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Neural oscillations were established with their association with neurophysiological

activities and the altered rhythmic patterns are believed to be linked directly to the

progression of cognitive decline. Magnetoencephalography (MEG) is a non-invasive

technique to record such neuronal activity due to excellent temporal and fair amount of

spatial resolution. Single channel, connectivity as well as brain network analysis using

MEG data in resting state and task-based experiments were analyzed from existing

literature. Single channel analysis studies reported a less complex, more regular and

predictable oscillations in Alzheimer’s disease (AD) primarily in the left parietal, temporal

and occipital regions. Investigations on both functional connectivity (FC) and effective

(EC) connectivity analysis demonstrated a loss of connectivity in AD compared to healthy

control (HC) subjects found in higher frequency bands. It has been reported from

multiplex network of MEG study in AD in the affected regions of hippocampus, posterior

default mode network (DMN) and occipital areas, however, conclusions cannot be drawn

due to limited availability of clinical literature. Potential utilization of high spatial resolution

in MEG likely to provide information related to in-depth brain functioning and underlying

factors responsible for changes in neuronal waves in AD. This review is a comprehensive

report to investigate diagnostic biomarkers for AD may be identified by from MEG data.

It is also important to note that MEG data can also be utilized for the same pursuit in

combination with other imaging modalities.

Keywords: magnetoencephalography, mild cognitive impairment, Alzheimer’s disease, functional connectivity,

effective connectivity, network analysis, machine learning, multimodal imaging

INTRODUCTION

Magnetoencephalography is a non-invasive technique that measures oscillatory magnetic fields
produced in the brain due to neuronal activity with excellent temporal and reasonable amount of
spatial resolution (Cohen, 1968). At the cellular level, neurons have electrochemical properties that
lead to the flow of electrically charged ions and subsequently generation of electromagnetic fields.
The magnetic field generated by an individual neuron is very weak, but multiple neurons combined
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in a specific area produce a field that is measurable outside
the head. This neuromagnetic field is in the range of 10–15 T
(femtotesla, fT) for cortical activities. Magnetic field follows
Ampere’s “right-hand rule,” with the field directed outward
on one side and inward on the other side of a tangentially
oriented source current, forming a characteristic dipolar pattern
in magnetic field sensors near the scalp. Radially oriented
(with respect to the skull surface) source currents generate
negligible magnetic field outside the head. Therefore, MEG
is mainly sensitive to tangentially oriented sources in sulcal
walls. Neuromagnetic fields are captured using highly sensitive
superconducting sensors, called SQUIDs (Superconducting
Quantum Interference Device). Activity from deeper cortical
and subcortical areas is difficult to detect as they exist at
longer distance from the sensors. SQUID systems are typically
composed of two types sensors, called as magnetometer and
gradiometer. Magnetometers measure magnetic field directly,
and gradiometers as pairs of magnetometers positioned at a
small distance form one another, calculate the difference in
the magnetic field between their two locations, are used in
MEG data acquisition (Cohen, 1972; Hämäläinen et al., 1993).
Thesemagnetic fields are produced simultaneously with electrical
activity, MEG captures same millisecond resolution as EEG
(Electroencephalography), allowing to examine neural activity
at its natural temporal resolution. Thus, MEG provides a more
direct measure of neuronal activity than functional magnetic
resonance imaging (fMRI), which records blood-oxygen-level
dependent (BOLD) responses.

Various MEG systems are available commercially such
as (a) Elekta/Neuromag: 306 channel, (b) MAGNES: 148
channel, (c) CTF/VSM System: 275 channel (MISL), (d) Tristan
Technologies, BabySQUID (for pre- and full-term infants), (e)
MEGSCAN: 320 channel, (f) Mecurer, portable MEG system, (g)
Yokogawa MEG: 160 channel (originally designed by Kanazawa
Institute of Technology). Among all these systems, Eleckta
Neuromag (Cichy et al., 2016b; Engels et al., 2016a; López et al.,
2017a; López-Sanz et al., 2017), MAGNES Fernández et al., 2002,
2013; Maestú et al., 2003; Bajo et al., 2012; Poza et al., 2014;
Gómez et al., 2017; Juan-Cruz et al., 2017, and CTF systems
(de Haan et al., 2012c; Ranasinghe et al., 2014; Brookes et al.,
2016a; Tewarie et al., 2016; Josef Golubic et al., 2017; Koelewijn
et al., 2017) are mostly used. However, for clinical setting Elekta
Neuromag and CTF/VSM systems are the popular ones.

Oscillatory brain signals are commonly categorized into five
frequency bands: Delta (0.2–3Hz), Theta (4–7Hz), Alpha (8–
13Hz), Beta (14–31Hz), and Gamma (32–100Hz). Each band
is associated with different physiological information involving
brain activities. Delta (δ) waves are accompanied with deep
levels of relaxation and restorative sleep. It has been found
that δ waves are associated with unconscious tasks of the body.
Irregular δ waves have been connected to awareness as well as
learning difficulties (Gloor et al., 1977). Theta (θ) waves are
mostly linked with sleep and it may occur during deepmeditation
also and it is the associated to memory, intuition, and learning
(Klimesch, 1999). Alpha (α) waves are associated with resting
state oscillations and awaken brain and it aids overall mental
coordination, calmness, alertness, intelligence and cognitive

abilities (Klimesch et al., 1998). Beta (β) waves are dominant
during attentive cognitive task in normal conscious state. “Fast”
activities of β waves are observed in concentration, decision
making, anxiety and excitement (Teplan, 2002). Gamma (γ)
waves are interrelated to simultaneous processing of information
flow from various brain regions. γ frequency is above the
neuronal firing range. Presence of γ is associated to cognizance
(Tallon-Baudry and Bertrand, 1999). Among these existing
band waves certain bands are associated with cognitive decline.
MEG plays an important role for detecting early changes in
these rhythms and provides prodromal features of AD. Early
symptoms of AD includes progressive loss of cognitive functions.
One of the major histopathological hallmarks of this disease is
the formation of amyloid-beta plaques. Neurological changes in
neurogenesis are evident already before plaque deposition and
might contribute to well-known early dysfunctions in prodromal
AD (Borroni et al., 2002; Ito et al., 2015; Unger et al., 2016).

Millions of people are affected worldwide by AD and this
number is increasing every day (Wortmann, 2012). AD affects
not only the individual but also it has serious impact the
entire family of the patient as well as on society and economy.
The actual cause of AD is not known yet, however, both
clinical and laboratory research have revealed oxidative stress
is related to AD. It is believed from available clinical data that
hippocampal as well as frontal cortex regions, the glutathione
level depletion is linked to the conversion from a healthy
aged subject to MCI (Mandal et al., 2015). There are other
associated features with hippocampal and frontal cortex texture,
which also change in AD (Drachman, 2006). At present, MCI
or AD are detected symptomatically by the clinicians and
various neuropsychological tests like Clinical Dementia Rating
(CDR) (Morris, 1993), Mini–Mental State Examination (MMSE)
(Folstein et al., 1975). Seven minute screen (7MS) that consisted
of four individual tests (orientation, memory, clock drawing,
verbal fluency) (Solomon and Pendlebury, 1998), functional
assessment staging (FAST) (Auer and Reisberg, 1997) and
Montreal Cognitive Assessment (MoCA) test (Nasreddine et al.,
2005) are used for screening of AD.

This review focuses on the MEG analysis techniques and
modulation of neuronal rhythms in AD brain. Motivation of
the review is to provide an outline for the application of MEG
for connectivity analysis and its application combining other
neuroimaging modalities that can help for the identification of
early diagnostic biomarker for AD.

