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Everyday human behavior relies upon extraordinary feats of coordination within the brain.

In this perspective paper, we argue that the rich temporal structure of music provides

an informative context in which to investigate how the brain coordinates its complex

activities in time, and how that coordination can be disrupted. We bring insights from

the neuroscience of musical rhythm to considerations of timing deficits in Attention

Deficit/Hyperactivity Disorder (ADHD), highlighting the significant overlap between neural

systems involved in processing musical rhythm and those implicated in ADHD. We

suggest that timing deficits warrant closer investigation since they could lead to the

identification of potentially informative phenotypes, tied to neurobiological and genetic

factors. Our novel interdisciplinary approach builds upon recent trends in both fields

of research: in the neuroscience of rhythm, an increasingly nuanced understanding

of the specific contributions of neural systems to rhythm processing, and in ADHD,

an increasing focus on differentiating phenotypes and identifying distinct etiological

pathways associated with the disorder. Finally, we consider the impact of musical

experience on rhythm processing and the potential value of musical rhythm in therapeutic

interventions.

Keywords: music, rhythm, attention deficit hyperactivity disorder, ADHD, cognitive control, motor timing,

neuroplasticity, musical expertise

INTRODUCTION

Music is pervasive across cultures and plays an important role in human interaction, development
and social bonding (Cross, 2001). The temporal structure of music is integral to its functions, and
the experience of music relies upon a precisely-timed orchestration of activity across the brain’s
sensory, cognitive, motor, and reward systems. Musical rhythms inspire us to move (Keller and
Rieger, 2009; Dalla Bella et al., 2013), and movement can, in turn, shape our perception of rhythmic
patterns (Phillips-Silver and Trainor, 2005, 2007). Music also facilitates interpersonal synchrony,
increasing pro-social behavior (Cirelli et al., 2012, 2014) and breaking down perceived barriers
between self and other by coordinating shared emotional experiences (Tarr et al., 2014). Several
studies suggest that interaction with music promotes synchronous neural activity not only across
brain regions, but between the brains of individuals, for example during music listening (Abrams
et al., 2013) and improvisation (Müller et al., 2013).

The rewarding qualities of music are also intrinsically linked to its temporal structure, through
the creation and manipulation of expectations over time (Cooper and Meyer, 1960; Huron, 2006).
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Within this temporal framework, the fulfillment and violation
of expectations provides a rich palette of emotional expression,
mediated by the reward transmitter dopamine (Schultz, 1998;
Salimpoor and Zatorre, 2013). The rhythmic patterns found
across a range of musical styles have been shown to exhibit
an optimal balance of predictability and surprise, even in
their written form (Levitin et al., 2012), and the subtle timing
variations found in live musical performance further contribute
to the emotional expression perceived by a listener (Repp, 1995;
Palmer, 1997; Ashley, 2002; Bhatara et al., 2011). As these
examples highlight, the influence of music on human experience
is closely tied to its temporal structure and the coordinated neural
activity it induces, both within and between individuals.

The dynamic interplay between predictive (top-down) and
reactive (bottom-up) processing, exemplified in how the brain
responds to musical rhythm, is also a necessary foundation
for cognitive functions, such as attention (Engel et al., 2001;
Raichle, 2010). For example, the ability to anticipate what is
likely to happen next and streamline the allocation of neural
resources accordingly must be balanced with the ability to
respond to unexpected salient events in the environment. In
disorders such as ADHD, this balance is disrupted, resulting in
impaired attentional control and difficulties inhibiting irrelevant
inputs. We have chosen to consider ADHD in particular
because in addition to the core symptoms of inattention
and/or hyperactivity/impulsivity, ADHD is also characterized
by deficits in motor and perceptual timing (Smith et al., 2002;
Fair et al., 2012; Zelaznik et al., 2012; Demers et al., 2013;
Noreika et al., 2013). Recent studies have revealed rhythm-
related deficits in ADHD (Hove et al., 2017; Puyjarinet et al.,
2017), and much of the same neural infrastructure that supports
the processing of musical rhythm is implicated in ADHD,
from brain circuitry (Silk et al., 2009; Silberstein et al., 2016;
Mueller et al., 2017) and neural dynamics (Başar and Güntekin,
2008; Mazaheri et al., 2014; Loo et al., 2017) to dopamine
signaling, with leading genetic risk factors for ADHD including
dopamine gene variants (Swanson et al., 2000; DiMaio et al.,
2003). Here, we propose that insights from research on musical
rhythm could offer a more nuanced understanding of timing
deficits in ADHD, and potentially lead to the identification of
informative phenotypes, linked to neurobiological and genetic
factors.

