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The interplay of reinforcement learning and memory is at the core of several recent neural

network models, such as the Attention-Gated MEmory Tagging (AuGMEnT) model. While

successful at various animal learning tasks, we find that the AuGMEnT network is unable

to cope with some hierarchical tasks, where higher-level stimuli have to be maintained

over a long time, while lower-level stimuli need to be remembered and forgotten over

a shorter timescale. To overcome this limitation, we introduce a hybrid AuGMEnT, with

leaky (or short-timescale) and non-leaky (or long-timescale) memory units, that allows

the exchange of low-level information while maintaining high-level one. We test the

performance of the hybrid AuGMEnT network on two cognitive reference tasks, sequence

prediction and 12AX.

Keywords: reinforcement learning, memory, attention, synaptic plasticity, eligibility trace, synaptic tagging

1. INTRODUCTION

Memory spans various timescales and plays a crucial role in human and animal learning (Tetzlaff
et al., 2012). In cognitive neuroscience, the memory system that enables manipulation and storage
of information over a period of a few seconds is called Working Memory (WM), and is correlated
with activity in prefrontal cortex (PFC) and basal ganglia (BG) (Mink, 1996; Frank et al., 2001).
In computational neuroscience, there are not only several standalone models of WM dynamics
(Samsonovich and McNaughton, 1997; Compte et al., 2000; Barak and Tsodyks, 2014), but also
supervised and reinforcement learningmodels augmented by workingmemory (Graves et al., 2014,
2016; Alexander and Brown, 2015; Rombouts et al., 2015; Santoro et al., 2016).

Memory mechanisms can be implemented by enriching a subset of artificial neurons with slow
time constants and gating mechanisms (Hochreiter and Schmidhuber, 1997; Gers et al., 2000;
Cho et al., 2014). More recent memory-augmented neural network models like the Neural Turing
Machine (Graves et al., 2014) and the Differentiable Neural Computer (Graves et al., 2016), employ
an addressablememorymatrix that works as a repository of past experiences and a neural controller
that is able to store and retrieve information from the external memory to improve its learning
performance.

Here, we study and extend the Attention-Gated MEmory Tagging model or AuGMEnT

(Rombouts et al., 2015). AuGMEnT is trained with a Reinforcement Learning (RL) scheme, where
learning is based on a reward signal that is received after each action selection. The representation
of stimuli is accumulated in the memory states and the memory is reset at the end of each trial

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2018.00050
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2018.00050&domain=pdf&date_stamp=2018-07-12
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:marco.martinolli@polimi.it
mailto:agilra@uni-bonn.de
https://doi.org/10.3389/fncom.2018.00050
https://www.frontiersin.org/articles/10.3389/fncom.2018.00050/full
http://loop.frontiersin.org/people/551059/overview
http://loop.frontiersin.org/people/2298/overview
http://loop.frontiersin.org/people/42206/overview


Martinolli et al. Hybrid AuGMEnT

(see Methods). The main advantage of the AuGMEnT network
for the computational neuroscience community resides in the
biological plausibility of its learning algorithm.

Notably, the AuGMEnT network uses a memory-augmented
version of a biologically plausible learning rule (Roelfsema and
van Ooyen, 2005) mimicking backpropagation (BP). Learning is
the result of the joint action of two factors, neuromodulation
and attentional feedback, both influencing synaptic plasticity.
The former is a global reward-related signal that is released
homogeneously across the network to inform each synapse of
the reward prediction error after response selection (Schultz
et al., 1993, 1997; Waelti et al., 2001). Neuromodulators such
as dopamine influence synaptic plasticity (Yagishita et al., 2014;
Brzosko et al., 2015, 2017; He et al., 2015; Frémaux and Gerstner,
2016). The novelty of AuGMEnT compared to three-factor rules
(Xie and Seung, 2004; Legenstein et al., 2008; Vasilaki et al., 2009;
Frémaux and Gerstner, 2016) is to add an attentional feedback
system in order to keep track of the synaptic connections that
cooperated for the selection of the winning action and overcome
the so-called structural credit assignment problem (Roelfsema
and van Ooyen, 2005; Rombouts et al., 2015). AuGMEnT includes
a memory system, where units accumulate activity across several
stimuli in order to solve temporal credit assignment tasks
involving delayed reward delivery (Sutton, 1984; Okano et al.,
2000). The attentional feedback mechanism in AuGMEnT works
with: (a) synaptic eligibility traces that decay slowly over time,
and (b) non-decaying neuronal traces that store the history
of stimuli presented to the network up to the current time
(Rombouts et al., 2015). The AuGMEnT network solves the
Saccade-AntiSaccade task (Rombouts et al., 2015), which is
equivalent to a temporal XOR task (Abbott et al., 2016) (see
Supplementary Material A).

However, in the case of more complex tasks with long trials
and multiple stimuli, like 12AX (O’Reilly and Frank, 2006)
depicted in Figure 1A and explained in detail in section 3.2, we
find that the accumulation of information in AuGMEnT leads
to a loss in performance. Hence, we ask the question whether a
modified AuGMEnT model would lead to a broader applicability
of attention-gated reinforcement learning. We propose a variant
of the AuGMEnT network, named hybrid AuGMEnT, that
introduces a range of timescales of forgetting or leakage in the
memory dynamics to overcome this kind of learning limitation.
We employ memory units with different decay constants so that
they work on different temporal scales, while the network learns
to weight their usage based on the requirements of the specific
task. In our simulations, we employed just two subgroups of cells
in the memory, where one half of the memory is non-leaky and
the other is leaky with a uniform decay time constant; however,
more generally, the hybrid AuGMEnT architecture may contain
several subgroups with distinct leakage behaviors.

The paper is structured as follows. Section 2 presents the
architectural and mathematical details of hybrid AuGMEnT.
Section 3 describes the simulation results of the hybrid AuGMEnT
network, the standard AuGMEnT network and a fully leaky
control network, on two cognitive tasks, a non-hierarchical task
involving sequence prediction (Cui et al., 2015) and a hierarchical
task 12AX (O’Reilly and Frank, 2006). Finally, in section 4 we

discuss our main achievements in comparison with state-of-
the-art models and present possible future developments of the
work.

