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Whether an event-related potential (ERP), N170, related to facial recognition was

modulated by emotion has always been a controversial issue. Some researchers

considered the N170 to be independent of emotion, whereas a recent study has shown

the opposite view. In the current study, electroencephalogram (EEG) recordings while

responding to facial pictures with emotion were utilized to investigate whether the N170

was modulated by emotion. We found that there was a significant difference between

ERP trials with positive and negative emotions of around 170ms at the occipitotemporal

electrodes (i.e., N170). Then, we further proposed the application of the single-trial

N170 as a feature for the classification of facial emotion, which could avoid the fact

that ERPs were obtained by averaging most of the time while ignoring the trial-to-trial

variation. In order to find an optimal classifier for emotional classification with single-trial

N170 as a feature, three types of classifiers, namely, linear discriminant analysis (LDA),

L1-regularized logistic regression (L1LR), and support vector machine with radial basis

function (RBF-SVM), were comparatively investigated. The results showed that the

single-trial N170 could be used as a classification feature to successfully distinguish

positive emotion from negative emotion. L1-regularized logistic regression classifiers

showed a good generalization, whereas LDA showed a relatively poor generalization.

Moreover, when compared with L1LR, the RBF-SVM required more time to optimize

the parameters during the classification, which became an obstacle while applying it to

the online operating system of brain-computer interfaces (BCIs). The findings suggested

that face-related N170 could be affected by facial expression and that the single-trial

N170 could be a biomarker used to monitor the emotional states of subjects for the BCI

domain.
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INTRODUCTION

Emotion is considered to be a subjective perception or feeling toward the internal and external
environment, along with some kind of physiological response (Khushaba et al., 2013). Individuals
might suffer from mental disorders, such as anxiety and depression, if they do not correctly
handle the mood swings caused by psychological or physical damage over a long period of
time (Lindquist and Barrett, 2012). Nowadays, mental illness, that has continuously troubled
the society, has become a serious problem; thus, the need to identify measures to prevent and
treat such disorders has become a vital project. Recently, the rapid development of neuroscience
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has facilitated improvements in brain-computer interfaces
(BCIs), which enable direct communication with external devices
bypassing the usual peripheral neural pathways (Panicker et al.,
2011; Mühl et al., 2014). Research in the areas of affective
neuroscience and emotion classification in BCIs has become of
great value to the fields of emotion monitoring and rehabilitation
therapy.Moreover, the search for features representing individual
emotions or emotional states based on physiological signals has
brought prospects in the application of BCIs to comprehend the
harmonious interaction between the brain and computers.

Facial expressions, which might embody a person’s emotional
state, are often utilized to study emotion and for the classification
of facial expressions with emotion in the experimental
environment with regard to cognition. A large amount of
research has shown that compared to other object categories,
the human face elicits a larger negative amplitude waveform at
a latency of about 170ms, which was termed as N170 (Bentin
et al., 1996). According to previous studies, the N170 was more
likely to be generated at occipito-temporal areas, and it might be
involved in face perceptual processing (Song et al., 2017). More
surprisingly, several studies found an interesting phenomenon
that the N170 components might be affected by facial emotion
(Caharel et al., 2005; Liu et al., 2013; Rellecke et al., 2013).
Therefore, the research that N170 components were utilized
in emotional classification might be valuable for the field of
emotional BCIs.

Previous studies showed that compared to spontaneous brain
activity based on BCIs such as motor imaginary (Pfurtscheller
and Neuper, 2001; Toshiro et al., 2012), the performance of
evoked brain activity based on BCIs had a higher signal-to-noise
ratio and faster mental state recognition (Meng et al., 2008; Jin
et al., 2011) such as event-related potentials (ERPs). For example,
P300, an electrophysiological response to a novel internal or
external stimulus, was a typical positive peak around 300ms
following the presentation of infrequent target stimulus onset
during the oddball paradigm (Fazel-Rezai et al., 2012). Similarly,
the motion-specific N200 ERPs produced a negative peak around
200ms after stimuli onset, and they were also introduced to an
asynchronous BCI speller (Hong et al., 2009; Zhang D. et al.,
2012). In fact, compared with N200 and P300 ERP usually used in
the field of BCIs, N170 ERP provides a faster and early processing
of brain components in the time course, which might contribute
to the real time research of BCIs. However, N170 was used as a
feature for facial classification by most of the previous studies
(faces vs. non-faces), but it was not used for pattern classification
in relation to emotional recognition (Zhang Y. et al., 2012; Cai
et al., 2013).