THE NEURAL INFRASTRUCTURE OF
MUSICAL RHYTHM

In this section we highlight key components of the neural
infrastructure involved in processing musical rhythm. Although
this is by no means an exhaustive review, some basic definitions
of terms may prove useful. We will use the term “rhythm” to
refer to temporal patterns formed from sequences of durations
or onsets, whereas “beat” refers to a periodic pulse. In a piece
of music, the beat typically defines the basic unit of timing, and
“meter” refers to the grouping of beats into a recurring pattern of
stresses or accents, such as would differentiate the feel of a waltz
vs. a march.

Sensory-Motor Integration
Studies with non-human primates and even zebrafish have
shown that neural ensembles can entrain to a rhythmic stimulus
(Quintana and Fuster, 1999; Sumbre et al., 2008), and it is likely
that human interaction with musical rhythm is founded upon
these basic entrainment mechanisms. However, it is notable that
the natural human tendency to move to music, for example by
tapping a foot to the beat, has proven surprisingly elusive in the
animal kingdom (Patel et al., 2009).

Imaging studies have revealed that in humans, rhythm
perception is associated with activation not only in auditory
cortices but in frontal, parietal and motor regions, including the
supplementary motor area (SMA), basal ganglia and cerebellum
(Grahn and Brett, 2007; Grahn, 2012; Large et al., 2015; Merchant
et al., 2015). It has been suggested that the close sensory-motor
coupling necessary for synchronization of movement to music
may be unique to vocal learning species (including parrots and
songbirds, as well as humans), in which it is a necessary basis for
learning and producing complex communication signals (Patel
and Iversen, 2014). Recent evidence of successful entrainment
to the musical beat in non-vocal-learning species, for example a
California sea lion (Cook et al., 2013), have cast doubt on this
theory. Nonetheless, it is well established that close interaction
between sensory and motor systems provides a sophisticated
mechanism of temporal prediction and feedback (Schroeder
et al., 2010), and that this plays an important role in how humans
process musical rhythm.

The extensive activation of motor areas during rhythm
perception, even in the absence of overt movement (Zatorre et al.,
2007; Chen et al., 2008; Grahn and Rowe, 2009), is consistent
with accumulating evidence that these systems serve a broader
role in temporal processing and cognition. For example, fronto-
striatal and fronto-cerebellar pathways are increasingly viewed
as contributing to more general pattern-detection, predictive
and cognitive functions (Akshoomoff and Courchesne, 1992;
Graybiel, 1997; Schubotz, 2007). It has been proposed that
striatal pathways are particularly involved in generating internal
representations of beat and metrical structure (Grahn and Brett,
2007; Schwartze and Kotz, 2013). On the other hand, cerebellar
circuits are more involved in the precise encoding of complex
sequences, fast timing features and durations (Grube et al., 2010;
Schwartze and Kotz, 2013). Together, these pathways create a
system that can generate complex temporal predictions while also
adapting to incoming information.

Models of Rhythm Perception
In constructing computational models of rhythm perception, a
major challenge is to capture not only the individual components
of temporal processing that are involved, but how those
mechanisms interact in real time to maintain the ongoing
balance between predictive (top-down) and reactive (bottom-
up) processing, discussed above (see McAuley, 2010; Grahn,
2012, for review). For example, several rule-based models have
been proposed in which the regular beat and metrical structure
inferred by a rhythmic pattern are maintained by an internal
clock (Longuet-Higgins and Lee, 1982; Povel and Essens, 1985;
Desain and Honing, 1999). However, these models do not
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generally account for adaptive, online predictions and instead
determine a “best fit” pattern of regular intervals based on the
rhythm sequence as a whole (summarized in Grahn, 2012).