2. METHODS

2.1. Hybrid AuGMEnT: Network Architecture
and Operation
The network controls an agent which, in each time step t, receives
a reward in response to the previous action, processes the next
stimulus, and takes the next action (Figure 1B). In each time
step, we distinguish two phases, called the feedforward pass and
feedback pass (Figure 1C).

2.1.1. Feedforward Pass: Stimulus to Action Selection
In AuGMEnT (Rombouts et al., 2015), information is processed
through a network with three layers, as shown in the left panel
of Figure 1C. Each unit of the output layer corresponds to an
action. There are two pathways into the output layer: the regular
R branch and the memoryM branch.

The regular branch is a standard feedforward network with
one hidden layer. The current stimulus sRi (t), indexed by unit
index i = 1, . . . , S is connected to the hidden units (called regular
units) indexed by j, via a set of modifiable synaptic weights vRji
yielding activity yRj :

yRj (t) = σ

(

hRj

)

, hRj =
∑

i

vRji s
R
i (t), (1)

where σ is the sigmoidal function σ (x) = (1+exp(−x))−1. Input
units are one-hot binary with values Si ∈ {0, 1} (equal to 1 if
stimulus i is currently presented, 0 otherwise).

The memory branch is driven by transitions between stimuli,
instead of the stimuli themselves. The sensory input of the
memory branch consists of a set of 2S transient units, i.e., S ON
units s+

l
∈ {0, 1}, l = 1, 2, ..., S, that encode the onset of each

stimulus, and S OFF units s−
l
∈ {0, 1} that encode the offset:

s+
l
(t) = [sl(t)− sl(t − 1)]+

s−
l
(t) = [sl(t − 1)− sl(t)]+,

(2)

where the brackets signify rectification. In the following, we
denote the input into the memory branch with a variable sMi
defined as the concatenation of these ON and OFF units:

sMi (t) =

{

s+i (t), if i ≤ S

s−i−S(t), if i > S,
(3)

The memory units in the next layer have to maintain task-
relevant information through time. The transient input is
transmitted via the synaptic connections vMji to the memory layer,

where it is accumulated in the states:

hMj (t) = ϕjh
M
j (t − 1)+

∑

i

vMji s
M
i (t). (4)
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FIGURE 1 | Overview of AuGMEnT network operation. (A) Example of trials in the 12AX task. Task symbols appear sequentially on a screen organized in outer loops,

which start with a digit, either 1 or 2, followed by a random number of letter pairs (e.g., B-Y, C-X and A-X). On the presentation of each symbol, the agent must

choose a Target (R) or Non-Target (L) response. If the chosen and correct responses match, the agent receives a positive reward (+), otherwise it gets a negative

reward (−). Figure is adapted from Figure 1 of O’Reilly and Frank (2006). (B) AuGMEnT operates in discrete time steps each comprising the reception of reward (r),

input of state or stimulus (s) and action taken (a). It implements the State-Action-Reward-State-Action (SARSA, in figure s’a’rsa) reinforcement learning algorithm

(Sutton and Barto, 2018). In time step t, reward r is obtained for the previous action a’ taken in time step t− 1. The network weights are updated once the next action

a is chosen. (C) The AuGMEnT network is structured in three layers with different types of units. Each iteration of the learning process consists of a feedforward pass

(left) and a feedback pass (right). In the feedforward pass (black lines and text), sensory information about the current stimulus in the bottom layer, is fed to regular

units without memory (left branch) and units with memory (right branch) in the middle layer, whose activities in turn are weighted to compute the Q-values in the top

layer. Based on the Q-values, the current action is selected (e.g., red z2). The reward obtained for the previous action is used to compute the TD error δ (green), which

modifies the connection weights, that contributed to the selection of the previous action, in proportion to their eligibility traces (green lines and text). After this,

temporal eligibility traces, synaptic traces and tags (in green) on the connections are updated to reflect the correlations between the current pre and post activities.

Then, in the feedback pass, spatial eligibility traces (in red) are updated, attention-gated by the current action (e.g., red z2), via feedback weights.

We introduce the factor ϕj ∈ [0, 1] here, as an extension to
the standard AuGMEnT (Rombouts et al., 2015), to incorporate
decay of the memory state hMj over time. Setting ϕj ≡ 1 for

all j, we obtain non-leaky memory dynamics as in the original
AuGMEnT network (Rombouts et al., 2015) (Figure 2, left panel).
In our hybrid AuGMEnT network, each memory cell or subgroup
of memory cells may be assigned different leak co-efficients ϕj

(Figure 2, right panel). In this way, the memory is composed of
subpopulations of neurons that cooperate in different ways to

solve a task, allowing at the same time long-time maintenance
and fast decay of information inmemory. In contrast to the forget
gate of Long Short-TermMemory (Hochreiter and Schmidhuber,
1997) or Gated Recurrent Unit (Cho et al., 2014), our memory
leak co-efficient is not trained and gated, but fixed.

Thememory state hMj leads to the activation of a memory unit:

yMj (t) = σ

(

hMj (t)
)

. (5)
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FIGURE 2 | Architectures of standard AuGMEnT and hybrid AuGMEnT networks. The difference between the networks consist in their memory dynamics: the memory

layer of standard AuGMEnT (left) has only conservative units with ϕj ≡ 1, while hybrid AuGMEnT (right) possesses a memory composed of both leaky ϕj < 1 and

non-leaky ϕj = 1 units.

The states of the memory units are reset to 0 at the end of each
trial.

Both branches converge onto the output layer. The activity of
an output unit with index k approximates the Q-value of action
a = k given the input s ≡ [si], denoted as Qs,a(t). Q-values
are formally defined as the future expected discounted reward
conditioned on stimulus s(t) and action a(t):

Qs,a(t) = E

[

∞
∑

τ = 0

γ τ rt+τ+1

∣

∣

∣

∣

s = s(t), a = a(t)

]

, (6)

where γ ∈ [0, 1] is a discount factor. Numerically, the vector Q
that approximates theQ-values is obtained by combining linearly
the hidden states from the regular and the memory branches,
with synaptic weights wR

kj
and wM

kj
:

Qk(t) =
∑

j

wR
kjy

R
j (t)+

∑

j

wM
kj y

M
j (t). (7)

Finally, the Q-values of the different actions participate in an
ǫ-greedy winner-take-all competition (Rombouts et al., 2015) to
select the response of the network. With probability 1 − ǫ, the
next action a(t) is the one with the maximal Q-value:

a(t) = argmaxkQk(t). (8)

With probability ǫ, a stochastic policy is chosen with probability
to take action a given by:

pa =
exp(g(t)Qa)

∑

k exp(g(t)Qk)
(9)

where g(t) is a weight function defined as g(t) = 1+m
π
arctan( t

t∗ ),
that gradually increases in time with respect to a task-specific,
fixed time scale t∗ and a scaling factor m. This action selection
policy is the same as that used in the original AuGMEnT
(Rombouts et al., 2015), except for the weight function g(t) that
we introduced, since over time this emphasizes the action with
maximal Q-value, improving prediction stability. The time scale
parameter t∗ and the m factor were manually tuned to optimize
convergence time. The choice of the action selection policy
and these parameters is further discussed in Supplementary
Material B.