The manuscript is divided into seven sections. After
introduction, in section The Schematic for MEG Signal
Acquisition and Analysis, the comprehensive flow diagram
of MEG data acquisition and analysis is presented. Section
Resting State and Event-Related Response Studies describes
about resting state and evoked studies followed by description
of source reconstruction (section Source Reconstruction). The
cutting-edge research of MEG analysis for AD involving single
channel, connectivity and network analysis is scrutinized from
existing literature in section MEG Data Analysis. Section
Machine Learning Approach for MEG Based Analysis gives a
brief idea about the application of machine learning algorithms
on MEG data in AD population. Various methods of statistical
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analysis performed with MEG data is discussed in section
Statistical Analysis of MEG Data. Section Discussion outlines
the overall implementation and experimental outcomes of
MEG studies. Section Conclusions summarized all the generally
applicable procedures and points onto the scope for future
research.

THE SCHEMATIC FOR MEG SIGNAL
ACQUISITION AND ANALYSIS

The complex analysis procedure for MEG signals consists
of various stages including co-registration with MRI images,
forward and inverse problem as well as applicable steps for data
analysis (Figure 1). Subjects participating in MEG study; also
undergo MRI for 3D anatomical images.

The information related to MEG coordinate system
(Figure 1A1) is registered by following two steps: (i) fiducial
marking, where three anatomical landmarks, the nasion, the
left preauricular point (LPA) and the right preauricular point
(RPA), are indicated on the patient’s head, and (ii) surface
modeling, where head digitization is performed with a 3D
tracker prior to the MEG examination (Hämäläinen et al., 1993).
The fiducial points need to be determined accurately to minimize
co-registration errors leading to point to point variation within
the brain. Incorporation of new techniques can improve the
precision and robustness of the co-registration process (Towle
et al., 1993).

MEG co-ordinate system is computed before MEG signal
acquisition with above explained digitization process. On the
other hand, MRI co-ordinate system (Figure 1D) is generated
after the MRI image acquisition. Raw MEG data (Figure 1A2)
is acquired from the subjects in a magnetically shielded room
either in resting condition (no task) or during certain tasks as per
the study requirement. Processing scheme of MEG data are the
same for resting state as well as with evoked potential conditions,
however, only the execution scheme will vary. In resting state
category, the subject needs to be fully awake as drowsiness
may introduce noise. For event-related studies, the subject is
asked to perform certain tasks in reaction to a given stimulus
(e.g., visual, auditory, or somatosensory). Simultaneously with
the recording of MEG signals, brain’s electrical activity, heart’s
electrical activity and eye movements of the subject are captured
by means of electroencephalogram (EEG), electrocardiogram
(ECG), and electrooculogram (EOG), respectively.

The acquired MEG signal is visually observed and then
processed for head movement correction and compensation
is accomplished with built-in software for example Max filter
in ELEKTA/Neuromag system, and commercially available
other software like Brain Electrical source analysis (BESA),
ASA, Curry, EMSE. The environmental interference and
constant or periodic artifact correlation is performed by
applying Single Space Separation (“SSS”) or temporal Single
Source Separation (“t-SSS”). Single Space Separation is a
new method for compensation of external interference and
sensor artifacts by decomposing the MEG signal into inner
source signal and outer noise. Independent Component
Analysis (ICA) or template can also be used for rest of the

biological artifacts like eye blinks. Pre-processing (Figure 1B)
includes the following steps: Identifying nonfunctional
(defective) channels followed by correction in head
movement followed by Software interference suppression
[Signal- space projection (SSP), Signal-space separation (SSS),
T-Signal space separation (t-SSS)] and later artifact identification
and rejection of environmental interferences and subject
interference (cardiac activity, muscular activity; Velmurugan
et al., 2014).

Moreover, at this stage of preprocessing of MEG data, filtering
may also be applied to segment the MEG data into different
band waves (δ, θ, α, β, and γ). Subsequently, the exclusive sensor
space time series MEG data (Figure 1C) distributed over all
the brain regions, which is processed further for single channel
analysis (Figure 1I) and for connectivity estimation (Figure 1J)
is generated.

Co-registration of MEG data with anatomical 3D MRI
image (Figure 1E) enables source localization of the MEG data
(Figure 1G). This source reconstructed MEG data, which is
called source space data (Figure 1H), is used for connectivity
estimation among the different selected regions of interests
(ROI) as well as single channel analysis. Source reconstruction
is performed for all the MEG sensors/broadband activity.
Afterwards, source space time series is separated into different
frequency bands.

Parcellation is implemented to divide the brain in different
ROIs (Figure 1F). ROI selection is performed by parcellating
the cortex using either source-sensor geometry approach or with
native MRIs or utilizing various available atlases (Dickie et al.,
2017). In MEG based studies automatic anatomical labeling
(AAL) (Brookes et al., 2016; Engels et al., 2016a,b, 2017b;
Hillebrand et al., 2016; Tewarie et al., 2016; Koelewijn et al.,
2017; López et al., 2017a; Yu et al., 2017), Harvard Oxford
(López et al., 2014a; López-Sanz et al., 2017) and Destrieux and
Desikan-Killiany atlases have been implemented. Tools such as
MarsBar in SPM, Featquery function in FSL, MRIcroN software,
and ROInets are developed for ROI based analysis. The analysis
for voxel time series within each ROI is achieved in various
ways. In some studies, the voxel with maximum power within
ROI represents the time series for corresponding ROI (López
et al., 2017a). Researches also generate time series by calculating
the weighted distance from center of mass of the respective
region (Brookes et al., 2016). For specific representation of voxel,
the centroid voxel was reported in some studies (Engels et al.,
2017b; Yu et al., 2017). Maximum pseudoZ voxel is also used
as alternative method to represent time series for specific ROI
(Engels et al., 2016a).

Single channel data analysis (Figure 1I) includes various
methods (e.g., spectral analysis, signal complexity etc.). For single
channel analysis, sensor space data denotes data per sensor but in
source space, it represents the analysis of data from a particular
brain region. Keeping out anatomical links, brain connectivity
can be divided into two classes: functional connectivity (FC)
and effective connectivity (EC). For connectivity evaluation,
MEG data is analyzed using time domain (nonlinear forecasting,
cross mutual information etc.) as well as frequency domain
parameters (coherence, phase locking value etc.) (Figure 1J).
This analysis provides a correlation or adjacency matrix and the
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FIGURE 1 | Diagrammatic representation of the work flow for MEG data analysis: MEG data acquired from subjects (A2) is preprocessed (B) to a filter noise from

sensor space data (C). Information of MEG co-ordinate (A1) is required with the MRI image (D) of the same subject for co-registration (E). Source reconstruction of

MEG data is performed thereafter (G). Then the source space data (H), time series generated for each ROI, is further processed for single channel (I), and connectivity

analysis (J). To select ROIs parcellation is conducted using atlases (F). After evaluating the network (K) using the connectivity information, graph theoretical network

analysis is performed (L). Statistical analysis is accomplished along with the information of neuropsychological assessment (M).
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off-diagonal elements of that matrix represent different weights
of connectivity between the corresponding ROIs. For source
space MEG data, FC is the measure of co-modulation of separate
sources (selected by ROIs) but for sensor space connectivity
interpretation is difficult as it is not linked with a specific
brain location. The data related to connectivity is utilized to
build a linked brain network (Figure 1K). The different brain
regions associated functionally or causally are visualized as
connectivity patterns (Figure 1Ko). Various graph theoretical
algorithms (Figure 1L) like clustering coefficient, path length
etc. are applied for a global analysis of the brain network
(Figure 1Lo).

Moreover, statistical analysis is performed for each method
of analysis (single channel, FC, or network) along with the
results from neuropsychological battery to evaluate the accuracy,
sensitivity and specificity of the final outcome of the study
(Figure 1M). The steps and related terminologies are explained
later in this manuscript.

Various open source software and toolboxes are available
for MEG data analysis. Brainstorm (Tadel et al., 2011), EEGlab
(Delorme and Makeig, 2004), FieldTrip (Oostenveld et al., 2011),
MNE (Gramfort et al., 2014), NutMEG (Dalal et al., 2004),
OpenMEEG (Gramfort et al., 2010), SPM (Friston et al., 1994),
EMEGS (electromagnetic encephalography software) (Peyk et al.,
2011) etc. are commonly used. Commercial software packages are
also available DANA and CURRY (NeuroScan, 2017). Though
these tools keep updating on a regular basis but there remain
some complications associated with MEG data processing and
analysis.

