between multiple interacting units. Even though such problem
is not specific of the proposed methods, it has a clear impact on
them, both on simulations and on the prediction step, as follows.

Considering solely the parameters of individual networks,
the simulation time would scale exponentially with the number
of neurons and linearly with both the number of connections
between neurons within the same network and the number of
connections between neurons belonging to different networks.
In the case of the integrate and fire networks considered here,
collecting a large number of samples from these simulations
would be practical, on a modern multiprocessor workstation,
only up to 5 nodes.

Computational limitations of the prediction step has been
discussed in Benozzo et al. (2016) and we briefly summarize them
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here. The super-exponential growth in causality configurations,
i.e., in the number of classes of the classifier, inherently hinders
the possibility to build an accurate classifier when the number
of nodes is greater than 4. This can be mitigated by adopting a
different classification scheme, where each non-diagonal entry
of the causality matrix is delegated to a different classifier,
whose number grows only quadratically with the number of
nodes. In Benozzo et al. (2016), such solution, named cell-based
classification, has shown equivalent results with the one described
in this paper, at the cost of requiring the training of multiple
classifiers. A second scalability issue lies in the construction of
the feature space: the number of causality scenarios described
in Table 1 grows exponentially with the number of nodes,
without considering the feature engineering step described in
section 2.5. The only solution that we foresee is to approximate
the causality detection problem by reducing the number of
causality scenarios to a small subset of them, for example
considering no more than the trivariate case. Furthermore, a
simple way to avoid the substantial increase in the number of
features due to feature engineering, is to completely avoid feature
engineering and to directly rely on non-linear classification
algorithms. Clearly, all these solutions come at a cost and trade-
offs. In future, we plan to conduct experiments on all these
aspects.

A further limitation of the current study is the observational
assumption, typical of many frameworks of causality like the
Granger one. Under such assumption only observed nodes are
considered when modeling causality. Clearly, not considering
non-observed nodes reduces the accuracy of detecting the
causality pattern. In future, we plan to consider other causality
frameworks, that can model interventional data and deal with
confounding variables, possibly leading to a more accurate
detection.

Despite the issues to be solved to scale-up these methods to
a larger number of nodes, being able to practically and robustly
evaluate causality between a handful of nodes could be already
of great utility in current systems neuroscience. For example,
it would allow to study information processing within several
important stations of the visual system or of other sensory

modalities (Wang and Burkhalter, 2007; DiCarlo et al., 2012;
Tafazoli et al., 2017).

4.3. Conclusions
In this work we proposed a novel extension of an established
neural network model, aimed at designing interactions among
neuronal circuits. We proved that timeseries of LFPs generated
from such model do follow the univariate, bivariate or trivariate
causality structure designed between the circuits, as defined by
Granger causality measures.

Unfortunately, there are no available solutions to invert
this model, in order to infer the pattern of causality between
timeseries from experimental data. For this reason, as a
second main contribution, we present a supervised causality
detection method that we previously introduced and applied
to MAR models. Here, we show that the proposed method
can very effectively adapt to the proposed neural network
model and can estimate the pattern of causality between
timeseries, vastly better than the commonly adopted GCA.
For example, as shown in Figure 5, when setting the rate
of false positives (FPR) to 10%, the supervised method
correctly detects causality in 3 over 4 cases (TPR = 75%),
while GCA only in less than 2 over 3 cases (TPR =

62%).
In future, as discussed above, we plan to investigate the

detection of causality in multivariate timeseries from systems
with more than three neuronal circuits. There, the challenge
is to effectively address the super-exponential growth in the
number of causality configurations with the number of circuits.
A second interesting direction of research is improving the
accuracy of the classification step, for example by using non-
linear classification algorithms instead of the adopted (linear)
Logistic Regression classifier.
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