
OPINION
published: 31 July 2018

doi: 10.3389/fncom.2018.00054

Frontiers in Computational Neuroscience | www.frontiersin.org 1 July 2018 | Volume 12 | Article 54

Edited by:

Si Wu,

Peking University, China

Reviewed by:

Masami Tatsuno,

University of Lethbridge, Canada

*Correspondence:

Matthew Cook

cook@ini.ethz.ch

Received: 11 January 2018

Accepted: 19 June 2018

Published: 31 July 2018

Citation:

Diehl PU, Martel J, Buhmann J and

Cook M (2018) Factorized

Computation: What the Neocortex

Can Tell Us About the Future of

Computing.

Front. Comput. Neurosci. 12:54.

doi: 10.3389/fncom.2018.00054

Factorized Computation: What the
Neocortex Can Tell Us About the
Future of Computing

Peter U. Diehl, Julien Martel, Jakob Buhmann and Matthew Cook*

Institute of Neuroinformatics, The University of Zurich and ETH Zurich, Zurich, Switzerland

Keywords: factorized computation, relational networks, unified brain theory, non-sequential, parallelization

1. INTRODUCTION

In ancient Greece our brains were presumed to be mainly important for cooling our bodies. When
humanity started to understand that our brains are important for thinking, the way it would be
explained was with water pump systems as this was one of the most sophisticated models at the
time. In the nineteenth century, when we started to utilize electricity it became apparent that our
brains also use electrical signals. Then, in the twentieth century, we defined algorithms, improved
electrical engineering and invented the computer. Those inventions prevail as some of the most
common comparisons of how our brains might work.

When taking a step back and comparing what we know from electrophysiology, anatomy,
psychology, and medicine to current computational models of the neocortex, it becomes apparent
that our traditional definition of an algorithm and of what it means to “compute” needs to be
adjusted to be more applicable to the neocortex. More specifically, the traditional conversion from
“input” to “output” is not as well defined when considering brain areas representing different
aspects of the same scene. Consider for example reading this paper: while the input is quite clearly
visual, it is not obvious what the desired output is besides maybe turning to the next page, but
this should not be the goal in itself. Instead, the more interesting aspect is the change of state in
different areas of the brain and the corresponding changes in states of neurons. There are many
types of models that have the interaction of modules as the central aspect. Among those are:

• Belief propagation
• Dynamic fields
• Relational networks
• Interaction of brain areas in many psychological models
• Basically all models describing ongoing interactions between neurons, e.g., STDP

They all use what we will refer to as “Factorized Computation.” Factorized Computation describes
a common framework for distributed processing mechanisms and systems. The term Factorized
Computation refers to how a problem gets factorized (decomposed) into smaller sub-problems
such that many nodes are working together1. Typically, problems are broken down into a large set
of small relations, whose composition represents the problem to be addressed.

1Some formalisms express the entire problem as a product or conjunction of many terms, and in this case the terms are factors

in a multiplicative sense. Other formalisms are not based on multiplication, but we still speak of the relations as factors that

influence the desired computation, and we speak of a computation as having been factorized when it has been broken down

into the relations that define it.

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2018.00054
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2018.00054&domain=pdf&date_stamp=2018-07-31
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cook@ini.ethz.ch
https://doi.org/10.3389/fncom.2018.00054
https://www.frontiersin.org/articles/10.3389/fncom.2018.00054/full
http://loop.frontiersin.org/people/209919/overview
http://loop.frontiersin.org/people/258828/overview

Diehl et al. Factorized Computation

This decomposition differs from the conventional approach of
breaking a problem down into a sequence of subproblems, in that
in Factorized Computation the subproblems are interdependent,
and they are solved jointly. There is no order for solving the
subproblems, just like we don’t solve equations one by one–they
must be solved together.

Just as functions are defined in terms of other functions
or procedures (down to built-in ones), and are chained into
sequences in order to transform the input into the output,
relations can be defined in terms of other relations (down to
built-in ones), and can be arranged automatically into networks
of variable nodes and relation nodes, with a connection wherever
a variable is involved in a relation.