Moreover, an increasing number of features extracted
from electroencephalogram (EEG) signals, such as EEG time-
frequency features (Chanel et al., 2009), boosting encoded
dynamic features (Yang et al., 2009), recoursing energy efficiency
(REE), and root mean square (RMS) (Murugappan et al., 2008),
were used to classify emotion. However, the classification features
used in these studies were generally based on averaged trial
ERPs from EEG recordings, but were not based on single-trial
ERPs, which might lead to the trial-to-trial variation being
neglected.

Therefore, we proposed single-trial N170 ERPs elicited
by the facial pictures with different emotions to apply for
emotional classification, and we focused on the linear/nonlinear
characteristics of the chosen classifiers to obtain the
generalization performance such as classification accuracy,
sensitivity, computational time, and so on. Thus, a comparative
study was performed by using three types of classifiers, namely,
linear discriminant analysis (LDA), L1-regularized logistic
regression (L1LR), and support vector machine with radial
basis function (RBF-SVM). LDA represented a classical linear
classifier, L1LR represented a special case of a generalized
linear model, and RBF-SVM represented a classical nonlinear
classifier. Moreover, the three types of classifiers were easy
to implement. Therefore, the three classifiers were utilized to
reveal the potential relationship between positive and negative
emotions in the current study.

We assumed that the single-trial N170 ERP could be used as
a feature to successfully classify positive and negative emotions,
and we intended to find an optimal classifier for emotional
classification. These findings might provide a meaningful
reference for the development of emotional classification and
emotion regulation in BCIs.

MATERIALS AND METHODS

Ethics Statement
Informed consent was signed prior to the study, and subjects
also received monetary compensation after the experiments.
All experiments were approved by the ethical committee of
Chongqing university of Posts and Telecommunications. All
experimental procedures were conducted in accordance with the
ethical guidelines determined by the National Ministry of Health,
Labor and Welfare and the Declaration of Helsinki (BMJ 1991;
302:1194).

Subjects
Twenty healthy and right-handed subjects (male: 10; female: 10;
mean age: 21 years) from the EEG Laboratory of Chongqing
University of Posts and Telecommunications participated in the
experiment. None of the subjects had cognitive impairments
or mental or neurological disorders. All subjects’ vision or
corrected vision was normal. The grade point average (GPA)
of the subjects was shown in Appendix 1 (Supplementary
Material). The experiment consisted of four blocks of 120
trials each (480 trials in total with 160 trials × 3 emotions).
Moreover, a pseudorandom approach was adopted to prevent
stimulus repetition. Subjects were required to maintain central
fixation and minimize eye blinks and body motion throughout
the recordings. Stimuli were presented and behavioral data
were recorded using E-prime software (http://www.pstnet.com/
eprime.cfm).

Stimuli and Design
Figure 1A showed facial stimuli with three different emotions.
Moreover, stimuli were photographic faces without external
characteristics. Usually, positive emotion denoted happy, joyful,
smiles and laughs. Negative emotion denoted sad, terrified,
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FIGURE 1 | Illustration of facial stimuli. (A) Facial stimuli with three different emotions. (B) An example of the stimulus sequence with emotional pictures.

and jealous, and neutral emotion was expressionless. Emotion
valence and arousal of facial stimuli were shown in Appendix 1

(Supplementary Material). Figure 1B illustrated an example of
the stimulus sequence with emotional pictures. A green fixation
cross (0.5 × 0.5; at the center of the monitor) was displayed
throughout the entire block of trials, and the visual angle
displayed by the photos was 4 × 4. Each trial started with
the fixation cross flashing for 500ms. Following that, one of
three expression pictures (i.e., positive, neutral, and negative)
was presented for 500ms and subjects were asked to respond to
discriminate expressions (positive, neutral, and negative) with a
button press using their right hand (index finger, middle finger,
and ring finger). In other words, subjects needed to press key
“1” using their right index finger if a positive face appeared,
subjects needed to press key “2” using their right middle finger
if a neutral face appeared, and subjects needed to press key
“3” using their right ring finger if a negative face appeared. If
subjects did not make a timely response within the maximum
allowable response time (1,200ms), the next stimulus sequence
would be represented. Response accuracy and speed were equally
emphasized in the instructions. All 480 pictures were randomly
presented in a mixed design, with four blocks of 120 stimuli
each. For each subject, there were 160 trials for each emotion
(i.e., positive: 160 trials, neutral: 160 trials, and negative: 160
trials).

Behavioral Analysis
Subjects’ response accuracy (ACC) and reaction time (RT) were
recorded and analyzed using a one-way analysis of variance
(ANOVA), with emotion (positive, neutral, and negative) as the
within-subjects factor. For each subject, incorrect responses or
responses with RT more than mean± 2SD in each emotion were
removed from RT analysis (Liu et al., 2013).