2.1.2. After Feedforward Pass: Reward-Based

Update of Weights, and Correlation-Based Update of

Eligibility Traces, Synaptic Traces, and Tags
AuGMEnT follows the SARSA updating scheme and updates the
Q-values for the previous action a′ taken at time t − 1, once the
action a at time t is known (see Figure 1B). Q-values depend on
the weights via Equation (7). The temporal difference (TD) error
is defined as (Wiering and Schmidhuber, 1998; Sutton and Barto,
2018):

δ(t) =
(

r(t)+ γQa(t)
)

− Qa′ (t − 1), (10)

where a is the action chosen at current time t, and r(t) is the
reward obtained for the action a′ taken at time t−1. The TD error
δ(t) acts as a global reinforcement signal to modify the weights of
all connections as

vR,Mji (t + 1) = vR,Mji (t)+ βeR,Mji (t)δ(t),

wR,M
kj

(t + 1) = wR,M
kj

(t)+ βeR,M
kj

(t)δ(t),
(11)
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where β is a learning rate and eR,Mji and eR,M
kj

are synaptic

eligibility traces, defined below; see Figure 1C. Superscript R or
M denotes the regular or memory branch respectively. We use
the same symbol eR,M for eligibility traces at the input-to-hidden
(i to j) and hidden-to-output (j to k) synapses, even though these
are different, with the appropriate one clear from context and the
convention for indices.

After the update of weights, a synapse from neuron j in the
hidden layer to neuron k in the output layer updates its temporal
eligibility trace

eRkj(t + 1) = yRj (t)zk(t)+ (1− α)eRkj(t),

eMkj (t + 1) = yMj (t)zk(t)+ (1− α)eMkj (t),
(12)

where α ∈ [0, 1] is a decay parameter, zk is a binary one-hot
variable that indicates the winning action (equal to 1 if action k
has been selected, 0 otherwise).

Similarly, a synapse from neuron i in the input layer to neuron
j in the hidden layer sets momentary tags TR,M

ji as:

TR
ji (t) = sRi (t) σ

′(hRj (t)),

TM
ji (t) = XM

ji (t) σ
′(hMj (t)),

(13)

where σ ′(hR,Mj ) is a non-linear function of the input potential,

defined as the derivative of the gain function σ , and XM
ji is a

synaptic trace (Pfister and Gerstner, 2006; Morrison et al., 2008)
defined as follows:

XM
ji (t) = ϕj X

M
ji (t − 1)+ sMi (t). (14)

Note that the tag TR,M
ji has no memory beyond one time step, i.e.,

it is set anew at each time step. Nevertheless, since XM
ji depends

on previous times, the tag TM
ji of memory units can link across

time steps. Since activities yR,Mj , zk, s
R,M
i and input potentials hR,Mj

are quantities available at the synapse, a biological synapse can
implement the updates of eligibility traces and tags locally. We
emphasize that both eligibility traces and tags can be interpreted
as ’Hebbian’ correlation detectors.

In the original AuGMEnT model (Rombouts et al., 2015),
all eligibility traces and tags were said to be updated in the
feedback pass. Here, without changing the algorithm itself, we
have conceptually shifted the update of those traces and tags
that depend on the correlations of the activities, to the last
step of the feedforward pass. Just as in a standard feedforward
network with backpropagation of error, we rely on activities
during the feedforward pass to calculate the output; therefore the
algorithmic update of the weights (Roelfsema and van Ooyen,
2005; Rombouts et al., 2015) has to also rely on these feedforward
activities. During the feedback pass activities of the same neurons
could in principle change due to attentional gating (Moore and
Armstrong, 2003; Roelfsema et al., 2010) or other feedback input.
Since feedback input influences the neuronal state (Larkum et al.,
1999; Larkum, 2013; Urbanczik and Senn, 2014) the activities
in this second phase are different and do not carry the same

information as in the feedforward phase. Thus, to increase
consistency between biology and algorithm, we evaluate the
correlations in the feedforward phase. An alternative could be to
use multicompartmental neurons together with the assumption
that feedback input arrives at distal dendrites that are only
weakly coupled to proximal dendrites where most feedforward
inputs arrive (Guerguiev et al., 2017) so that the state of the
compartment where feedforward input arrives is only marginally
influenced by feedback.

2.1.3. Feedback Pass: Attention-Gated Update of

Eligibility Traces
After action selection and the updates of weights, tags, and
temporal eligibility traces in the feedforward pass, the synapses
that contributed to the currently selected action update their
spatial eligibility traces in an attentional feedback step. For the
synapses from the input to the hidden layer, the tag TR,M

ji from

Equation (13) is combined with a spatial eligibility
∑

k w
′R,M
jk zk

which can be interpreted as an attentional feedback signal
(Rombouts et al., 2015).

eRji (t + 1) = TR
ji

∑

k

w′R
jkzk + (1− α)eRji (t),

eMji (t + 1) = TM
ji

∑

k

w′M
jk zk + (1− α)eMji (t),

(15)

where feedback weights from the output layer to the hidden
layer have been denoted as w′

jk
and zk ∈ {0, 1} is the

value of output unit k [one-hot response vector as defined for
Equation (12)].

It must be noted that the feedback synapses w′R,M
jk follow the

same update rule as their feedforward partner wR,M
kj

. Therefore,

even if the initializations of the feedforward and feedback weights
are different, their strengths become similar during learning.