RESTING STATE AND EVENT-RELATED
RESPONSE STUDIES

Resting state is defined as the stage when a subject is awake but
not performing any task. MEG has been implemented for resting
state network as well as evoked study in AD. Extra care must be
taken to make sure that the AD patients are awake and alert as
drowsiness affects activities of the resting state brain (Verdoorn
et al., 2011).

It has been observed that the parts of brain responsible in
the activation differs from resting state to task based conditions
(Raichle et al., 2001). Brain regions that correlate in resting state
are found to be involved in co-activation during tasks however
their roles are likely to get shifted in evoked study (Daianu et al.,
2013).

In evoked studies, association of any specific brain region
with the task was correlated for probable AD and HC group
(Berendse et al., 2000). The instant reduction of the signal
amplitude after opening the eyes was found to be diminished
in AD, but functional connectivity (FC) remained unaltered for
eye opening or closing (Berendse et al., 2000). Multiple regions
of brain activity are localized and also their time courses are
characterized from somatosensory and visual activity task using
multistart analysis of MEG data (Aine et al., 2000).

In memory based task, a relation between hippocampal
atrophy and the degree of neurophysiological activity in the left

temporal lobe has been demonstrated (Maestú et al., 2003). A
reduced MEG response during the retention period of a working
memory task was observed in AD and the findings were in line
with MRS data (Maestu et al., 2005). Task based evoked potential
analysis can also differentiate between AD and HC subjects but
the clarification of changes may be difficult depending upon task
performance and level of concentration of the subjects during
experiment (Dickerson, 2007).

SOURCE RECONSTRUCTION

MEG data is useful to get insight for brain functionality and
the role of large-scale network is studied by approximation of
neuronal interaction at source level. To accomplish this objective,
reconstruction is performed for source time series. For source
reconstruction, the forward and inverse modeling of MEG sensor
data needs to be implemented with the help of MRI data. The
forward problem is specified as the calculation of the magnetic
field vector which is acquired outside the head. Inverse problem
is involved in calculating the current density of the source
that produce magnetic field vector. For source reconstruction
of MEG data, the most commonly applied techniques found
in the literature are: equivalent current dipole (ECD) (Kiebel
et al., 2008), beamforming (Sekihara et al., 2001), and minimum
norm estimation (MNE) (Hämäläinen and Ilmoniemi, 1994).
Minimum current estimation (MCE) is also popularly applied
for source estimation and localization of MEG data (Uutela et al.,
1999).

Equivalent current dipole (ECD) has been used to analyze the
magnetic counterparts of P50 andmismatch negativity for aMEG
based study with passive oddball paradigm of AD patients. In
comparison to HC subjects, larger cortical activation of standard-
evoked M50 was observed in AD (Cheng et al., 2012). ECD has
also been implemented for MEG based dipole density estimation
of δ and θ band in AD (Fernández et al., 2003).

In studies utilizing beamforming procedure, it has been found
that a frontal shift of α event-related synchronization (ERS)
elicited by an eyes-open/eyes-closed paradigm indicating early
changes in AD (Hincapié et al., 2017). This may represent a
physiological state marker of the disease (Ishii et al., 2010).
Application of beamformer based source reconstruction has
been implemented upon resting state MEG signals from single-
domain and multi-domain amnestic MCI (md-aMCI) subjects
(Pineda-Pardo et al., 2014). The fiber densities between the
regions, using diffusion-weighted MRI, defined the anatomical
connectivity. Graphical Lasso (GL) has been used to estimate
network architecture. Results of this study indicated that
introduction of an anatomical prior knowledge might improve
the expressivity of the model and, in most cases, leads to a better
classification between groups (Pineda-Pardo et al., 2014).

Minimum norm estimation (MNE) has been used to detect
synchronous and distributed neural activity of different cortical
areas (Jensen and Vanni, 2002). MNE was applied for cortical
origin estimation of δ band activity. Significant difference in δ

band activity was reported for AD and HC groups from MEG
data analysis (Fernández et al., 2013). MNE has also been applied
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for source reconstruction of MEG data in dementia and healthy
individuals with subjective memory loss (Maestú et al., 2008).

Minimum current estimation (MCE) has been utilized to
identify cortical sources of spontaneous brain oscillation from
MEG data for MCI and AD. In comparison to HC group,
oscillatory abnormalities in the alpha source distribution were
clearly visible in AD whereas for MCI significant changes were
not observed (Osipova et al., 2006).

MEG DATA ANALYSIS

The MEG signal analysis is a complex procedure and is
characterized in three categories: single channel analysis,
connectivity analysis, network analysis (Engels et al., 2017a).

Single Channel Data Analysis
Single channel analysis is based on per channel local analysis
and studies have been performed for the assessment of AD and
control subjects from individual time series MEG data.

Single channel analysis studies have been executed to observe
a distinction between healthy individuals and AD by time-
frequency analysis ofMEGdata. Parameters reported in literature
related to single channel analysis is classified into four groups: (i)
spectral analysis, (ii) signal complexity, (iii) signal regularity, and
(iv) signal predictability.

In comparison to healthy individuals, increase in absolute as
well as relative power was perceived in slow frequency bands of δ
and θ in AD, but decrease in these power values was observed
in high frequency bands of α, β, and γ for AD. These results
are observed in the parietal, temporo-parietal, posterior parietal
areas as well as precuneus cortices and hippocampus (Fernández
et al., 2002, 2003, 2006b, 2013).

Frequency analysis of MEG data has also been performed in
various studies (Escudero et al., 2008, 2009). Peak frequency,
mean frequency and median frequency were reported lower for
AD compared to HC subjects (van Walsum et al., 2003; Poza
et al., 2007b; Montez et al., 2009). It has been found that in AD,
lower α band sources are predominant in the temporal regions,
whereas in the controls, robust α sources were found near the
parieto-occipital sulcus (Osipova et al., 2005). The activation
within the parieto-occipital region was significantly weaker, and
activation in the right temporal area was significantly enhanced
in the AD (Osipova et al., 2005). Studies reported less complexity
in AD by evaluating Lempel-Ziv complexity, fractal dimension
and also correlation dimension (Gómez et al., 2009a,b; Hornero
et al., 2009).

Nonlinear analysis has also been reported in MEG based
studies (Abatzoglou et al., 2007; Escudero et al., 2009). Spectral
entropy and ratio have also been examined from MEG data
(Poza et al., 2007a, 2008b; Bruña et al., 2012). Approximate
entropy, sample entropy as well as multiscale entropy values have
been found to be lower in AD than HC subjects from MEG
data analysis (Hornero et al., 2009). These results are consistent
with the findings of MRI studies where reduction in entropy of
hippocampus have been reported (Drachman, 2006).

Stationarity and equilibrium of signals from AD were found
to be disrupted (Gómez et al., 2009b; Bruña et al., 2012) similar

to complexity studies. Abnormal and predictable dynamics was
reported in AD by observing low decrease rate of auto mutual
information from MEG data (Gomez et al., 2006b; Gómez
et al., 2007b; Hornero et al., 2009). Indication of more regular
oscillations in AD than controls was found by high spectral
crest factor and spectral turbulence and wavelet turbulence (Poza
et al., 2008a, 2014). Comparatively high power in the lower
frequency bands and low power in the higher frequency bands
confirmed this information and relates to the studies involving
EEG (Micanovic and Pal, 2014).

The changes observed in single channel analysis of MEG
data using different parameters are represented in Figure 2. The
increasing and decreasing measures of all the parameters, e.g.,
absolute power, approximate entropy etc., (listed in the vertical
axis) for all the frequency bands (δ, θ, α, β, γ) have been
shown in chronological order. Most of the studies have reported
results common for all the frequencies in AD whereas some
investigations informed significant difference in specific band
waves. For example, relative power (RP) was reported increased
explicitly in δ band but decreased in β band. Majority of the
parameters implemented for single channel analysis of MEG
data were reported reduced in AD compared to HC subjects
though in few cases, metrics were found increased. The synthesis
of single channel analysis of MEG studies, it is inferred that a
slowing pattern of oscillations is visible in AD and MCI patients
in frontal, parietal, temporal, and occipital brain regions.