EEG Recording and Processing
Electroencephalogram was recorded by a 64-channel NeuroScan
system (Quik-Cap, band pass: 0.05–100Hz, sampling rate:
250Hz, impedances <5 k�) with a vertex reference. To
monitor ocular movements and eye blinks, electrooculogram
(EOG) signals were simultaneously recorded from four surface
electrodes, with one pair placed over the upper and lower eyelid
and the other pair placed 1 cm lateral to the outer corner of the
left and right orbit.

The data were re-referenced by the reference electrode
standardization technique (REST) (Yao, 2001; Tian and Yao,
2013) which denoted the infinity zero reference. In the study,
EEG was segmented from 200ms before the stimulus onset to
280ms after the stimulus onset. Electromyography (EMG) and
EOG were excluded by blind source separation (BSS) (Negro
et al., 2016) and other noise was removed by automatic artifact
rejection (±100 µV). The data were baseline corrected using the
200ms before the stimulus onset, and then the EEG recordings
were filtered with a band-pass of 0.5–45Hz.

Feature Extraction
In the current study, single-trial N170 ERPs were chosen as
classification features to classify positive and negative emotions.
According to previous studies, N170 was elicited at the
occipitotemporal electrodes (Bentin et al., 1996; Cai et al., 2013;
Song et al., 2017). Therefore, our focus was on twelve electrodes
in occipitotemporal areas: that is, P3, P4, P5, P6, P7, P8, PO3,
PO4, PO5, PO6, PO7, and PO8 (Smith et al., 2012). Then, among
the twelve electrodes, the paired t-test was performed to select
the top five channels where obvious differences between positive
and negative emotional N170 trials were observed based on
the following classification. At the same time, dimensionality
reduction was achieved. For each subject, the features were
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normalized by scaling between 0 and 1 to reduce individual
differences (Lin et al., 2008; Chanel et al., 2009).

Classification
Three types of classifiers were utilized to classify the positive-
related and negative-related N170 trials: namely, LDA, L1LR, and
RBF-SVM. Moreover, the positive-related N170 ERPs and the
negative-related N170 ERPs were defined as positive and negative
in the classification process, respectively.

Linear Discriminant Analysis (LDA)
A classical linear classifier (LDA) was proposed by Fisher for
binary classification and was, therefore, called Fisher’s linear
discriminant. Linear discriminant analysis was widely used in
face recognition and machine learning to find a linear projection
of features that characterized or separated two or more classes
of objects or events (Sharma and Paliwal, 2015). The purpose of
projecting the labeled training data was to maximize the distance
between the two classes’ means and minimize the interclass
variance (Müller et al., 2003).

L1-Regularized Logistic Regression (L1LR)
Logistic regression (LR), as a special case of a generalized linear
model (Cook and Weisberg, 2008), was considered to be an
alternative to LDA. Logistic regression, a crucial method for
statistical analysis, was widely used in various fields, and it had a
good effect on practical applications (Keating and Cherry, 2004;
Ayalew and Yamagishi, 2005), especially in pattern classification
(Zhu and Hastie, 2004).

However, there were some obvious shortcomings in the
traditional LR model, mainly in the following two aspects: the
selection of variables and overfitting problems.Most of themodel
parameters fitted by the LR model were not zero, that is, the
model was related to most of the variables; therefore, it was not
sparse. In effect, in many practical problems, if the model was not
sparse, the computational complexity would increase, meaning
that the interpretation of practical problems was more difficult.
With regard to overfitting problems (Kim et al., 2007), a LR
model for the training data could often get a good fit accuracy,
but for the test data, the classification accuracy was not ideal.

Therefore, some researchers proposed the L1LR model to
overcome the above problems (Kim et al., 2007; Park and Hastie,
2007). The L1LR problem was

minimize lavg (v,w) + λ ‖w‖1 (1)

where lavg was the average logistic loss function; ν ∈ R (the
intercept) and w ∈ R (the weight vector) were the parameters of
the logistic model; and λ > 0 was the regularization parameter,
and it was used to control the trade-off between the average
logistic loss and the size of the weight vector, as measured by the
L1-norm [refer Kim et al. (2007) for more detail].

Support Vector Machine (SVM)
Support vector machine was developed by Vapnik based on
statistical learning theory (SLT) (Netherlands, 2008). As a result
of its excellent generalization performance, SVM has been
applied to a wide variety of issues, such as text classification,

images classification, hand writing recognition, and gene
classification. Furthermore, SVMhad the feature of empirical risk
minimization (ERM) and global optimum solution (Netherlands,
2008). Using kernel function, SVM could efficiently perform
linear and nonlinear classification by projecting original features
into high dimensional feature spaces, which made the two classes
easy to distinguish. In the current study, the SVM classification
framework was implemented by using the following equation:

f (x) = sign(
∑n

i=1
βiyiK (x, xi) + b) (2)

where f (x) was the decision function; n was the number of trials;
βi ∈ R was the Lagrangian multiplier; yi denoted 1 or −1, which
was the class label; bwas the bias; and K (x, xi) denoted the kernel
function. In the current study, we chose radial basis function as
the SVM kernel (Brew, 2016).