2.2. Deriving the Learning Rule Via
Gradient Descent
For networks with one hidden layer and one-hot coding in the
output, attentional feedback is equivalent to backpropagation
(Roelfsema and van Ooyen, 2005; Rombouts et al., 2015).
Moreover, we now show that the equations for eligibility traces,
synaptic traces, and tags, along with the weight update equations
reduce a TD-error-based loss function E:

E =
1

2

(

δ(t)
)2
, (16)

even in the presence of a decay factor ϕ < 1. Here, we specifically
discuss the case of the tagging Equations (13) and (15) and the
update rule (11) associated with the weight vMji from sensory

input into memory, as these equations contain the memory decay
factor ϕj. Analogous update rules for weights vRji , w

M
kj

and wR
kj
,

in the hybrid AuGMEnT model are identical to existing results
(Rombouts et al., 2015), and are omitted here.
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Proof: We want to show that

1vMji = β eMji δt ∝ −
∂E

∂vMji
(17)

For simplicity, here we prove (17) for full temporal decay of
the eligibility trace eMji i.e., α = 1, corresponding to TD(0) as

α = 1− γ λ, so that

eMji = TM
ji

∑

k

w
′M
jk zk = TM

ji w
′M
ja′

where a′ is the selected action at time t − 1. The novel aspect of
the proof is the presence of a memory decay factor ϕj.

We first observe that the right-hand side of Equation (17) can
be rewritten as:

−
∂E

∂vMji
= −

∂E

∂Qa′

∂Qa′

∂vMji
= δt

∂Qa′

∂vMji

Thus, it remains to show that
∂Qa′

∂vMji
= eMji .

Similarly to the approach used in backpropagation, we now
apply the chain rule and we focus on each term separately:

∂Qa′

∂vMji
=

∂Qa′

∂yMj

∂yMj

∂hMj

∂hMj

∂vMji

From Equations (5) and (7), we immediately have that:

∂yMj

∂hMj
= σ ′(hMj )

∂Qa′

∂yMj
= wM

a′j

We note that, in the feedback step the weight wM
a′j is replaced

by its feedback counterpart w′M
ja′ . As discussed above, this is a

valid approximation because feedforward and feedback weights
become similar during learning.

Finally, for the term ∂hMj /∂vMji starting from Equation (4) we
can write:

hMj (t) =
∑

i

vMji (t) s
M
i (t)+

t−1
∑

τ = t0

∑

i

ϕt−τ
j vMji (τ ) s

M
i (τ )

≈
∑

i

vMji (t)

t
∑

τ = t0

ϕt−τ
j sMi (τ )

where t0 indicates the starting time of the trial and last
approximation derives from the assumption of slow learning
dynamics, i.e., vMij (τ ) = vMij (t) for t0 ≤ τ < t. As a consequence,

we have:

∂hMj (t − 1)

∂vMji (t − 1)
≈

t−1
∑

τ = t0

ϕt−τ+1
j sMi (τ ) = XM

ji (t − 1)

In conclusion, we combine the different terms and we obtain the
desired result:

1vMji ∝ δt X
M
ji σ ′(hMj )w

′M
ja′ = δt T

M
ji w

′M
ja′ = δt e

M
ji .

Thus, if the decay factor ϕj of the synaptic trace X
M
ji in Equation

(14) matches the decay factor of the memory unit in Equation
(4), then the update rule for eligibility traces, synaptic traces
and tags, and weights leads to a reduction of the TD error.
However, instead of matching the two ϕ-s, we could merely use a
unique decay factor in the input without affecting the biological
plausibility of the algorithm (see Supplementary Material C).
Nevertheless, we maintained the original formulation for sake of
comparison with the reference AuGMEnT network.

2.3. Simulation and Tasks
All simulation scripts were written in python (https://www.
python.org), with plots rendered using the matplotlib module
(http://matplotlib.org). These simulation and plotting scripts
are available online at https://github.com/martin592/hybrid_
AuGMEnT.

We used the parameters listed in Table 1 for our simulations.
Further, for the Hybrid AuGMEnT network, we set ϕj = 1 for the
first half of the memory cells and ϕj = 0.7 for the second half. To
compare with the standard AuGMEnT network (Rombouts et al.,
2015), we set ϕj ≡ 1 for all j, while for a leaky control network
we set ϕj ≡ 0.7 for all j. In general, the leak co-efficients can be
tuned to adapt the overall memory dynamics to the specific task
at hand, but we did not optimize the parameter ϕ.

3. RESULTS

AuGMEnT (Rombouts et al., 2015) includes a differentiable
memory system and is trained in an RL framework with learning
rules based on the joint effect of synaptic tagging, attentional
feedback and neuromodulation (see Methods). Here, we study
our variant of AuGMEnT, named hybrid AuGMEnT, that has an
additional leak factor in a subset of memory units, and compare
it to the original AuGMEnT as well as to a control network with
uniform leaky memory units.

As a first step, we validated our implementations of standard
and hybrid AuGMEnT networks on the Saccade-AntiSaccade (S-
AS) task, used in the reference paper (Rombouts et al., 2015)
(Supplementary Material D). We next simulated the networks on
two other cognitive tasks with different structure and memory
demands: the sequence prediction task (Cui et al., 2015) and
the 12AX task (O’Reilly and Frank, 2006). In the former, the

TABLE 1 | Parameters for the AuGMEnT network.

Parameter Value

β : Learning parameter 0.15

λ : Eligibility persistence 0.15

γ : Discount factor 0.9

α : Eligibility decay rate 1− γ λ

ǫ : Exploration rate 0.025

t∗ : Softmax time scale 2000 trials

m : Softmax scaling factor 10

Test dataset consists of 1, 000 random sequences, while averages are computed over
100 simulations.
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agent has to predict the final letter of a sequence depending
only on its starting letter, while in the latter, the agent has to
identify target pairs inside a sequence of hierarchical symbols.
The S-AS task maps to a temporal XOR task (Abbott et al.,
2016); thus the hidden layer is essential for the task (Minsky and
Papert, 1969; Rumelhart et al., 1985). The 12AX also resembles
an XOR structure, but is more complex due to an additional
dimension and distractors in the inner loop (Figure S1). The
complexity of the sequence prediction task is less compared to
the 12AX task, and can be effectively solved by AuGMEnT. We
will show that hybrid AuGMEnT performs well on both cognitive
tasks, whereas standard AuGMEnT fails on the 12AX task. The
parameters involving the architecture of the networks on each
task are reported in Table 2. We now discuss each of the tasks
in more detail.