Connectivity Analysis
The functionally connected areas of brain are explained with the
help of connectivity analysis. This review discusses two types of
connectivity analysis, FC and EC, for MEG data. FC is temporal
correlation between remote neurophysiological events, and EC is
defined as the influence one neural system exerts over another
(Friston, 1994, 2011).

Functional Connectivity Assessment
Functional Connectivity (FC) is estimated in time as well as
frequency domain using linear (e.g., correlation) and nonlinear
(e.g., mutual information) methods (Sakkalis, 2011). MEG
time series data of different brain areas that are functionally
connected, are assumed to show a statistical relationship
(Bastos and Schoffelen, 2016). MEG data analysis demonstrates
the relationship between neural oscillations and functional
connectivity of brain (Brookes et al., 2011). Path of information
flow within the brain is understandable with the help of direction
provided by FC (Blinowska, 2011).

Coherence is one of the widely used for FC estimation.
Coherence is the degree of similarity of frequency components
of two time series (of simultaneous values or leading and lagging
relationships). Mathematically, coherence is the frequency
domain equivalent to the time domain cross-correlation
function. Its squared value quantifies, as a function of frequency,
the amount of variance in one of the signals that can
be explained by the other signal, or vice-versa, in analogy
to the squared correlation coefficient in the time domain.
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FIGURE 2 | Presentation of various measures (e.g., mean frequency, relative power etc.) used in MEG single channel analysis, mentioned in the vertical axis, in

chronological order. The horizontal axis represents the year of study. Changes to the parameters in the frequency bands (δ, θ α, β, and γ) are indicated using different

color codes. AP, Absolute Power; PF, Peak Frequency; CD, Correlation Dimension; RP, Relative Power; AMI, Auto Mutual Information. LZC, Lempel-Ziv Complexity;

MF, Mean Frequency; TF, Transition Frequency; SpecEn, Spectral Entropy; SEF95, 95% Spectral Edge Frequency; SampEn, Sample Entropy; SCF, Spectral Crest

Factor; ST, Spectral Turbulence; MedF, Median Frequency; FD, Fractal Dimension; DFA, Detrended Fluctuation Analysis; BDMA, Backwards Detrended Moving

Average; ApprEn, Approximate Entropy; ED, Euclidean Distance; LRMC, Lopez Ruis-Mancini-Calbet; DCD, Delta Current Density; WT, Wavelet Turbulence.

The coherence coefficient is a normalized quantity bounded
between 0 and 1.
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where, coherence of two signals x and y at frequency ω

represented as cohxy (ω) is computed using Equation (1), where
Ax, Ay are amplitude and ϕx, ϕy are phase of signals x and y,
respectively and n is the total number of data points. High value
of coherence indicates strong functional connectivity.

Increase in coherence is reported in the δ band (Alonso
et al., 2011; Escudero et al., 2011). On the other hand, loss of
connectivity indicated by decreased coherence is found to be

restricted in high frequency bands (Franciotti et al., 2006; Alonso
et al., 2011). However, some studies reported no significance
difference between AD and HC subjects by the evaluation
coherence (Stam et al., 2002).

From coherence analysis, decreased neural connectivity of
multiple brain regions including the right posterior perisylvian
region and left middle frontal cortex correlated with a higher
degree of disease severity has been reported (Ranasinghe et al.,
2014). Insufficiency in executive control and episodic memory
is correlated with reduced FC of the left frontal cortex, whereas
visuospatial impairments is correlated with reduced FC of the
left inferior parietal cortex (Ranasinghe et al., 2014). These results
suggested that reductions in region-specific α-band resting state
FC are strongly correlated with specific cognitive deficits in AD
spectrum (Ranasinghe et al., 2014).
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From the parameter named synchronization likelihood (SL),
the strength of synchronization of two time series is evaluated
based on state space embedding. Nonlinear forecasting (NF) and
cross mutual information functions (CMIF) are measures for the
predictability of one time series when a second series is known,
have been implemented for FC analysis. Predictability based on
similarity (based on the amplitude of two time series) has also
been evaluated from MEG data using cross approximate entropy
(Cr-appEn).

FC from MEG data was found to be lower in α, β, and γ

bands but higher in θ band for AD (Stam et al., 2002, 2006)
using SL. Increase in inter-hemispheric connections, decrease
in anteroposterior FC was detected in MCI (Bajo et al., 2010).
The inter-hemispheric increased synchronization values reflect
a compensatory mechanism for the lack of efficiency of the
memory networks (Bajo et al., 2010). Hence, these connectivity
profiles support the idea of calling MCI as a “disconnection
syndrome” partially (Bajo et al., 2010).

MEG study with a memory task has been performed on MCI
group to characterize patients who would eventually go on to
develop the disease (Bajo et al., 2012). It has been reported that
progressive patients showed a differential profile of FC values
compared with those patients who remained stable over time
(Bajo et al., 2012). Time series was found more predictable
for AD by the nonlinear forecasting approach (Gómez et al.,
2008). While cross mutual information values were reported
increased in AD (Alonso et al., 2011), cross-approximate entropy
was observed decreased indicating synchronization better than
HC subjects (Gómez et al., 2012). For the analysis of FC,
variance information in source space projected Hilbert envelope
time series has been extracted that has given important spatial
information about functional relevance (Hall et al., 2013).

Another measure of connectivity is phase locking value (PLV).
It is calculated using the instantaneous phase difference between
a pair of signals. PLV for each data segment is calculated as the
norm of the average vector for the pair of signals k and l from
Equation (2)
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where, ϕk(t) is the instantaneous phase of signal k at instant t, and
T is the number of temporal points per segment.

Another metric used for FC estimation from MEG data is
phase lag index (PLI), which evaluates the distribution of phase
differences across observations. In terms of PLI, FC was observed
lower in AD in α and β band (Stam et al., 2009). FC alterations
based on PLV were found in both subjective cognitive decline
(SCD) and MCI groups compared to HC subjects (López-Sanz
et al., 2016, 2017). A hyper synchronized anterior and posterior
network, characterized by a decrease in FC, was spotted in
AD (López-Sanz et al., 2016, 2017). This decrease was more
pronounced in the MCI group. These results indicate that SCD
can be considered as a preclinical stage of AD (López-Sanz
et al., 2016, 2017). FC was assessed using the amplitude envelope
correlation was significantly lower in all-to-β cross-frequency
coupling (CFC) in AD in the left hippocampus and several

regions of the DMN (Engels et al., 2016b). Virtual electrodes have
been used to correlate functional interactions with the slowing
activity of hippocampi and cortical areas (Engels et al., 2016a).
A virtual electrode is an estimate of the time-series of neuronal
activity at a particular location in the brain. Estimating neuronal
activity at the source level requires solving the inverse problem,
i.e., the estimation of activity on the basis of the extracranial
sensor recordings (Hillebrand and Barnes, 2005). In this study
beamforming technique is used to solve this inverse problem.
A decreased connectivity in AD, specifically in parieto-temporal
areas in the α and β band in whole brain during resting state
(Koelewijn et al., 2017).

The interfering factors to be considered in MEG data analysis
are field spread (FS) and volume conduction (VC). Because of
the topographical representation of magnetic field beyond the
source, signal can be picked up at some distance and it is termed
as field spread (Silva Pereira et al., 2017). Due to FS, a signal from
one underlying source can be present in multiple time series.
This creates error in the estimation of statistical dependencies
between time series data which in turn hamper the evaluation of
FC (Bastos and Schoffelen, 2016).

Posterior-to-anterior information flow over the cortex in
higher frequency bands in HC subjects with a reversed pattern
in the θ band has been reported (Engels et al., 2017b). The
information flow from the precuneus and the visual cortex,
toward frontal and subcortical structures, was found to be
decreased prominently in AD (Engels et al., 2017b). MEG based
multiplex brain network yields to an effective structure for the
integration of the frequency specific networks (Yu et al., 2017).