Generalization of Classifier
If a classifier could predict the class of a new sample with good
performance, it was considered to clearly reflect the relationship
between the feature and the class label. Besides choosing a reliable
feature to represent emotion, the selection of an appropriate
classifier was also a critical problem in the field of BCIs. For
most of the previous studies, the generalization of classifier was
measured just by classification accuracy (CA), which might not
be able to effectively evaluate the generalization of a classifier (Jin
and Ling, 2005). Therefore, in the current study, combined with
10-fold cross-validation, six types of metrics were utilized to fully
evaluate the generalization of the three classifiers. The processing
procedure of the 10-fold cross-validation is described below.

Firstly, the initial sample was randomly divided into
ten subsamples. Secondly, nine of the ten subsamples were
considered to be the training set to establish the SVM model,
and the remaining one was retained as the test set to evaluate the
generalization of the classifiers. The manipulation was repeated
until each subsample had been assigned as a test set on one
occasion. Finally, the ten classification results were averaged to
obtain the eventual classification results. Six types of metrics for
the generalization of the three classifiers were defined by the
following expressions.

Classification Accuracy (CA)
Classification accuracy was defined as the percentage of the
number of samples predicted correctly in the test set divided by
the total number of the samples, and it was calculated by the
following equation:

CA =
TP + TN

TP + TN + FP + FN
(3)

where true positive (TP) was the number of positive samples
correctly predicted; true negative (TN) was the number of
negative samples correctly predicted; false positive (FP) denoted
the number of incorrectly predicted positive samples; and false
negative (FN) denoted the number of incorrectly predicted
negative samples.
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Sensitivity (SE) and Specificity (SP)
Sensitivity and specificity were calculated by the following
formulae, respectively:

SE =
TP

TP + FN
(4)

SP =
TN

TN + FP
(5)

Sensitivity referred to the ratio of correctly classified positive
samples to the total population of positive samples, whereas SP
was the ratio of correctly classified negative samples to the total
population of negative samples.

Area Under the Curve (AUC)
The AUC was defined as the area under the receiver operating
characteristic (ROC) curves, which was discovered and proved
to be better than CA to evaluate the predictive performance
of classification learning algorithms (Jin and Ling, 2005).
Moreover, AUC was indeed a statistically consistent and more
discriminating measure than CA (Ling et al., 2003). Originally,
only the ROC curves were introduced to evaluate machine
learning algorithms (Provost et al., 1997). In the ROC curves,
TP was plotted on the Y axis and FP was plotted on the X
axis. It described the classifiers’ performance across the entire
range independent of class distributions (Provost et al., 1997; Jin
and Ling, 2005). However, there was often no clear dominating
relation between two ROC curves in the entire range. Therefore,
AUC was introduced to provide a good “summary” for the
performance of the learning algorithms based on ROC.

Kappa

Kappa =
P (O) − P(E)

1− P(E)
(6)

where P(O) denoted an observational probability of agreement,
and P(E) was the hypothetical probability of expected agreement
by chance. The Kappa coefficient value ranged from −1 to 1. A
Kappa value with 1 denoted a perfect classification, −1 meant
a completely incorrect classification, and 0 denoted that the
performance of a classifier was equal to a random guess (Landis
and Koch, 1977; Eugenio and Glass, 2015).

Computational Time (CT)
For the application of BCIs, one of the challenges was the real
time online processing of signals, which required the classifier
to have a good speed of operation. Therefore, the training and
testing time, called the CT in the current study, were recorded as
themetrics for the classification generalization. All of the runtime
experiments were conducted on a personal computer (PC) with
Intel R© CoreTM i7-3770 CPU @ 3.40 GHz, 8 GB RAM.

RESULTS

Behavioral Performance
Mean RT was shown in Figure 2A with standard deviation
(SD). The results displayed a significant main effect of emotion
(F = 6.28, p = 0.003). Post hoc test showed that the RT for

negative emotion was clearly faster than the RT for positive
emotion (t = 6.06, p < 0.001) and the RT for neutral emotion
(t= 6.23, p< 0.001). However, there was no significant difference
between the RT for positive emotion and the RT for neutral
emotion (t = 0.16, p> 0.05). The ACC was analyzed by using the
same statistical model as that used for RT, as shown in Figure 2B.
There was a significant main effect of emotion on ACC (F = 6.28,
p < 0.05). Moreover, the post hoc test showed that the negative
faces were identified more correctly than the positive faces
(t = 3.11, p < 0.05), whereas there was no significant difference
on ACC between neutral faces identification and negative faces
identification (t = 1.66, p > 0.05). Furthermore, there was no
significant difference onACC between neutral faces identification
and positive faces identification (t = 1.46, p > 0.05).