Models based on the entrainment of multiple oscillators have
had greater success in accounting for online prediction that is
tolerant to more complex rhythmic structure while remaining
sensitive to natural variations in performance (Large and Kolen,
1994; Large and Palmer, 2002; Angelis et al., 2013). Indeed,
there is evidence to suggest that natural, non-random patterns
of timing variability (i.e., those exhibiting fractal scaling and
long-range correlations) may actually improve the accuracy of
listeners’ temporal predictions (Rankin et al., 2009, 2014), and
this was also demonstrated by the model (Large and Palmer,
2002).

In their theory of neural resonance, Large and Snyder extend
these computational models to propose that entrainment is
performed in the brain by neural oscillators (Large and Snyder,
2009), and this theory is supported by evidence from imaging
and EEG studies (Large and Snyder, 2009; Nozaradan et al., 2012;
Tierney and Kraus, 2015). Interestingly, individual variation in
the temporal characteristics of neural activity (including long-
range correlations) has been shown to predict variability inmotor
timing behavior (Linkenkaer-Hansen et al., 2001; Smit et al.,
2013). A recent paper also linked these temporal characteristics
of neural activity to fluctuations in attention, and it was proposed
that the typical increase in long-range correlations over the
course of development may be delayed or disrupted in ADHD
(Smit and Anokhin, 2017). This represents a fascinating area for
future study, and a further potential link between ADHD and the
temporal dynamics of brain and behavior.

Within entrainment models, different frequencies of neural
oscillations serve distinct functions. For example, Large and
Snyder suggest that bursts of high frequency oscillatory activity
facilitate coordination across motor and sensory systems. Peaks
in beta (13–30Hz) and gamma (30–100Hz) power were observed
as an anticipatory response to rhythmic patterns (Snyder and
Large, 2005; Fujioka et al., 2009), and persisted even when the
sound stimulus stopped, supporting their role as self-sustaining
timekeepers. Further, temporal modulations in beta activity
were altered by the specific metrical structure imposed by the
listener onto an ambiguous rhythm pattern, suggesting top-down
modulation of oscillatory dynamics (Iversen et al., 2009). Given
the association between beta oscillations andmotor coordination,
the modulation of beta power may provide another indication
of the influence of motor systems on rhythm processing (Large
et al., 2015).

Neural responses to musical rhythm may also take the form
of entrainment to specific frequencies actually present in the
stimulus, for example the frequency of the musical beat. Neural
entrainment to the beat has been observed in a number of EEG
studies in the form of increased spectral power at the frequency
corresponding to the tempo of the musical beat, typically
within the delta range (1–4Hz), and even to harmonics and
subharmonics of that frequency (Nozaradan et al., 2012; Tierney
and Kraus, 2013, 2015; Nozaradan, 2014). The influence of motor
systems on this form of neural beat entrainment was investigated
in a recent lesion study (Nozaradan et al., 2017). Both cerebellar
and basal ganglia patients showed reduced neural activity aligned

with the beat compared with controls, with cerebellar patients
showing reductions specifically with faster tempo rhythms, and
basal ganglia patients showing a greater deficit with complex
rhythm patterns, which the authors interpreted as relying more
heavily on the internal generation of a beat. These findings
suggest that variation in cerebellar and striatal function (such
as observed in ADHD) may be associated with distinct rhythm
processing deficits. This study therefore provides compelling
evidence for distinct specializations of these two motor areas
in the coordination of neural entrainment to musical rhythm,
linked with dissociable deficits.

PARSING HETEROGENEITY IN ADHD: THE
SEARCH FOR PHENOTYPES

ADHD is a highly prevalent and heterogenous disorder.
Despite significant research efforts, characterization of the
neurobiological basis of ADHD has proven elusive: diagnosis
still relies heavily on self-report questionnaires, and treatment
typically takes the form of a trial-and-error pharmacological
approach. It has been difficult to identify biomarkers of the
disorder because there has been no clear mapping between neural
measures and clinical subtypes (i.e., predominantly inattentive,
predominantly hyperactive/impulsive and combined type).