In this article our goal is to outline how finding and using a
unifying framework for the aforementioned models can benefit
our understanding of the neocortex, and how the process of
understanding the neocortex can inspire new models and build
a foundation for the next generation of hardware.

1.1. The “Individual-Thread” Approach
The first computing architectures ever made implemented an
idea that seems very natural to us: A task can be performed by
dividing it into several sub-tasks to be carried out in a sequential
order. As humans, this idea is natural to us since this is how
we typically approach tasks in the world around us. We do one
sub-task at a time, whether for physical tasks or paper-and-pencil
tasks. Even when speaking about thought processes, we refer to
“a train of thoughts,” reflecting our view that thinking involves a
sequence of thoughts. Instructions are often arranged for clarity
in numbered steps, making their sequential nature explicit. We
may be instructed to skip to another point in the sequence, but
we are practically never instructed to carry out two or more such
sequences simultaneously.

1.2. Is It Individual Threads All the Way

Down?
High level routines (in code) or procedures (for people) are often
specified as a sequence of lower level routines, which themselves
also use the individual-thread approach, i.e., they call a sequence
of even lower level routines, and so on. Is this, then, what
computation is, at heart? Is this the general method used by
objects that compute?

Even though it might seem, as seen from the outside,
that thinking is a single threaded-activity, or that the internal
workings of a CPU are single-threaded, in fact these systems are
strongly parallel on the inside. Looking inside our brain, we see
it has activity going on simultaneously in many different areas,
collectively contributing to achieving one task, but with each
area working asynchronously under its own control. Similarly,
a modern processor has many activities going on simultaneously
within a busy core, to aid in the processing of the main thread. So
we see that below the level of the processor (whether CPU core or
human), operations are highly parallelized.

At higher levels, operations are again highly parallel. For
example the employees and departments of an organization
all work simultaneously, whether working together on shared
goals or separately on distinct goals. So it is mainly at the level

of the individual that we see a difficulty with parallelization.
Similarly, the multiple cores of a CPU or GPU can also all work
simultaneously, barely aware of each other. It is only at the single
core level that operations take on a purely sequential nature. This
is not a coincidence, since after all, the theoretical understanding
underlying a core’s operation (and indeed, underlying much of
theoretical computer science) is historically based on modeling
what an individual person does.

This individual-thread approach to computing is largely a
result of how we have trained ourselves to think and reason about
computation. The idea of “computing” meaning the “execution
of a program,” and a “program” as a “sequence of operations,” is
very deeply ingrained in us, to the point that we are quick to see
any computational process as the execution of a program in some
sense. If there are other frameworks that would be better suited
for understanding a given computation, we often don’t even
notice them, because we are so quick to understand distributed
computations in terms of the framework we are used to: a large
number of parallel, individual threads, each following a sequence
of instructions.

2. A RECURRING THEME: FACTORIZED

COMPUTATION

Many of the formalisms that have been proposed for specific
types of parallel computations share an underlying theme in
how they are structured and many separate developments
in different fields have repeatedly led to a similar style
of distributed calculation, which we refer to collectively as
Factorized Computation. Specific instances include Bayesian
Brain theories (Knill and Pouget, 2004), dynamic fields (Wilimzig
and Schöner, 2005), and relational networks (Diehl and Cook,
2016). Also, neuroanatomy tells us that connections between
areas are almost always reciprocal/bidirectional (not on a per-
neuron level but on a per-area level) (Felleman and Van Essen,
1991). This is in stark contrast to traditional feed-forward
processing models and since reciprocal connections double the
required resources, we would expect there to be a clear need for
these connections in brain models.

Factorized Computation is closely related to relational
processing, an umbrella term covering many specific styles of
setting up computations as some sort of relational network. Such
a network consists of a set of variables, together with a set of
relations between those variables, such as clauses or equations.
The relations in the network behave as active elements rather
than being used or inspected by a separate entity tasked with
satisfying them. Each relation pays attention to the variables it
relates, communicating with any other relations involving the
same variables. A relation listens to its neighbors’ opinions about
its variables, and by considering these opinions in the light of its
own mathematical relation, it forms or updates its own opinion
about its variables, which it then shares with its neighbors (an
example is given below).