ERP Analysis
To elaborate the feature extraction window, the ERP waveforms
with different emotions were drawn to find the data segments
where there were obvious differences between positive and
negative emotional N170 ERPs. Positive and negative emotions
were tested by the paired t-test. The feature extraction window
was located on the data segments with significant differences
between the positive and negative trials.

As shown in Figure 3, there was a significant difference
between positive emotion and negative emotion around 170ms
at all the twelve electrodes (P3, P4, P5, P6, P7, P8, PO3, PO4,
PO5, PO6, PO7, and PO8). Moreover, the topographic map
illustrated the corresponding p-values at the twelve electrodes
after performing the paired t-test between positive N170 and
negative N170 (Figure 3A).

Generalization for Classifier
The classification results of the three classifiers were shown in
the tables (L1LR: Table 1; RBF-SVM: Table 2; LDA: Table 3).
The generalizations of the three classifiers (L1LR, RBF-SVM, and
LDA) were evaluated by six different aspects including CA, AUC,
SE, SP, Kappa, and CT.

According to the classification results mentioned above, the
paired t-test was conducted to find the obvious differences on the
six metrics of generalization among the three classifiers. For CA,
the results showed that the L1LR classifier was obviously superior
to the RBF-SVM (t = 2.966, p < 0.01) and the LDA classifiers
(t = 3.860, p < 0.001). Moreover, the RBF-SVM classifier was
obviously superior to the LDA classifier (t = 1.967, p< 0.05). For
AUC, the results showed that the L1LR classifier was significantly
superior to the RBF-SVM (t = 4.670, p < 0.001) and the LDA
classifiers (t = 3.508, p < 0.01). However, there was no obvious
difference between RBF-SVM and LDA (t = 1.560, p > 0.05)
on AUC. For SE, the results showed that there was no obvious
difference between any two of the three classifiers. For SP, the
results showed that the L1LR classifier was significantly superior
to the RBF-SVM (t = 2.081, p < 0.05) and the LDA classifiers
(t = 1.940, p < 0.05), while there was no obvious difference
between RBF-SVM and LDA (t = 0.989, p > 0.05). For Kappa,
the results showed that L1LR was significantly superior to LDA
(t = 2.411, p < 0.05), while there was no obvious difference
between L1LR and RBF-SVM (t= 0.026, p> 0.05). Furthermore,
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FIGURE 2 | Behavioral performance analysis. (A) Mean RT with SD. (B) ACC with different emotions. The star denoted that there was a significant difference on RT or

ACC between two facial emotions.

FIGURE 3 | The N170 waveforms elicited by facial pictures with positive and negative emotion. (A) Statistical parametric scalp mapping (positive vs. negative). The

color bar denoted p-values after performing paired t-test between positive and negative N170. (B) N170 at the left occipitotemporal electrodes. (C) N170 at the right

occipitotemporal electrodes. The red lines denoted the N170 waveforms elicited by positive faces, the blue lines denoted the N170 waveforms elicited by negative

faces, and the green lines were averaged difference-ERP. The blue star denoted that there was a significant difference between positive and negative N170.
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TABLE 1 | Generalization of L1LR.

L1LR CA AUC SE SP Kappa CT

S1 0.871 0.887 0.842 0.821 0.680 0.026

S2 0.842 0.882 0.914 0.757 0.675 0.030

S3 0.841 0.901 0.909 0.760 0.656 0.032

S4 0.889 0.887 0.884 0.826 0.685 0.027

S5 0.862 0.898 0.964 0.716 0.705 0.030

S6 0.917 0.978 0.878 0.918 0.784 0.035

S7 0.816 0.934 0.797 0.882 0.645 0.030

S8 0.861 0.941 0.833 0.880 0.717 0.034

S9 0.895 0.914 0.872 0.953 0.717 0.023

S10 0.864 0.941 0.809 0.934 0.717 0.029

S11 0.855 0.935 0.888 0.828 0.698 0.033

S12 0.851 0.950 0.851 0.930 0.712 0.040

S13 0.836 0.831 0.825 0.837 0.629 0.029

S14 0.880 0.866 0.877 0.885 0.763 0.029

S15 0.870 0.886 0.882 0.846 0.718 0.034

S16 0.857 0.868 0.821 0.832 0.720 0.019

S17 0.882 0.886 0.863 0.822 0.705 0.087

S18 0.872 0.90 0.905 0.805 0.705 0.037

S19 0.862 0.890 0.895 0.842 0.714 0.031

S20 0.859 0.879 0.830 0.930 0.704 0.031

Average 0.864 ± 0.022 0.903 ± 0.034 0.867 ± 0.041 0.850 ± 0.064 0.703 ± 0.036 0.033 ± 0.014

CA, classification accuracy; AUC, area under ROC curves; SE, sensitivity; SP, specificity; CT, computational time.