Effective Connectivity Assessment
Recent studies have been performed onMEG data for the analysis
of EC in AD and MCI (Gómez et al., 2017). Granger Causality
(GC) was implemented for the estimation of EC. According to
GC, if a signal P “Granger-causes” (or “G-causes”) a signal Q,
then past values of P should contain information that helps to
predict Q, above and beyond the information contained in past
values of Q alone (Granger, 1969). For all the five conventional
frequency bands, connectivity values were lower for MCI in
comparison to HC subjects. Interhemispheric GC was found to
be decreased between frontal areas (both directions) in θ, α,
and β, from left central to right central in θ, between posterior
brain regions in α and β, and finally between temporal areas
(from right to left in θ, and in both directions in α, β, and γ;
Gómez et al., 2017). On the other hand, statistically significant
differences in intra-hemispheric couplings were found mainly
between frontal, lateral, and posterior areas, but also from these
aforementioned areas to central regions, and between posterior
and frontal regions (Gómez et al., 2017). In θ, β, and γ bands,
decrements in EC patterns was observed, whereas increments in
EC was found in the δ band in AD using GC (Juan-Cruz et al.,
2017).

After analyzing all the findings reported for MEG based
connectivity studies, a decrease in MEG based functional
connectivity in the higher frequency bands are observed. Increase
in connectivity has mainly been observed in the parietal and
temporal regions as well as between the parietal and occipital
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regions and here FCwas not frequency dependent. It is concluded
from all these connectivity analyses that parietal areas along with
left frontal and occipital areas are associated with the decrease in
long term connection and for short term connection involvement
of the frontal and parietal regions of right hemisphere was
reported.

The pattern changes of connectivity in AD and MCI have
been shown year wise from literature as compared to HC subjects
in Figure 3. All the parameters (e.g., coherence, SL etc.) are
listed in the vertical axis. Most of the studies have accomplished
FC analysis of MEG data for AD and reported a decreased
connectivity in all bands (δ, θ, α, β, and γ). Mostly the variations
were observed in α and β bands. Although majority of the
investigations inferred reduced connectivity than HC subjects,
but variability of research outcomes are observed in different
research groups. EC experiment was implemented only in two
studies reported in 2017 which also detected less connectivity for
AD and MCI.

Network Analysis
Brain networks deal with the modular and hierarchical nature
of brain activities with the hub regions of brain (Bassett and
Bullmore, 2009; Bullmore and Sporns, 2009). Graph and modern
network theory applied on FC values has been used to find
out the framework of brain topology. From connectivity matrix,
graph theoretical algorithm based brain networks are derived.
In order to capture most significant connections within a
graph, the application of statistical thresholding scheme and
selection of an appropriate filtering for meaningful topologies is
a critical step in brain connectivity analysis. Common measures
like clustering coefficient, Eigen vector centrality, characteristic
path length, intramodular connectivity have been utilized for
MEG based network analysis in AD research (Stam et al.,
2009; Engels et al., 2017a). MEG based networks contain
some organizational properties that is termed as “small-world
topology” (Stam, 2004) to include high global efficiency as well
as local interconnectedness (Watts and Strogatz, 1998). “Hub”
is defined as a network node (brain region) with the specific
property of having a high centrality, i.e., it plays an important
role within the network. Many studies have been reported for
the identification of the hubs in the brain (de Haan et al.,
2012c). Highly localized clustering and short characteristics
path length has been found in undirected binary and weighted
brain networks (Rutter et al., 2013; Bassett and Bullmore,
2017).

MEG research in AD indicated decrease in hub regions in
AD patients, specifically in the parietal region in the θ band
(de Haan et al., 2012c). Lower FC is a result of weakening of
hubs as these hubs are considered as the connectors of groups
of highly functional intra-connected brain areas, or modules
(De Pasquale et al., 2016). Inter-modular connectivity was found
lower in AD compared to controls using MEG study (de Haan
et al., 2012c). A relationship between network characteristics and
performance on cognitive tests was observed in studies (Ortiz-
Alonso et al., 2003). Lower hubness, which was measured with
the Eigen vector centrality, has been correlated positively with
lower MMSE, and lower between-module strength was related

to poorer performance for word recall, word fluency and visual
recognition (de Haan et al., 2012b,c). These results validate the
concept of disintegration of functional connections and network
disorganization in AD.

To avoid any spurious connection in a fully connected graph
requires statistical filtering and surrogate networks are applied
to address this problem. Surrogate network for normalization as
well as comparison with random network has also been used
in few studies (Stam et al., 2009; van Wijk et al., 2010; Rutter
et al., 2013). Topological filtering (Dimitriadis et al., 2017a,b)
is the next step to be followed to derive meaningful network
structure consisting of only the essential interactions. Some
approaches involving topological filter have been undertaken
in network analysis for AD research, like minimum spanning
tree (MST) (Çiftçi, 2011; López et al., 2017a), which is better
than conventional procedure (Hillebrand et al., 2012). MST is a
subset of the edges of a connected, edge-weighted (un) directed
graph that connects all the vertices together, without any cycles
and with the minimum possible total edge weight (Tewarie
et al., 2015). MST is gaining popularity as it is assumption free
and unbiased method. This method overcomes the constraints
of existing topological filtering techniques by preserving the
connectedness of brain network but also it typically ends up
with large sparse graph. To address this problem, orthogonal
MST (OMST) was introduced by employing different algorithms
such as Kruskal (1956) and Prim (1957) to construct the
MST for a weighted graph. The OMST method conserves
the main advantage of MST and further confirms a denser
and potentially more meaningful network. Other than OMST,
the additional topological filtering techniques are global cost
efficiency (GCE), mean degree, proportional, absolute and data
driven based algorithms (Dimitriadis et al., 2017a,b). In MEG
based resting state connectivity study for multi group GCE has
been implemented (Dimitriadis et al., 2017a).A k-core network
which is evaluated by thresholding the network to retain only
those nodes with high nodal degree has been implemented for
the construction of fully connected graph (Daianu et al., 2013).

In AD, neural complexity was found lower in low frequencies
(van Walsum et al., 2003). Low clustering coefficient and
short characteristic path length suggested a more random
configuration of network in AD than HC subjects (Stam et al.,
2009). Decrease in Eigen vector centrality reported the loss of a
known temporal hub in AD and also fewer modules with weaker
connections (de Haan et al., 2012b,c).

In MCI, an enhancement of the strength of connections,
together with an increase in the outreach parameter was observed
in the graphs using complex network analysis of MEG data with
SL (Buldú et al., 2011). It indicates that memory processing in
MCI is associated with higher energy expenditure and a tendency
toward random structure, which breaks the balance between
integration and segregation (Buldú et al., 2011). These reports
suggest that for healthy individual’s parietal region acts as a hub
region.

Findings of MEG based FC analysis has been reported
as small-world network within human brain characterized by
dense local clustering for neighbor nodes along with a short
path length between any pair of nodes (Stam, 2004; Stam
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FIGURE 3 | Presentation of various measures (e.g., coherence, SL etc.) used in connectivity analysis from MEG data, mentioned in the vertical axis, in chronological

order. The horizontal axis represents the year of study. Changes to the parameters in the frequency bands (δ, θ α, β, and γ) are indicated using different color codes.

GC: Granger Causality, Coherence; SL, Synchronization Likelihood; NF, Nonlinear Forecasting; PLI, Phase Lag Index; CMIF, Cross Mutual Information Function;

Cr-appEn, Cross-Approximate Entropy; AEC, Amplitude Envelope Correlation; CFC, Cross Frequency Coupling; NAmp, Node based Amplitude; dPTE, Directed

Phase Transfer Entropy; PLV, Phase Locking Value.

et al., 2009). Source-space weighted functional networks were
characterized with graph theoretical measures in event-related
network analysis (ERNA) for a MEG based cognitive study.
Dense and clustered connectivity between the hubs belonging
to different modules is reported as the “network fingerprint” of
cognition (Bola and Sabel, 2015). Recently, a new approach for
MEG analysis is introduced and named as “multiplex network
analysis” (Yu et al., 2017). Diagrammatic representation of the
results reported for global brain network analysis performed
using MEG data in a successive year-wise manner in Figure 4.