For Factorized Computation, the approach to “programming”
is to examine the concepts with which we understand
the quantity or behavior to be computed, and to directly

Frontiers in Computational Neuroscience | www.frontiersin.org 2 July 2018 | Volume 12 | Article 54

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Diehl et al. Factorized Computation

model those quantities and their relationships, instead of
modeling the sequence of steps you would take if doing the
computation yourself. This is like writing down the equations
that constrain the answer, without specifying how to solve the
equations.

This approach is almost the opposite of the standard
parallelization of the “embarrassingly parallel” parts of a problem.
The parts of a Factorized Computation are not independent, but
are continuously communicating with each other in order to
approach a solution.

2.1. A Simple Example
As an example, a node in a network might represent the relation
A + B = C. This node would be connected to other nodes
involving these variables; for example, it might have a neighbor
representing C + D = E − F, and these two nodes would send
each other information about the value of C. If the A + B = C
node hears from its neighbors that A is around 2, B is around 3,
and C is around 4, then it might in turn tell its neighbors that A is
probably a little less than 2, B is probably a little less than 3, and
C is probably a little more than 4. Or, with a different formalism
for how to interpret values, if it hears that A = 2 and B ≥ 3, it
might tell its neighbors that C ≥ 5.

Other formalisms might send samples from distributions
representing the current posterior for the variable, or send the
set of remaining possible values for the variable as inconsistent
values get ruled out, or simply send the current best estimate
of the variable’s value. There are many such formalisms (Hinton
and Sejnowski, 1986; Rumelhart andMcClelland, 1987;Wegener,
1987; Shapiro, 1989; Dechter, 2003; Diehl and Cook, 2016), but
the intuition behind creating the network is the same in each
case: The variables are all the quantities you think about or
compute when thinking about the problem, and the relations
encode the way in which these variables are related to each
other.

As we can see, the calculation done at a single node is
extremely simple. It is not a powerful equation solver—it is
more like a neuron, capable of only a fixed operation. Just like
neurons, the power of these systems arises from having many
nodes working together.

3. OUTLOOK

3.1. Where Can We Go From Here?
While it is nice to observe that many existing algorithms are
examples of Factorized Computation, and that there are surely
many more algorithms of this form waiting to be discovered,
is there anything in particular that really needs to be done, or
should we just sit back and enjoy the show?

For comparison, if we look at the history of one particular
form of Factorized Computation, namely belief propagation
in factor graphs, we see that this formalism was developed
multiple times over many years by many researchers. First
developed in periodic forms by statistical physicists (Bethe,
1935), it was developed again 30 years later in various linear
forms for decoding noisy signals in the field of communications

(Viterbi, 1967), and 20 years later it was developed yet
again to reason about causal relationships in the field of
artificial intelligence (Pearl, 1988). After another decade, in
retrospect (Kschischang et al., 2001) it became clear that
a lot of effort could have been saved if the general form
of these algorithms had been explicitly understood, rather
than being worked out repeatedly and independently for
what now appear to be various special cases of a general
theme.

3.2. Factorized Computation: A Direction
There aremany existing examples of systems within neuroscience
which can be understood as Factorized Computation, such as
belief propagation (Knill and Pouget, 2004), dynamic fields
(Wilimzig and Schöner, 2005), relational networks (Diehl and
Cook, 2016), or the interaction of brain areas in many
psychological models. As we try to gain a more complete
and unified understanding of this framework, a number of
directions already present themselves. One direction that has
the potential to greatly increase the range of applicability of
Factorized Computation is improving the automated learning of
latent variables and the relations between them. This direction
includes how relations in deep hidden layers can be trained, as
well as how other encodings such as temporal sequences can be
usefully learned and used. We could even ask how the network
of variables and relations could itself arise from a homogeneous
sheet of computing elements, much as the cortical sheet of
the brain self-organizes into areas that specialize in specific
tasks.