RBF-SVM significantly overmatched LDA (t = 2.575, p < 0.01)
on Kappa. For CT, the results showed that the computing speed
of the L1LR classifier was significantly faster than that of the RBF-
SVM (t = 35.173, p < 0.001) and the LDA classifiers (t = 4.595,
p< 0.001).Moreover, the computing speed of LDAwas obviously
faster than that of RBF-SVM (t = 35.019, p < 0.001).

DISCUSSION

In the present study, a novel feature extracted from the single-
trail N170, evoked by facial pictures with emotion, was proposed
to classify positive and negative emotions. Combined with the 10-
fold cross-validation, six types of metrics (i.e., CA, AUC, SE, SP,
Kappa, and CT) were used to evaluate the generalization of the
three classifiers (i.e., L1LR, RBF-SVM, and LDA). We found that
(1) the N170 at the occipitotemporal electrodes was modulated
by facial emotion when REST re-reference was applied; (2) the
single-trial N170 could be used as a classification feature to
differentiate positive emotion from negative emotion; and (3)
compared with the other two classifiers (RBF-SVM and LDA),
L1LR showed a good generalization for emotional classification
with a single-trial N170 as a feature. The findings could open up a
new avenue for monitoring people’s mood swings and developing
effective BCIs on the regulation of individual emotion.

Emotion and Behavioral Response
The RT results showed that negative faces were clearly recognized
more quickly than positive and neutral faces. Moreover, the
ANOVA analysis showed that ACC for negative faces was

significantly superior to ACC for positive faces, indicating that
negative faces were identified more effectively than positive faces.
Previous studies had also reached similar conclusions that the
detection of negative facial emotion was faster and more efficient
than the detection of positive emotion (Fox et al., 2000; Schupp
et al., 2004).

N170 and Facial Emotion With Rest
Reference
Whether facial recognition-related N170 was modulated by
facial emotion has always been a controversial topic. Initially,
some researchers argued that the N170, the processing of faces,
was independent and parallel to that of emotional expression
(Caharel et al., 2005; Eimer and Holmes, 2007). However, recent
findings suggested that the amplitude of the N170 could be
affected by facial expressions (Liu et al., 2013; Song et al.,
2017). For instance, neutral expressions elicited smaller N170
amplitudes than other emotional expressions (Blau et al., 2007),
and happy faces elicited smaller amplitudes than other emotional
expressions (Liu et al., 2013). These diversities of experimental
findings might be correlated with differences in design and
stimuli during the cognitive experiment. Moreover, some
researchers suggested that the effects of emotional modulation
on N170 were related to the reference electrodes (Hinojosa
et al., 2015). For example, compared with the mastoid reference,
common average reference reinforced the emotional modulation
effects at the occipitotemporal electrodes where the N170 ERPs
typically occurred (Rellecke et al., 2013; Hinojosa et al., 2015).
Moreover, our recent study also revealed that the reference
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TABLE 2 | Generalization of RBF-SVM.

RBF-SVM CA AUC SE SP Kappa CT

S1 0.816 0.868 0.934 0.736 0.715 102.647

S2 0.774 0.815 0.856 0.682 0.654 111.540

S3 0.819 0.860 0.860 0.781 0.666 107.877

S4 0.809 0.895 0.806 0.803 0.607 106.313

S5 0.840 0.833 0.853 0.835 0.698 101.316

S6 0.870 0.948 0.871 0.874 0.748 97.352

S7 0.848 0.858 0.812 0.814 0.708 92.272

S8 0.842 0.913 0.864 0.860 0.673 112.113

S9 0.866 0.849 0.867 0.875 0.725 86.093

S10 0.875 0.932 0.871 0.875 0.742 102.176

S11 0.858 0.911 0.798 0.879 0.707 109.576

S12 0.847 0.942 0.794 0.881 0.672 99.527

S13 0.791 0.840 0.788 0.809 0.645 109.510

S14 0.823 0.834 0.846 0.810 0.676 104.746

S15 0.848 0.877 0.897 0.827 0.693 87.300

S16 0.889 0.864 0.802 0.787 0.776 57.060

S17 0.855 0.831 0.919 0.817 0.704 103.555

S18 0.850 0.874 0.803 0.861 0.730 94.854

S19 0.867 0.880 0.850 0.825 0.732 95.346

S20 0.875 0.882 0.866 0.887 0.783 90.069

Average 0.843 ± 0.030 0.875 ± 0.038 0.848 ± 0.041 0.826 ± 0.053 0.703 ± 0.044 98.562 ± 12.531