3.1. Task 1: Sequence Prediction
In the sequence prediction task (Cui et al., 2015), letters appear
sequentially on a screen and at the end of each trial the agent
has to correctly predict the last letter. Each sequence starts either
with an A or with an X, which is followed by a fixed sequence
of letters (e.g., B-C-D-E). The trial ends with the prediction of
the final letter, which depends on the initial cue: if the sequence
started with A, then the final letter has to be a Z; if the initial cue
was an X, then the final letter has to be a Y. In case of correct
prediction the agent receives a reward of 1 unit, otherwise it is
punished with a negative reward of −1. A scheme of the task is
presented in Figure 3 for sequences of four letters.

The network has to learn the task for a given sequence length,
kept fixed throughout training. The agent must learn to maintain
the initial cue of the sequence in memory until the end of the
trial, to solve the task. At the same time, the agent has to learn

TABLE 2 | Network architecture parameters for the simulations.

Network parameter Sequence prediction task 12AX task

(L = sequence length)

S : Number of sensory units L− 1 8

R : Number of regular units 3 10

M : Number of memory units 8 20

A : Number of activity units 2 2

FIGURE 3 | Scheme of the sequence prediction task. Scheme of sequence

prediction trials with sequence length equal to 4 (i.e., 2 distractors): the two

possible sequences are: A-B-C-Z (blue) or X-B-C-Y (red) .

to neglect the information coming from the intermediate cues
(called distractors). Thus the difficulty of the task is correlated
with the length of the sequence.

We studied the performance of the AuGMEnT network
(Rombouts et al., 2015) and our hybrid variant on the sequence
prediction task. The mean trend of the TD loss function defined
in Equation (16) (Figure 4A) shows that bothmodels converge in
a few hundred iterations. As a control, we also simulated a variant
in which all memory units were leaky. We observed that hybrid
and standard AuGMEnT networks are more efficient than the
purely leaky control. This is not surprising because the key point
in the sequence prediction task consists in maintaining the initial
stimulus in memory—which is simpler with non-leaky memory
units than with leaky ones. We notice that the hybrid model has
a behavior similar to AuGMEnT.

We also analyzed the effect of the temporal length of
the sequences on the network performance, by varying the
number of distractors (i.e., the intermediate letters) per sequence
(Figure 4B). For each sequence length, the network was retrained
ab initio. We required 100 consecutive correct predictions as the
criterion for convergence. We ran 100 simulations starting with
different initializations for each sequence length and averaged
the convergence time. Again, AuGMEnT and Hybrid AuGMEnT
show good learning performance, maintaining an average of
about 250 trials to convergence for sequences containing up to
10 distractors, whereas a network with purely leaky units is much
slower to converge.

The leaky dynamics are not helpful for the sequence
prediction task, because the intermediate cues are not relevant
for the final model performance. Therefore, we expect the
learning rule to suppress the weight values in the VM matrix for
distractors, and increase those of the initial A/X letter. This is
confirmed by the structure of the weight matrix from transient
units to memory units shown after convergence (Figure 5),
in simulations of the sequence prediction task on sequences
with D = 3 or D = 8 distractors. The weight values are
highest in absolute value for connections from transient units
representing letters A and X, for both the ON (+) and OFF
(−) type. We emphasize that Hybrid AuGMEnT employs mainly
the conservative (non-leaky) memory units (M1-C and M2-C)
rather than the leaky ones (M1-L and M2-L) to solve the
task, showing that the learning rule is able to focus updates
on the connections that are most relevant for the specific
task.

To confirm the better performance of the network using
conservative units over leaky ones, we tested the networks on
a modified task never seen during training. Specifically, the
test sequences were one letter longer than training sequences
and the distractors were not anymore in alphabetical order
but were sampled uniformly. For instance, if the network was
trained with distractors B-C-D-E, the test sequences may be
A-C-D-C-B-E or X-D-B-B-B-E (the last letter remains fixed
because it is the go signal for the network). In this way, the
network experiences different forms of sequence alterations (e.g.,
prolongation, inversion and skipping of distractors) and we
can test how the network generalizes on new versions of the
problems.
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FIGURE 4 | Convergence in the sequence prediction task. (A) Time course of error of the models on the sequence prediction task with sequences of five letters (three

distractors): the mean squared TD error decays to zero for all networks, but the leaky control network (blue) is much slower than AuGMEnT (green) and Hybrid

AuGMEnT (red). (B) Convergence time of the AuGMEnT network and its variants on the sequence prediction task with increasing number D of distractors, i.e.,

intermediate cues before final prediction.

Different versions of AuGMEnT are compared in the test
phase by observing the mean prediction accuracy over 1, 000 test
sequences (Table 3). The results show again that leaky dynamics
penalize the performance on the sequence prediction task; in
fact, when AuGMEnT includes conservative units (either totally
or partially) the mean percentage of correct predictions is higher
than 98%, otherwise the accuracy drops down to 85.8% in case
of purely leaky control. However, if training is long enough to
emphasize more the initial information also on leaky units, then
the final test performance improves notably in both cases and the
accuracy gap is greatly reduced (100% vs. 99.4%).

3.2. Task 2: 12AX
The 12AX task is a standard cognitive task used to test working
memory and diagnose behavioral and cognitive deficits related
to memory dysfunctions (O’Reilly and Frank, 2006; Alexander
and Brown, 2015). The task involves identifying some target
sequences among a group of symbols that appear on a screen.

The general procedure of the task is schematized in Figure 1A

and details involving the construction of the 12AX dataset are
collected in Table 4. The set of possible stimuli consists of 8
symbols: two digit cues (1 and 2), two context cues (A and
B), two target cues (X and Y), and two additional distractors,
a context distractor C and a distractor target Z. Each trial (or
outer loop) starts with a digit cue and is followed by a random
number of context-target pairs, such as A-X, B-X or B-Y. The
cues are presented one by one on a screen and the agent has
two possible actions for each of them: Target (R) and Non-
Target (L). There are only two valid Target cases: in trials that
start with digit 1, the Target is associated with the target cue
X if preceded by context A (1-. . . -A-X); otherwise, in case of
initial digit 2, the Target occurs if the target cue Y comes
after context B (2-. . . -B-Y). The dots are inserted to stress that
the target pair can occur a long time after the digit cue, as
happens in the following example sequence: 1-A-Z-B-Y-C-X-A-
X (whose sequence of correct responses is L-L-L-L-L-L-L-L-
R). The variability in the temporal length of each trial is the

main challenge in solving the 12AX task. Moreover, since 1-A-
X and 2-B-Y are target sequences, whereas 2-A-X and 1-B-Y are
not, the task can be seen as a generalization of temporal XOR
(Figure S1).