MACHINE LEARNING APPROACH FOR
MEG BASED ANALYSIS

The developments and availability of various feature extraction
and classification techniques based on machine learning have
been growing for MEG signal analysis (Deo, 2015). In
combination with network analysis studies, implementation of
machine learning algorithms like random forest, support vector
machine (SVM) could easily distinguish the two clinical groups
(Cichy et al., 2016b; Zanin et al., 2016). In a group study
consisting subjects of multiple sclerosis, AD, schizophrenia,
Sjogren’s syndrome, chronic alcoholism, facial pain as well as
HCs (Georgopoulos et al., 2007), MEG data was classified using

Genetic algorithm-linear discriminant analysis (GA-LDA) with
autoregressive integrated moving average (ARIMA) features.
They reported results by dividing subjects into three sample
groups, (1) 52 subjects, 6 groups, (2) 46 subjects, 5 groups,
and (3) 142 subjects, 7 groups. Another study reported to
classify AD and control group 70.73 and 78.05% accurately using
features of SampEn and LZC, respectively with leave-one-out-
cross validation method (Gómez et al., 2009a). However, they
were able to achieve 85.37% accuracy by implementing adaptive
network based fuzzy inference system classifier for distinguishing
AD and control subjects. In a combined MEG and fMRI study,
multivariate analysis of MEG data with linear SVM was used to
select MEG sensors that contain discriminative information in
noisy data without human intervention (Cichy et al., 2016a).

In a recent study (Maestú et al., 2015), a new approach
of classification called Clinical Data Partitioning (CliDaPa)
algorithm has been incorporated to distinguish MCI from
controls. They proposed CliDaPa process that includes Chi
Square filtering feature selection andmachine learning classifiers.
Random Forest (Breiman, 2001), Bayesian Network (Buntine,
1991), C4.5 induction tree (Quinlan, 1993), K-nearest Neighbor
(Cover and Hart, 1967), Logistic Regression (Ng and Jordan,
2002), and SVM (Suykens and Vandewalle, 1999) classification
algorithms are included in their proposed method. They applied
bootstrap validation to measure the robustness and accuracy of
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FIGURE 4 | Presentation of various measures (e.g., node modularity, path length etc.) used in brain network analysis from MEG data, mentioned in the vertical axis, in

chronological order. The horizontal axis represents the year of study. Changes to the parameters in the frequency bands (δ, θ α, β, and γ) are indicated using different

color codes. NC, Neural Complexity; PL, Path Length; CC, Clustering Coefficient; AC, Algebraic Connectivity; ER, Eigen Ratio; Mod, Modularity; NM, Number of

Modules; PC, Participation Coefficient; SG, Spectral Gap; SR, Spectral Radius; MD, Within Module Degree; MST, Minimum Spanning Tree; BC, Betweenness

Centrality; ND, Node Degree.

proposed pipeline. High accuracy up to 86% was achieved by
using 10-fold cross validation based Linear discriminant analysis
(LDA) and radial basis function SVM (rbf-SVM) classifier for
single domain and multi domain MCI patients. LDA was utilized
for the classification of with leave-one-out cross validation
(Bruña et al., 2012). Discriminant analysis has also been used for
AD and HC classification (Fernández et al., 2003).

STATISTICAL ANALYSIS OF MEG DATA

Parametric, e.g., students t-test, analysis of variance (ANOVA),
Chi-Squared tests (Franciotti et al., 2006; Stam et al., 2006; Gómez

et al., 2007b; Poza et al., 2007b, 2008a; Ishii et al., 2010; Engels
et al., 2017b; López et al., 2017a; López-Sanz et al., 2017) as well
as non-parametric, e.g., Wilcoxon–Mann–Whitney tests (Alonso
et al., 2011) statistics has been applied for MEG data analysis
(Kiebel et al., 2005). Parametric tests are performed depending
upon specific assumptions.

Analysis of variance (ANOVA) and two-tailed t-test were
applied to test the group differences. Spearman’s bivariate
correlation test were used to access the connection between
cognitive status and network derived measures (Stam et al.,
2009). Use of Systat software for windows has been reported to
calculate Huynh-Feldt-corrected P values for MEG data (Stam
et al., 2002). They stated application of a two-way repeated
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FIGURE 5 | Average relative power spectra for all MEG channels in HC

subjects (green line), the amnestic single domain (a-sd) MCI patients (blue

dashed line) and the amnestic multi domain (a-md) MCI patients (red dotted

line). This Figure is taken from literature (López et al., 2014b) with due

permission of the American Aging Association and modified.

measure analysis of variance with AD and HC group as an
inter subject factor and 117 MEG channels as intra subject
factor. Pearson correlation coefficient has been used to correlate
MEG and MRI volumetric variables (relative left and right
hippocampal volume) to distinguish AD and HC group (Maestú
et al., 2003). The AD vs. HC analysis has also been done using
Multivariate analysis of variance (MANOVA) where they choose
parameters correlation dimension and neural complexity (van
Walsum et al., 2003). A three-way repeated measures ANOVA
was used to compare power values between groups. To compare
activation within ROIs and peak frequencies also t-test was
carried out (Osipova et al., 2005). ANOVA with Greenhouse-
Geisser correction has been utilized for the qualitative statistical
classification among AD, MCI, and control groups (Escudero
et al., 2011).

Non-parametric test, on the other hand, does not make
any such assumption and can be performed even without any
information regarding population or have a small population.
Non-parametric two-tailed Mann–Whitney U-test was carried
out using SPSS software for evaluation of statistical significance
of classification between AD and normal individuals (Poza et al.,
2007a). Mann–Whitney U-test has also been used with leave-
out cross-validation to measure the ability of median frequency
and spectral entropy to differentiate AD from HCs (Escudero
et al., 2008). Kruskal–Wallis test was performed for each channel
pair between MCI and HC (Bajo et al., 2010). For evaluation of
statistical significance Wilcoxon signed rank test was performed
on simulated data (Brookes et al., 2011).

The advantage of non-parametric statistical test is that it gives
complete freedom of choosing the experimental conditions for
comparison. This independence delivers an up-front approach
to explain the Multiple Comparisons Problem (MCP) (Maris
and Oostenveld, 2007). MCP is a commonly found problem in
statistical analysis of MEG. This problem initiates since MEG-
data are multidimensional. The signal is sampled at multiple
channels and multiple time points; hence MEG-data becomes
multidimensional. Moreover, duringMEG data analysis the effect
of interest (i.e., a difference between experimental conditions) is
evaluated at an extremely large number of (channel, time)-pairs
which in turn gives rise to MCP.

For correction of MCP, Bonferroni correlation was used while
statistically validatingMEG-MRS combined study using ANOVA
for AD and HC (Maestu et al., 2005). In a comparative study of
progressive MCI, stable MCI and controls using synchronization
likelihood parameter Kruskal–Wallis (KW) test was performed.
To correct for MCP, they applied non-parametric permutation
testing followed by surrogate t-maps (Bajo et al., 2012). One
study has done correction for MCP by taking maximum mean
PLI values over ROIs (Hillebrand et al., 2012). Distribution
for t-test was derived from permutation to avoid family wise
error occurring due to MCP in the classification of healthy aged
persons fromMCI and AD (Fernández et al., 2013) and similarly
to distinguish among sd-aMCI, md-aMCI, and HCs (López
et al., 2014b). Implementation of false discovery rate (FDR) for
multiple comparisons correction was not found significant in a
t-test based classification of single domain amnestic MCI and
HC group (Pineda-Pardo et al., 2014) whereas in other studies
FDR showed robustness in correcting MCP (Ranasinghe et al.,
2014; Engels et al., 2016b; Gómez et al., 2017). Mann–Whitney
U-tests modified for multiple comparisons by a Bonferroni
correction were performed in the statistical analysis of MEG
based study of HC, MCI, and AD (Poza et al., 2014). Significant
differences in FC between progressive MCI, stable MCI, and
HCs was calculated using Mann–Whitney U-test to correct
MCP using non-parametric permutation test (López et al.,
2014a). Maximum t-value across ROIs of each permutation was
utilized to build a distribution of maximum t-values to address
MCP problem in a study of AD and HCs using MEG (Engels
et al., 2016a). Permutation tests for random-effects inference
and MCP correction has been performed with a cluster-level
in MEG data analysis (Cichy et al., 2016b). Tukey’s Honestly
Significant Difference (HSD) MCP correction was implemented
for neuropsychological scores inMEGbased classification of aged
HCs, SCD and MCI group (López-Sanz et al., 2016).