Another direction where Factorized Computation is well-
suited to applications is in understanding and re-engineering
vision systems, where it is possible to use a large relational
network to decompose sensory input into multiple physically-
meaningful modalities. For example, from a retina or a
dynamic vision sensor which reports only changes in light
intensity without absolute brightness information, a network
can infer the optic flow, motion, and even the missing
brightness information (Martel et al., 2015). Such networks are
in principle capable of integrating input from more types of
sensors, such as vestibular system (accelerometers), auditory
system and so on. The Factorized Computation framework
provides a very natural and general method for the problem
of sensor fusion, where the more sensors you include, even of
completely different types, the more accurate the entire system
will be. Even distinct algorithms could be combined, providing
“algorithm fusion” for example to combine multiple methods of
computing optic flow. Constructing and optimizing such brain-
like frameworks and systems will allow us to better understand
how our brains function and why they developed the way
they did.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it for
publication.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 July 2018 | Volume 12 | Article 54

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Diehl et al. Factorized Computation

REFERENCES

Bethe, H. A. (1935). Statistical theory of superlattices. Proc. R. Soc. Lond. A Math.

Phys. Eng. Sci. 150, 552–575.

Dechter, R. (2003). Constraint Processing. San Francisco, CA: Morgan Kaufmann.

Diehl, P. U., and Cook, M. (2016). Learning and inferring relations in cortical

networks. arXiv:1608.08267.

Felleman, D. J., and Van Essen, D. C. (1991). Distributed hierarchical processing in

the primate cerebral cortex. Cereb. Cortex 1, 1–47.

Hinton, G. E., and Sejnowski, T. J. (1986). “Learning and relearning in Boltzmann

machines,” in Parallel Distributed Processing: Explorations in the Microstructure

of Cognition, Vol. 1, eds D. E. Rumelhart and J. L. McClelland (Cambridge, MA:

MIT Press), 282–317.

Knill, D. C., and Pouget, A. (2004). The Bayesian brain: the role of

uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719.

doi: 10.1016/j.tins.2004.10.007

Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. (2001). Factor graphs

and the sum-product algorithm. IEEE Trans. Inform. Theor. 47, 498–519.

doi: 10.1109/18.910572

Martel, J. N. P., Chau, M., Dudek, P., and Cook, M. (2015). “Toward joint

approximate inference of visual quantities on cellular processor arrays,” in

2015 IEEE International Symposium on Circuits and Systems (ISCAS) (Lisbon),

2061–2064.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. San Francisco, CA: Morgan Kaufmann.

Rumelhart, D. E., and McClelland, J. L. (1987). Parallel Distributed Processing,

Vol. 1. Cambridge, MA: MIT Press.

Shapiro, E. (1989). The family of concurrent logic programming languages. ACM

Comput. Surv. 21, 413–510.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an

asymptotically optimum decoding algorithm. IEEE Trans. Inform. Theor. 13,

260–269.

Wegener, I. (1987). The Complexity of Boolean Functions. New York, NY: John

Wiley & Sons, Inc.

Wilimzig, C., and Schöner, G. (2005). “The emergence of stimulus-response

associations from neural activation fields: dynamic field theory,” in

Proceedings of the 27th Annual Conference of the Cognitive Science

Society (Stresa).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Diehl, Martel, Buhmann and Cook. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 4 July 2018 | Volume 12 | Article 54

https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1109/18.910572
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Factorized Computation: What the Neocortex Can Tell Us About the Future of Computing
	1. Introduction
	1.1. The ``Individual-Thread'' Approach
	1.2. Is It Individual Threads All the Way Down?

	2. A Recurring Theme: Factorized Computation
	2.1. A Simple Example

	3. Outlook
	3.1. Where Can We Go From Here?
	3.2. Factorized Computation: A Direction

	Author Contributions
	References