CA, classification accuracy; AUC, area under ROC curves; SE, sensitivity; SP, specificity; CT, computational time.

technique might play a crucial role in ERPs data interpretation,
and we found that REST reference would be a superior choice for
precise evaluation of the scalp spatiotemporal changes connected
to various cognitive events (Tian et al., 2018). In the current
study, we found that N170 could be modulated by emotion when
ERPs were re-referenced by REST (Yao, 2001; Tian and Yao,
2013), which supported the opinions that the processing of facial
recognition and expression were integrated mechanisms rather
than segregated mechanisms (Hinojosa et al., 2015; Song et al.,
2017), and that the effects of emotional modulation on facial
recognition might be associated with the reference technique
(Rellecke et al., 2013; Hinojosa et al., 2015). The details of REST
reference were shown in Appendix 2 (Supplementary Material).

Emotional Classification in BCIs
Previously, some researchers were devoted to classifying different
emotions with various features. For instance, the three EEG time-
frequency features, namely short time Fourier transform (STFT)
features, mutual information (MI) features, and peripheral
features, were utilized to distinguish different emotions elicited
by imagination or recall of different emotional events (Chanel
et al., 2009). Some researchers also attempted to use the boosting
encoded dynamic features for facial expression recognition (Yang
et al., 2009). Moreover, fractal dimension values of the real time
EEG were also proposed to be features in BCIs-based emotional
classification for music therapy (Sourina et al., 2012).

However, the classification features used in these studies
came from the averaged ERPs but not from the single-trial
ERPs, which might neglect trial-to-trial difference. Moreover, the
generalization of classifier was evaluated just in terms of CA

TABLE 4 | Winner of three classifiers.

CA AUC SE SP Kappa CT Winner

NO.1 L1LR L1LR n.s. L1LR L1LR

RBF-SVM

L1LR L1LR

NO.2 RBF-SVM LDA

RBF-SVM

LDA

RBF-SVM

LDA LDA

NO.3 LDA – – – RBF-SVM

CA, classification accuracy; AUC, area under ROC curves; SE, sensitivity; SP, specificity;

CT, computational time; n.s: nonsignificant.

for most of the previous studies, which might not be able to
comprehensively evaluate the generalization of a classifier.

Furthermore, in comparison with the BCIs based on
spontaneous brain activity like motor imaginary (Pfurtscheller
and Neuper, 2001; Toshiro et al., 2012), the performance of the
BCIs based on evoked brain activity like P300 (Jin et al., 2011)
had some clear strengths, such as higher signal-to-noise ratio and
faster mental state recognition (Meng et al., 2008). These types of
BCIs, based on evoked brain activity, were dependent of external
stimulation, such as facial pictures with different emotion used in
the current study.

Therefore, in the current study, the evoked brain activity,
namely single-trial N170 ERPs, was utilized for BCI-based
emotion classification, which was of great significance for
recognizing and steadily monitoring individual emotional states.
Furthermore, six types of metrics were utilized to roundly
evaluate the generalization of the three classifiers.
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TABLE 3 | Generalization of LDA.

LDA CA AUC SE SP Kappa CT

S1 0.773 0.902 0.808 0.751 0.550 0.100

S2 0.753 0.874 0.759 0.746 0.503 0.104

S3 0.900 0.954 0.949 0.860 0.800 0.125

S4 0.800 0.864 0.741 0.859 0.594 0.137

S5 0.823 0.958 0.929 0.841 0.770 0.122

S6 0.876 0.951 0.852 0.816 0.736 0.057

S7 0.820 0.899 0.823 0.828 0.632 0.114

S8 0.840 0.935 0.805 0.887 0.678 0.107

S9 0.817 0.820 0.921 0.731 0.619 0.124

S10 0.880 0.941 0.853 0.903 0.750 0.105

S11 0.831 0.925 0.853 0.839 0.652 0.129

S12 0.823 0.894 0.853 0.749 0.632 0.291

S13 0.786 0.790 0.897 0.751 0.571 0.469

S14 0.825 0.865 0.786 0.760 0.628 0.359

S15 0.863 0.907 0.868 0.867 0.716 0.313

S16 0.846 0.874 0.837 0.788 0.695 0.339

S17 0.800 0.840 0.895 0.795 0.606 1.069

S18 0.863 0.934 0.833 0.869 0.714 0.372

S19 0.831 0.847 0.851 0.742 0.662 0.371

S20 0.843 0.854 0.823 0.867 0.735 0.360

Average 0.830 ± 0.037 0.891 ± 0.048 0.847 ± 0.054 0.812 ± 0.056 0.662 ± 0.078 0.258 ± 0.230

CA, classification accuracy; AUC, area under ROC curves; SE, sensitivity; SP, specificity; CT, computational time.