Although, in some studies both parametric as well as non-
parametric statistics have implemented for comparison, but they
have not applied MCP correction (de Haan et al., 2012c; Josef
Golubic et al., 2017; Juan-Cruz et al., 2017).

DISCUSSION

MEG provide means to uncover AD related deviations in brain
oscillations. In-depth analysis of MEG application in AD can be
useful to identify plausible biomarkers to detect the early stages
of this disease. This section entails thorough explanation about
the outcomes of single channel, connectivity, network analysis of
MEG data in AD and MCI.

The neuropsychological studies involving MMSE and FAST
results of AD patients have been related to slowing of brain
oscillations and cognitive declined indicated byMEG (Fernández
et al., 2006a, 2013). Studies also found that low MMSE score in
AD was related to slowing in parietal and central regions of brain
(de Haan et al., 2008).

From the analysis of all the research reporting single channel
analysis, it is evident that AD patients have less complex,
more regular and predictable brain oscillations. It is the
indication of the slowing oscillatory activities (Stam, 2005).Word
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FIGURE 6 | Links (connection among various brain regions) with significantly different FC values have been shown for comparative analysis. Left: Posterior, superior,

left and right views of the brain. Right Circle plot shows a schematic view of the significant links. Comparison between healthy control (HC) subjects and mild cognitive

impairment (MCI) group. Red lines indicate an increased FC value in MCI with respect to HC subjects. Blue lines indicate a decreased FC value in MCI with respect to

HC subjects. This Figure is taken from literature (López-Sanz et al., 2017) with permission.

processing in AD has also been examined using MEG data
(Walla et al., 2005). Moreover, studies performing evaluation
of wavelet turbulence and entropy analysis demonstrated an
increase in the average degree of similarity within time series with
the progress of AD (Poza et al., 2007b). Basically it indicates that
in AD brain signals have a less uniform spectral control (Poza
et al., 2007b). Nonlinear findings suggested that the decrease
in complexity of brain signals in AD might be simply due to
the altered spectrum reported in AD (Stam, 2005). Studies also
pointed out that the complexity, regularity and predictability
measures of the single channel MEG analysis are not entirely
dependent on the spectral component of the data. Presence of
nonlinear structures has been found from surrogate data of EEG
and MEG in AD and HC subjects (Pereda et al., 2005; Gómez
et al., 2009a). The effect of randomization was different in AD
compared to controls which is an indication that complexity
and regularity measures in AD studies cannot be completely
attributed to the slowing of the signal. This aspect was also found
in non-overlapping spectral and complexity study of MEG data
(van Walsum et al., 2003). The actual reason for the decrease
in complexity is not clear yet. However, loss of neurons and
synapses and reduction in neurotransmitters might be involved
in this process (Gómez et al., 2009a). It has also been reported
that FC and brain network changes due to the changes in synaptic
levels (de Haan et al., 2012b).

To properly describe the fact that most active regions have
been observed with the most abundant changes in AD, an activity

dependent degeneration hypothesis has been proposed (de Haan
et al., 2012a). In a recent MEG study, changes in the activation of
prefrontal brain area has been observed in early stage AD (Song
et al., 2014).

Minimum-variance pseudo-unbiased reduced-rank
estimation (MV-PURE) framework has been proposed for
better reconstruction of source activity from MEG data
(Piotrowski et al., 2017). In addition, multilayer network analysis
approach has also been applied to integrate multiple frequency
bands in a single framework and results reported disruption of
hub regions in AD (Brookes et al., 2016).

MEG studies suggest that the parietal and temporal regions
of the brain play an important role in brain functioning. A
MEG based study of progressive MCI patients predicted that
the increase in phase synchronization between the right anterior
cingulate and temporo-occipital areas, is useful to understand the
conversion fromMCI to AD (López et al., 2014a).

Reports suggest that in MCI and AD difference in these
regions are observed as compared to healthy subjects. In case of
frequency as well as FC analysis, these regions have shown slow
brain activity and decreased connectivity, respectively.

In a study administered by López et al. (2014b), oscillatory
brain activities of subtypes of amnestic MCI have been compared
by the relative power values of theirMEG data. Total 105 subjects’
data has been recorded in eyes closed resting state condition.
Among all the subjects 36 were HC subjects, 33 were single
domain amnestic mild cognitive impairment (sd-aMCI) and the
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FIGURE 7 | Links (connection among various brain regions) with significantly different FC values have been shown for comparative analysis. Left: Posterior, superior,

left and right views of the brain. Right Circle plot shows a schematic view of the significant links. Comparison between healthy control (HC) subjects and subjective

cognitive decline (SCD) group. Red lines indicate an increased FC value in SCD respect to HC subjects. Blue lines indicate a decreased FC value in SCD respect to

HC subjects. This Figure is taken from literature (López-Sanz et al., 2017) with permission.

FIGURE 8 | Links (connection among various brain regions) with significantly different FC values have been shown for comparative analysis. Left: Posterior, superior,

left and right views of the brain. Right Circle plot shows a schematic view of the significant links. Comparison between subjective cognitive decline (SCD) and mild

cognitive impairment (MCI) groups where Blue lines indicate a decreased FC-value in MCI respect to SCD. This Figure is taken from literature (López-Sanz et al., 2017)

with permission.
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rest 36 were multi-domain amnestic mild cognitive impairment
(md-aMCI) patients. The average relative power in the frequency
range of 1–30Hz for each group has been calculated. Increase in
relative power in lower frequency bands and decrease in power
values in higher frequency bands has been observed in both MCI
groups in comparison to control group. Prominent difference has
been seen between two subtypes of MCI, the md-aMCI group
showed a significant power increase within δ and θ ranges and
reduced relative power within α and β ranges. In HC subjects a
maximum value has been observed at 10Hz whereas frequency
peak for sd-aMCI and md-aMCI patients were found at 9.5
and 8.5Hz, respectively (as shown in Figure 5). In addition to
that different spectral distribution was visible among the groups.
Indicating lower variability, a comparatively narrower band was
found for HC subjects. A broader spectrum has been found for
both the MCI groups. It might be a sign of higher variability
and tendency to lower frequency peaks across subjects. These
relative power values were correlated with neuropsychological
tests scores and hippocampal volumes.

Changes in FC have been found in elders with SCD as well as
MCI patients compared to healthy individuals in an investigation
(López-Sanz et al., 2017). MEG data has been collected in
resting state from 39 healthy control elders, 41 elders with SCD,
and 51 MCI patients. FC has been evaluated based on source
reconstructed MEG data using PLV.

The anterior network presented higher FC in the MCI group
compared to HC subjects in three links connecting anterior
regions, including left inferior temporal gyrus, left paracingulate,
and left anterior cingulate. The posterior network exhibited
lower FC in the MCI group, and comprised 14 links between
connecting posterior cortical structures such as: temporal medial
structures (both hippocampi and right parahippocampus),
parietal (left postcentral gyrus, both supramarginal gyri), and
occipital areas (left frontal pole, both superior occipital cortices,
right inferior occipital cortex, right lingual cortex) (Figure 6).