Although ADHD is associated with structural and functional
abnormalities, including within frontal, striatal and cerebellar
pathways, these findings have generally been small, and have not
always been replicated (see Rubia, 2016, for review). Similarly,
profiles of oscillatory dynamics have not been consistent enough
to provide a clear neural “signature” of ADHD. EEG studies
reveal abnormal patterns of oscillatory activity (Başar and
Güntekin, 2008; Mazaheri et al., 2014; Loo et al., 2017), including
reduced power in the beta frequency range. Indeed, a clinical
diagnostic device assessing the ratio between theta and beta
activity was developed and approved by the FDA (USDHHS,
2013). However, a subsequent meta-analysis suggested the theta-
beta ratio is only elevated within a subgroup of individuals
with ADHD, and is therefore not a reliable basis for diagnosis
(Arns et al., 2013). A more nuanced understanding of distinct
phenotypes of ADHD could help to increase diagnostic accuracy,
and improve the development of clinical tools to aid in the
evaluation and monitoring of treatment.

Research in the field is shifting toward the identification
of distinct phenotypes and multiple etiologies (Castellanos and
Tannock, 2002; Nigg et al., 2005; Durston et al., 2011). There is
evidence from neuropsychological (Rommelse et al., 2008; Fair
et al., 2012; Nikolas and Nigg, 2015), electrophysiological (Başar
and Güntekin, 2008; Mazaheri et al., 2014; Loo et al., 2017) and
genetic studies (Shaw et al., 2007; Giedd et al., 2008; Kebir and
Joober, 2011) to suggest the presence of distinct subgroups within
ADHD, beyond the clinical subtypes. However, these subgroups
have yet to be reconciled across methodologies to provide full
characterization of etiological pathways.

Although motor and timing deficits are not included
within the diagnostic criteria for ADHD, they are increasingly
recognized as common symptoms (Toplak et al., 2006; Demers
et al., 2013; Kaiser et al., 2015; Dahan et al., 2016), and have
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been identified as a promising area for future study (Rubia,
2016). Consistent with the presence of multiple phenotypes,
a recent study identifying rhythm deficits in children and
adults with ADHD noted significant variation in performance
within the ADHD group (Puyjarinet et al., 2017). Based on
neuropsychological studies, it has been suggested that deficits in
temporal information processing (e.g., duration discrimination)
and increased response variability may represent distinct
phenotypes, linked to dysfunction in cerebellar and basal ganglia
pathways, respectively (Durston et al., 2011; Fair et al., 2012).
Given the distinct roles of fronto-cerebellar and fronto-striatal
pathways in rhythm processing (Grahn and Brett, 2009; Grahn,
2012; Merchant et al., 2015; Nozaradan et al., 2017), including
their separate influence on neural entrainment discussed in the
previous section, we argue that further examination of rhythm-
related deficits in ADHD could help to characterize phenotypes
of ADHD, and to shed light on the different ways in which the
dynamics within associated neural systems may be disrupted.

Further, genetic risk factors for ADHD include genes
affecting dopaminergic transmission, which may influence
timing behavior (Valera et al., 2010). This is supported by
pharmacological studies in which timing deficits in ADHD
are reduced by methylphenidate (which increases levels of
dopamine) (Noreika et al., 2013) as well as a study in which
dopamine manipulation in healthy controls was associated
with impaired timing skills (Coull et al., 2012). As mentioned
in the introduction, dopamine indexes temporal expectation
within the context of musical rhythm. More broadly, dopamine
supports neural communication within reward, motor and
cognitive pathways and is involved in a wide range of
functions including reward-based learning, motor coordination
and cognitive control. It has been proposed that a common
theme across its various functions is that dopamine coordinates
neural systems to optimize responsiveness at different timescales,
matching the timescales of activity in the environment (Schultz,
2007). In other words, dopamine helps to keep the brain “in
sync” with the world around it. This is accomplished via multiple
dopamine release mechanisms with distinct kinetic properties
(Schultz, 2007). Therefore, we speculate that genetic variation in
specific components of the dopaminergic system could lead to
distinct deficits in neural and behavioral timing. This is consistent
with evidence from animal studies, in which different genetic
modifications affecting dopamine transmission in mice were
associated with distinct behavioral timing deficits (Cevik, 2003;
Drew et al., 2007; Balci et al., 2009, 2010), as well as evidence of
dissociable timing deficits in humans linked to dopamine gene
variants (Wiener et al., 2011).