The inserted pairs are determined randomly, with a
probability of 50% to have pairsA-X or B-Y. As a result, combined
with the probability to have either 1 or 2 as starting digit of the
trial, the overall probability to have a target pair is 25%. Since
the Target response R has to be associated only with an X or
Y stimulus that appears in the correct sequence, the number of
Non-Targets L is generally much larger, on average 8.96 Non-
Targets to 1 Target. We rewarded the correct predictions of
a Non-Target with 0.1 and of Targets with 1, and punished
wrong predictions with a reward of −1. In effect, we balanced
the positive reward approximately equally between Targets and
Non-Targets based on their relative frequencies, which aids
convergence.

We simulated the Hybrid AuGMEnT network, as well as
the standard AuGMEnT and the leaky control on the 12AX
task, in order to see whether in this case the introduction of
the leaky dynamics improves learning performance. Figure 6A
shows the evolution of the mean squared TD error for the
three networks. After a sharp descent, all networks converge
to an error level that is non-zero, in part from ongoing action
exploration and remaining part from inability to learn possibly
due to memory interference. Here, hybrid AuGMEnT and leaky
control saturate at a lower error value than base AuGMEnT. This
difference can be attributed mainly to the errors in responding
to the Target cues (Figure 6B), whereas Non-Target cues are
well learned (Figure 6C). Note that, since a response is required
at each step in the 12AX task, the error is also computed
at each iteration—including for the more frequent and trivial
Non-Target predictions—and averaged over 2,000 consecutive
predictions. All networks quickly learn to recognize the Non-
Target cues (1, 2, A, B, C, Z are always Non-Targets) (Figure 6C).
However, hybrid AuGMEnT and leaky control learn the more
complex identification of Target patterns within a trial when X
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FIGURE 5 | Memory weights of AuGMEnT networks in sequence prediction task for D = 3 and D = 8 distractors. Memory weight matrices (from transient units to

memory units) after convergence in a representative simulation, for AuGMEnT (left) and Hybrid AuGMEnT (right) networks, on the sequence prediction task with

sequences of length five (first row) and 10 (second row). Note that the first two memory units in Hybrid AuGMEnT are leaky (M1-L and M2-L), while the last ones are

conservative (M1-C and M2-C). The size of each rectangle is a linear transformation of the absolute value of the weight, while the color indicates the sign (red: positive

value, blue: negative value). Above: Min value = 0.01, Max value = 1.37. Below: Min value = 0.01, Max value = 1.49.

or Y are presented to the network, better than base AuGMEnT
(Figure 6B). The gap in the mean squared TD error between
hybrid AuGMEnT and leaky control versus standard AuGMEnT is

wider when only potential Target cues are considered in the mean
squared TD error as in Figure 6B, than when only Non-Targets
are considered as in Figure 6C.
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TABLE 3 | Statistics of different versions of AuGMEnT networks tested on

untrained longer-length sequences in the sequence prediction task.

Network Mean test accuracy

After convergence (%) After 10, 000 training

sequences (%)

Standard AuGMEnT 98.1 100

Purely Leaky Control 85.8 99.4

Hybrid AuGMEnT 98.3 100

Test dataset consists of 1,000 random sequences, while averages are computed over
100 simulations. The test performance is evaluated both after convergence (i.e., after few
hundreds of training sequences) and after training on 10,000 trials.

With the convergence criterion of 1,000 consecutive correct
predictions (corresponding to ~167 trials) (Alexander and
Brown, 2015), standard AuGMEnT network was unable to
converge (0% success), over 1,000,000 trials, in any of 100
simulations (Figure 7). However, hybrid AuGMEnT and leaky
control reached 100% convergence (Figure 7), suggesting that
leaky memory units are necessary for the 12AX task. The leaky
control needs roughly the same time (learning time mean =

30,032.2 trials and s.d. = 11,408.9 trials) to reach convergence
criterion as hybrid AuGMEnT (learning time mean = 34,263.6
trials and s.d. = 12,737.3 trials). In line with standard AuGMEnT
(Rombouts et al., 2015), the memory was reset after every
trial (here every outer loop), and hence the networks were
not required to learn digit context switches. In Supplementary
Material E, we show that leaky control and to an extent hybrid
AuGMEnT also learn to switch between digit contexts, without
needing the manual reset of memory. However, for the sake
of comparison with the original implementation of AuGMEnT
(Rombouts et al., 2015), here we default to the case with memory
reset at the end of each outer loop.

Success of learning refers to the fulfillment of the convergence
criterion (Alexander and Brown, 2015) and Figure 7 indicates
that hybrid AuGMEnT learns well enough to reach criterion
(unlike standard AuGMEnT). However, despite reaching
convergence criterion after about 30,000 trials, the network may
occasionally make mistakes even at the end of learning after
150, 000 trials, as indicated by the non-zero error in Figure 7.
Further analysis of this result shows that the remaining errors
are mainly due to our ǫ-greedy action selection policy. With
a standard ǫ-greedy policy used during a separate test phase
with fixed weights, about 94% of trials are successful (Table S2);
however, the same network with the same synaptic weights,
but a greedy policy during the test phase passes more than
98% of trials. The exact performance numbers depend on
how the exploration-exploitation trade-off is implemented (see
Supplementary Material B).

In order to understand how the hybrid memory works on the
12AX task, we analyzed the weight structure of the connectivity
matrices which belong to the memory branch of the hybrid
AuGMEnT network (Figure 8). Unlike in the sequence prediction
task, here the hybrid network employs both the leaky and the
non-leaky memory units. The highest absolute values are found

TABLE 4 | The 12AX task: table of key information.

Task feature Details

Input 8 possible stimuli: 1,2,A,B,C,X,Y,Z.

Action Non-Target (L) or Target (R).

Target sequences 1-…-A-X or 2-…-B-Y.

Probability of target sequence is 25%.

Training dataset Maximum number of training trials is 1, 000, 000.