SCD subjects showed increased FC values respect to HC
subjects in the same regions described in the previous
comparison. SCD subjects also showed decreased FC in 11 links.
Those links connected both intra and inter-hemispherical areas
between posterior regions (as shown in Figure 7). Interestingly,
all the links affected in the SCD group, were also disrupted in the
MCI group in a similar manner.

MCI patients showed a network comprising four links where
FC values were significantly lower compared to SCD FC values.
This network with reduced FC connected temporal, parietal and
occipital regions of the brain, and comprised both intra and
inter-hemispheric links (Figure 8).

Both SCD and MCI groups exhibited a very similar spatial
pattern of altered links: a hyper-synchronized anterior network
and a posterior network characterized by a decrease in FC. This
decrease was more pronounced in the MCI group. These types of
FC alterations may work as a key feature to provide a useful tool
to characterize the early stage and predict the course of AD.

In Table 1, we have listed some of the MEG studies, to
gather information regarding the efficacy of MEG data analysis
methodologies statistically. Accuracy, sensitivity, specificity and
area under the region of convergence (ROC) curve (AURC) are

briefed in this Table. Different studies have implemented different
parameters for MEG data analysis. It is global analysis in most of
the cases and not region specific. In addition, frequency bands
are also varying in the experiments. AURC values reported in
literature within 0.529 and 0.912 range for different studies. From
overall observation we noticed that some common parameters
like mean frequency (MF), sample entropy (SampEn), and
Lempel–Ziv complexity (LZC) have exhibited accuracy ranging
between approximately 77–85, 58–70, and 61–83%, respectively.
Although high sensitivity and specificity have been accomplished
in most of the studies, but it is difficult to draw any exact
conclusion from these results due to the heterogeneity and
diversity of the metrics. Hence, more region specific, frequency
band specific studies are required to be executed to infer more
useful information fromMEG data analysis.

As observed from Figure 5, α band frequency inMCI changes,
similarly in case of FC we observe the reduction in connectivity
pattern for SCD and MCI from HC subjects. Also, from Table 1,
it is clear that all these alterations in every parameter take place
in AD as well as MCI. Henceforth, further research hit is required
to unhide the concrete cause behind these variations. Though
MEG studies found slowing down of brain rhythms in AD, but
these findings cannot specify AD as majority of brain diseases
show similar pattern of brain oscillations. Therefore, from single
channel analysis studies it is inferred that a pattern is seen in AD
irrespective of applied method. However, uniform distribution of
slowing throughout the brain is not seen. These alterations in
brain oscillations, the left parietal, occipital and temporal areas
were found to be most frequently affected.

Multimodal Approach: MEG in Combination
With Other Imaging Modalities
MEGfindings reported a lower FC inAD than normal supporting
the concept of AD as a ‘disconnection syndrome’ (Delbeuck
et al., 2003; Koelewijn et al., 2017). These observations coincide
with the results of PET, EEG, or fMRI studies (Leuchter et al.,
1992; Besthorn et al., 1994; Desgranges et al., 1998; Adler et al.,
2003; Greicius et al., 2007; Wang et al., 2007). Combining
different modalities [e.g., EEG, PET, fMRI, magnetic resonance
spectroscopy (MRS)] with MEG will be interesting (Langevin
and Vachey, 1995; Horwitz and Poeppel, 2002; Rajapakse and
Cichocki, 2002; Babiloni et al., 2004; Liu et al., 2006; Hall et al.,
2014). It has been reported that integrated approach of EEG
and MEG gives more accurate connectivity estimation than
individually (Muthuraman et al., 2015).

It is observed that the integrated implementation of the high
(millisecond) temporal resolution of MEG and EEG can give
better accuracy than fMRI localization in measuring neuronal
dynamics within well-defined brain regions and assessing the
source localizing ability for identical stimuli (Sharon et al., 2007).

These methods are in fact independent of signal models and it
makes them attractive for application in MEG analysis for rapid
evaluation of data (Deo, 2015). Such approaches were utilized to
joint multimodal processing of MEG and fMRI data. Processing
of MEG data with the outputs of a deep neural network
obtained from and trained on the same visual categorization task
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has been performed (Cichy et al., 2016a,b). With the help of
these multimodal approaches, new principles of brain function,
generalized to functional systems and patient population, are
modeled (Cichy et al., 2016a,b).

There are certain neurochemicals (N-acetyl-aspartate (NAA)
and myoinositol (mI)) alterations in AD. Concentration of
NAA decreases and mI increases with the progression of AD.
Integrated study of MEG with MRS has been performed to
associate altered brain oscillations with neurochemical changes
(Maestu et al., 2005). For a working memory task, the AD
group showed a reduced number of activity sources over left
temporoparietal areas in MEG analysis. In another MRS study
increase in creatine, mI, and in the mI/NAA ratio was observed
in bilateral temporoparietal region. These results were correlated
with MMSE score and 65% of the variance was found (Maestu
et al., 2005).

Modulation of gamma oscillations is a widely established
mechanism in a variety of neurobiological processes, but its
neurochemical basis is not fully known yet. In addition,
research reports suggest that γ oscillation properties depend
on GABAergic (gamma-Aminobutyric acid) inhibition (Kujala
et al., 2015). The link between GABA concentration and gamma
oscillations is a thrust area of research. A direct relationship
between the density of GABA receptors and γ oscillations in
human primary visual cortex (V1) has been established by an
investigation by combining Flumazenil-PET (to measure resting-
levels of GABA receptor density) and MEG (to measure visually
induced gamma oscillations; Kujala et al., 2015).

Involving various neurotransmitters with altering brain
oscillations will open a new research domain for clinical
application and it is an important thrust area in our laboratory.

CONCLUSIONS

MEG is a powerful technique for the recording of changing
activities of brain functions. From single channel analysis, a
patterned and consistent slowing of brain oscillations has been
observed in AD. FC studies revealed decreased connectivity in
AD than controls. EC studies must be implemented further
to conclude anything. As a whole, association of parietal and
temporal areas has been reported with the advancement of AD
in comparison to HC subjects. Involvement of the hippocampus
has also been demonstrated but more investigation is required.

The MEG is useful to bridge other electrophysiological
measures like EEG, local field potential (LFP), fMRI, PET,
and brain stimulation. It opens opportunities for the cross
validation of the research findings from various modalities.
Moreover, MEG in combination with appropriate modalities
can be helpful to understand the nature of changes of the
neurotransmitters like gamma-Aminobutyric acid (GABA),
glutamate etc. (Muthukumaraswamy, 2014; Kujala et al., 2015).
MEG has the capability to open up new avenue for clinical
research in AD.

MEG data is usually recorded in altered investigational
environments, having a spatiotemporal configuration, sampled
at several sensors and multiple time points. Researchers aim
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to recognize the alteration among the data observed in these
conditions. The processing and analysis procedure varies in
research studies as can be observed from Figures 3, 4. Some
studies work on sensor space data and some on source space
which introduce the major alteration in processing pipeline and
also the frequency bands considered for the study differs as
per requirements and anticipated outcomes. Moreover, in most
studies the conditions vary with respect to the configuration of
stimulus being presented instantaneously before or during the
registration of the signal. In other studies, the conditions change
with respect to the type of response given by the experiment
subjects. Another aspect in this regard is that AD population
is diverse with respect to gender, age, demography, disease
progression etc. are difficult to be found similar among studies.
Modality Integration also plays an important role in experimental
design for AD research. Various modalities such as EEG, fMRI,
PET, DTI have been integrated withMEG to gain complementary
information. Data availability for AD research is also another
major research avenue to investigate for AD research.

Hence, majority of the MEG based brain connectivity studies
using same experimental pipeline in AD research cannot directly
be compared. It necessitates the demand for open science in
MEG research by generalizing a specific pipeline for MEG
data acquisition, processing and analysis in clinical setting.
Research groups should be interested in making research
accessible for all to share their materials and data, others can

use and analyze them in new ways, potentially leading to new
discoveries. This will reduce the so-called “reproducibility crisis.”
MEG data being available will be scientifically beneficial for
researchers that can open new avenue in this realm of AD
research.
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