Dopamine also helps to mediate the balance between
inhibitory and excitatory neural activity that sustains neural
oscillations, therefore genetic variations in dopaminergic
signaling at different timescales may also influence temporal
characteristics of oscillatory dynamics, such as the long-range
correlations discussed above. Disrupted neural dynamics may in
turn influence the development of cortical networks (Uhlhaas
et al., 2010). Indeed, longitudinal studies have demonstrated
distinct trajectories of structural brain development associated
with different dopamine gene polymorphisms in ADHD (Shaw T
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et al., 2007; Giedd et al., 2008), however the potential role of
neural dynamics in mediating these developmental differences
remains to be explored. Recent research indicates that ADHD,
neural dynamics and timing-related behaviors are all heritable
(Tye et al., 2011; Agostino and Cheng, 2016), suggesting that a
“genes to behavior” approach may prove fruitful.

EFFECTS OF EXPERTISE

Several aspects of rhythm processing that are implicated in
ADHD are also strengthened in expert musicians (summarized
in Table 1), suggesting the potential for these systems to be
shaped by experience. Behaviorally, musicians are better than
controls at rhythm perception and temporal discrimination tasks
(Rammsayer and Altenmüller, 2006; Wallentin et al., 2010) and
have more consistent sensorimotor timing (Repp and Su, 2013).
They also demonstrate enhanced cognitive function, including
attention, inhibitory control and working memory (see Benz
et al., 2015, for recent review), with enhanced inhibitory control
linked tomore consistent sensorimotor timing (Slater et al., 2017,
2018). Researchers found that musicians had larger volumes in
motor areas including the cerebellum and basal ganglia, as well as
frontal and parietal regions associated with cognitive control (see
Schlaug, 2015, for review), andmusic training has been associated
with functional changes to oscillatory dynamics (Bhattacharya
and Petsche, 2005; Trainor et al., 2009).

It is possible that group comparisons reflect innate differences
in those drawn to pursue music rather than causal effects of
training, in fact there is some preliminary evidence showing
increased expression of dopamine receptors in musicians
compared with controls, suggesting a potential genetic tendency
toward musicianship (Emanuele et al., 2010). However, evidence
from longitudinal studies (Moreno et al., 2011; Roden et al.,
2014) as well as links between behavioral enhancements, extent
of expertise (Slater et al., 2018) and specific instrument played
(Krause et al., 2010) suggest that experience plays at least
some role in observed differences. Further, therapies focusing
on motor timing or rhythm have shown some success in
ameliorating the broader symptoms of ADHD (Shaffer et al.,
2001; Leisman and Melillo, 2010; Dahan et al., 2016), although
more intervention studies are needed. Taken together, these
findings suggest that common underlying mechanisms involved

in both cognitive and motor control could potentially be
strengthened by music-based interventions, building on the
established use of music-based therapies in the treatment of
a variety of other disorders. With a clearer understanding of

distinct phenotypes, the efficacy of such interventions for ADHD
could be greatly improved.

CONCLUSIONS

By considering how the brain processes musical rhythm, we
force ourselves to take an integrated approach to how the brain
coordinates its activities in time. Here, we argue that it is exactly
this kind of integrated approach that is needed to advance

understanding of a complex, heterogeneous disorder such as
ADHD.

Whereas a great deal of neuroscientific research has focused
on the spatial dimension—within perception itself, as well as
in the localization of functions to particular brain regions—
the inherently temporal nature of musical sound helps to bring
mechanisms of neural coordination to the forefront. In this
review, we have explored common neural infrastructure that
is involved in processing musical rhythm, and implicated in
ADHD. We have discussed how the heterogeneity of ADHD has
hampered progress toward the identification of biomarkers and
objective diagnostic tools. We suggest that further investigation
of the basis of rhythm and timing deficits could ultimately help to
form a more integrated view of the etiologies of ADHD, bridging
the gap between genetic factors (e.g., variation in dopaminergic
signaling), neural dynamics and the development of cortical
networks, and the behavioral control of cognition andmovement.
We have also highlighted that the same neural systems are
strengthened in expert musicians, suggesting the potential
for neuroplasticity to have remediating effects. This novel,
interdisciplinary approach could inform therapeutic strategies,
harnessing the rewarding properties of music to strengthen
coordination within the brain.
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