Pairs Each trial starts with 1 or 2,

followed by a random number (between 1 and 4) of

pairs chosen from {A-X, A-Y, B-X, B-Y, C-X, C-Y, A-Z, B-Z,

C-Z}.

for the weights associated with 1(±) and 2(±) as well as X(±)
and Y(±) (e.g., on M4, M9, M17 and M20). All memory units
contribute to the definition of the activity Q-values (Figure 8,
right panel) consistent with a distributed representation.

The memory units show an opposing behavior on activation
versus on deactivation of Target cues: for instance, if X+

has strong positive weights, then X− shows negative weights
(see M14, M17 or M20). In this way, the network tries to
reduce the problems of memory interference between subsequent
pairs by subtracting from the memory during deactivation, an
amount that balances the information stored during the previous
activation, effectively erasing the memory. Further, the difference
in absolute value between activation and deactivation is higher
in the case of the leaky cells, because the deactivation at the next
iteration has to remove only a lower amount of information from
the memory due to leakage. However, for the digit cues 1 and
2, the weights for activation and deactivation have typically the
same sign in order to reinforce the digit signal in memory in two
subsequent timesteps (e.g., on M4 and M9). More importantly, we
can observe that in the leaky units, the highest weight values are
generally associated to the digit information and the other cues
are less represented, while in the conservative ones, the target
cues are also emphasized in the memory. This means that the role
of the leaky units consists mainly in the storage of the digit cue,
while the conservative ones are also responsible for the storage of
the information coming from the inner loops.

4. DISCUSSION

The conservative dynamics of thememory in standard AuGMEnT
can be a limitation for the learning ability of the model, especially
in cases of complex tasks with long trials. In fact, even though
the 12AX task is less complex compared to more recent RL
tasks (Mnih et al., 2015), the standard AuGMEnT network fails
to satisfy the convergence criterion. The introduction of the
leak factor (Equation 4) in hybrid AuGMEnT leads to a network
that solves the 12AX task. Hybrid AuGMEnT also does as well
as standard AuGMEnT on the sequence prediction task, while
the purely leaky control cannot solve this task in a reasonable
time. Thus, hybrid AuGMEnT solves both tasks combining
conservative and leaky memory units. Hybrid AuGMEnT can be
adapted to different task structures and to different temporal
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FIGURE 6 | Learning convergence of the AuGMEnT variants in the 12AX task. Minimization of the TD loss function during training on the 12AX task. (A) All networks

show a good decay of the mean squared TD error, but they seem to converge to a non-zero regime and, in particular, the base AuGMEnT network (green) maintains a

higher mean squared TD error level when compared to leaky control (blue) and Hybrid AuGMEnT (red). (B) Mean squared TD error associated with only potential Target

cues X and Y. (C) Mean squared TD error related to only Non-Target cues.

FIGURE 7 | Comparative statistics of the AuGMEnT variants on performance on the 12AX task. Barplot description of the learning behavior of the three networks on

the 12AX task according to the convergence criterion given by Alexander and Brown (2015). After 100 simulations, we measured the fraction of times that the model

satisfies the convergence condition (left) and the average number of training trials needed to meet the convergence criterion (right). Although training dataset

consists of 1,000,000 trials, the standard AuGMEnT network never manages to satisfy the convergence criterion, while the leaky (blue) and hybrid (red) models have

similar convergence performance with a learning time of about 30,000 trials.

scales by varying the size and the composition of the memory,
for example by considering multiple subpopulations of neurons
with distinct memory timescales, say in a power law distribution.

A key goal of the computational neuroscience community is
to develop neural networks that are at the same time biologically
plausible and able to learn complex tasks similar to humans.
The embedding of memory is certainly an important step in this
direction, because memory plays a central role in human learning
and decision making. Our interest in the AuGMEnT network
(Rombouts et al., 2015) derives from the biological plausibility
of its learning and memory dynamics. In particular, the
biological setting of the learning algorithm is based on synaptic
tagging, attentional feedback and neuromodulation, providing

a possible biological interpretation to backpropagation-like
methods. Hybrid AuGMEnT inherits the biological plausibility
of standard AuGMEnT. Our proposed memory mechanism is
also biologically plausible with synaptic traces decaying at the
memory time scale (in addition, see Supplementary Material C).

We have no convergence guarantees for our algorithm
and network. While on-policy TD learning methods have
convergence guarantees for fully observable Markov Decision
Processes (MDPs) (Singh et al., 2000), the 12AX task is a Partially
Observable Markov Decision Process (POMDP) (Monahan,
1982). Even though there are no theoretical convergence
guarantees for POMDPs, there is various experimental support
for solving specific POMDPs with TD learning, either using
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FIGURE 8 | Memory weights of Hybrid AuGMEnT in the 12AX task. Plot of the weight matrices in the memory branch of hybrid AuGMEnT network after convergence

in a representative simulation on the 12AX Task. The size of each rectangle is a linear transformation of the absolute value of the weight, while the color indicates the

sign (red: positive value, blue: negative value). Left: weights from the transient stimulus into the 20 memory units (half leaky, half conservative). Min value = 0.001, Max

value = 4.67. Right: weights from the memory cells into the output units. Min value = 0.01, Max value = 2.0.

eligibility traces i.e., SARSA(λ) (Loch and Singh, 1998), or
by storing observations in memory (Lin and Mitchell, 1993;
McCallum, 1993; Todd et al., 2009). The memory serves to hold
a history of observations, the right combination of which could
represent the latent states of the underlying MDP (Sutton and
Barto, 2018). Ideally, the network should learn both when and
which observations (and even actions) to store in memory.While
our memory does not have time-dependent gating, it does learn
to weight stimuli appropriately. With gated memory and an
actor-critic algorithm, the 12AX task, as well as some finite-state
grammar tasks (Cleeremans and McClelland, 1991), have been
learned (Todd et al., 2009). The recently proposed biologically-
plausible subtractive-inhibition based gating architecture (Costa
et al., 2017) could be incorporated into hybrid AuGMEnT to
possibly further enhance its task repertoire.

Even apart from the issue of POMDPs, there is the issue of
convergence of TD-learning for MDPs using a neural network
to approximate the Q-value function. Here, we have used an
on-policy method i.e., SARSA(λ), with the output layer being
linear in the weights. There are good convergence properties
for on-policy TD learning with linear (in the weights) function
approximation (Tsitsiklis and Roy, 1997; Melo et al., 2008).
In our network though, we also change the weights from the
stimuli to the hidden units, which non-linearly affect the output.
Perhaps, this can be imagined as a form of feature learning on the
stimuli, these features are then combined linearly at the output
(Sutton and Barto, 2018). Further, we showed that our network
performs stochastic gradient descent on the squared projected
TD error, projected because the network approximation might
project the true TD error onto a lower-dimensional subspace
(Sutton and Barto, 2018). Stochastic gradient descent on the

squared projected TD error has been shown to converge with
linear (Sutton et al., 2009) and non-linear (Bhatnagar et al., 2009)
function approximation. Thus, even though we neither claim
nor show convergence, there exists some partial and indirect
theoretical support for convergence in similar architectures.

We now compare hybrid AuGMEnT with other
memory-augmented networks, in order to explore different
implementations of memory dynamics and possibly take
inspiration for further developments on our network.

The Hierarchical Temporal Memory (HTM) network (Cui
et al., 2015) presents greater flexibility in sequence learning than
AuGMEnT on the simple sequence prediction task. Utilizing a
complex column-based architecture and an efficient system of
inner inhibitions, the HTM network is able to maintain a dual
neural activity, both at column level and at unit level, that
allows to have sparse representations of the input and give multi-
order predictions using an unsupervised Hebbian-like learning
rule. Thus, HTM has high sequence learning ability with the
possibility to solve a large variety of sequence tasks, like sequence
classification and anomaly detection. Nonetheless, it is unclear
how the HTM network can be applied to reward-based learning, in
particular to tasks like the 12AX, with variable number of inner
loops.

Although the hybrid memory in the AuGMEnT network
remarkably improved its convergence performance on the 12AX
task, its learning efficiency is still lower than the reference
Hierarchical Error Representation model (HER) (Alexander and
Brown, 2015, 2016). In fact, in our simulations, hybrid AuGMEnT
showed a mean convergence time of 34, 263.6 outer loops, while
the average learning time of HER on the same convergence
condition is around 750 outer loops. The main reason for this
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large gap in the learning performance resides in the gating
mechanism of HER network that is specifically developed for
hierarchical tasks and is used to decide at each iteration whether
to store the new input or maintain the previous content in
memory. Unlike HERmodel, the memory in AuGMEnT does not
include any gating mechanism, meaning that the network does
not learn when to store and recall information but the memory
dynamics are entirely developed via standard weight modulation.
On the other hand, the HERmodel is not as biologically plausible
as the AuGMEnT network, because, although its hierarchical
structure is inspired from the supposed organization of the
prefrontal cortex, its learning scheme is artificial and based on
standard backpropagation.

In addition, the recent delta-RNN network (Ororbia et al.,
2017) presents interesting similarities with hybrid AuGMEnT in
employing two timescales, maintainingmemory via interpolation
of fast and slow changing inner representations. In fact, the
approach is similar to what we proposed in hybrid AuGMEnT,
where the output of thememory branch is the linear combination
of the activity of leaky (changing) and non-leaky (non-changing)
units in the hybrid memory. The delta-RNN is a generalization of
the gating mechanisms of LSTM and GRU and likely has a better
learning ability than hybrid AuGMEnT, but it is less convincing
in terms of biological plausibility.

The lack of a memory gating system is a great limitation
for AuGMEnT variants, when compared with networks equipped
with a gated memory, like HER (Alexander and Brown, 2015,
2016) or LSTM (Hochreiter and Schmidhuber, 1997; Gers et al.,
2000), especially on complex tasks with high memory demand.
Still, even though it cannot be properly defined as a gating
system, the forgetting dynamics introduced in hybrid AuGMEnT
has an effect similar to the activity of the forget gates in LSTM

or GRU. However, unlike forget gates, the decay coefficients
are not learnable and are not input-dependent for each
memory cell.

The Hybrid AuGMEnT network could be further enhanced by
adding controls on the loading, amount of leakage, and readout
on the memory units, similar to input, forget, and output gates
in LSTM (Hochreiter and Schmidhuber, 1997; Gers et al., 2000)
and GRU (Cho et al., 2014), though only the leakage control may
be most important (van der Westhuizen and Lasenby, 2018). To
be specific, the value of each gate or control parameter could be
set by additional units of the network that serve as a controller.
In this way, the loading, leakage and output of the memory
units would become stimulus- or even history-dependent. On
the other hand, such a control system would make the network
more complex and learning of the control variables with error
backpropagation would compromise the biological plausibility
of the AuGMEnT learning dynamics. However, the recently
introduced subLSTM network uses subtractive inhibition in a
network of excitatory and inhibitory neurons as a biologically
plausible gatingmechanism (Costa et al., 2017), while biologically
plausible versions of backpropagation are also being developed
(Lillicrap et al., 2016; Guerguiev et al., 2017; Baldi et al.,
2018).

Alternatively, inspired by the hierarchical architecture of HER
(Alexander and Brown, 2015), the memory in AuGMEnT could
be divided into multiple levels each with its own memory
dynamics: each memory level could be associated with distinct
synaptic decay and leaky coefficients, learning rates, or gates,
in order to cover different temporal scales and encourage level
specialization. Compared with hybrid AuGMEnT, the memory
would be differentiated not only in the leaky dynamics, but also
in the temporal dynamics associated with attentional feedback
and synaptic potentiation. Using this hierarchical structure of
the memory requires additional modification of the network
architecture: since the input information is separated among the
memory levels, we have to introduce a system to aggregate the
information. To achieve this, we could either feed the output of
the hierarchical memory to the associative layer of the controller
branch, or we could define a read gating system that depends on
the memory content.

In the past years, the reinforcement learning community
has proposed several deep RL networks, like deep Q-networks
(Mnih et al., 2015) or the AlphaGo model (Chen, 2016), that
combine the learning advantages of deep neural networks with
reinforcement learning (Li, 2017). Thus, it may be interesting
to consider a deep version of the AuGMEnT network with
additional hidden layers of neurons. While conventional error
backpropagation in AuGMEnT may not yield plausible synaptic
plasticity rules, locality might be retained with alternative
backpropagation methods (Lillicrap et al., 2016; Guerguiev et al.,
2017; Baldi et al., 2018).
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