Our results demonstrated that differences between positive
N170 trials and negative N170 trials existed, which indicate that
single-trial N170 could be applied to emotional classification.
Based on the analysis of the paired t-test from the “RESULTS”
section, the three classifiers were ranked according to their
classification generalization (Table 4). As shown in Tables 1–3,
all the three classifiers demonstrated a good classification effect,
but L1LR performed best for pattern classification between
positive and negative emotional data in accordance with the
rankings (Table 4). Classification accuracy, a commonly used
evaluation metric of a classifier, denoted the percentage of the
number of samples predicted correctly divided by the total
number of samples. For CA, L1LR model showed a good
performance, but the CA was just a whole metric of a classifier,
whichmight no longer have good performance when the ratios of
positives and negatives changed. Therefore, AUC was introduced
to evaluate the generalization of the classifiers. Compared with
CA, AUC was independent of changes in class distribution and
made full use of the predicted probability value during the
classification (Jin and Ling, 2005). As illustrated by Table 4,
L1LR was obviously superior to RBF-SVM and LDA in terms
of AUC, whereas there was no clear difference in SE among
the three classifiers. Sensitivty denoted the probability that
positive samples were predicted correctly, indicating that the
three classifiers had a similar performance on the prediction of
positive samples. However, in terms of SP, which denoted the
probability with which the negative samples predict correctly,
the L1LR classifier was prominently superior to the RBF-SVM
and the LDA classifier. Kappa statistics was the proportion of
correctly classied samples after accounting for the probability of
chance level in the current study. The larger the Kappa value, the
better the performance of the classifier. For Kappa, the results

showed that L1LR and RBF-SVM were significantly superior to
LDA. In the field of BCIs, one of the most difficult challenges
was the real time online processing of signals, which required
the classifier to have a good speed of operation. Therefore, CT
was used as one of the evaluation metrics for the classification
generalization in the current study. With respect to CT, the
computational time of L1LR was significantly lower than that
of RBF-SVM and LDA. In comparison with L1LR, the most
significant drawback of RBF-SVM was time-consuming. RBF-
SVM created complex nonlinear boundaries, depending on the
RBF kernel function used in the current study; that is, more time
was required to optimize the parameters during the classification,
making it difficult to apply for BCIs via an online operating
system.

Compared with the othe two classifiers, the LDA classifier
showed a relatively poor generalization, which might be the
reason why EEG was a nonstationary signal (Qin and Ji, 2004),
and the differences between two types of signals (namely positives
and negatives) could not be simply distinguished by linear
mapping. The basic idea of LDA was to linearly project the
multidimensional data into the feature space where two types of
data could be best distinguished and to eventually create linear
boundaries for the two classes. Therefore, LDA might be mainly
suitable for the situation that the features of the two classes were
linearly separable but not suitable for nonlinear ERP features
(Liong and Foo, 2013). Moreover, LDA and RBF-SVMmight also
be subjected to overfitting, focusing too much on adjusting the
boundary to give an optimal fit to the training set, but failing
to produce a good general boundary between the two classes
(Dixon and Brereton, 2009). Therefore, the cross-validation was
utilized to avoid this problem in the current study. Also, the
L1LR model with sparsity based on the L1-norm might avoid
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the overfitting problem to a certain degree (Kim et al., 2007;
Park and Hastie, 2007). Moreover, the computational complexity
decreased because of the sparsity of L1LR model. In summary,
L1LR classifiers showed a good generalization, while LDA showed
a relatively poor generalization for the emotional classification
with single-trial N170 as a feature in the present study.

LIMITATIONS

Previous studies demonstrated that the vertex positive potential
(VPP) component recorded at the Fz electrode might be
the positive counterpart of N170 (George et al., 1996; Itier
and Taylor, 2004). Therefore, we did not discuss the VPP
component in the current study. Based on the standard analysis
of ERPs, we found that there was no obvious difference
between N170 trials with negative emotion and N170 trials with
neutral emotion after performing the paired t-test. Moreover,
according to the behavioral analysis, there was no obvious
difference in RT between positive face discrimination and
neutral face discrimination. For ACC, there was no significant
difference between neutral faces identification and negative faces
identification. In addition, there was no significant difference
on ACC between neutral faces identification and positive faces
identification. The reason for this situation might be that some
subjects mistakenly regarded expressionless pictures (namely
neutral facial expressions) as facial pictures with negative
emotions during the experiment, while some other subjects
might mistakenly regard neutral facial expressions as positive
expressions. Thus, we simply did the pattern classification
between positive samples and negative samples. The research
that included both amplitude and latency as features to classify
emotions could be interesting and valuable, which might increase
the classification performance. In future studies, we could
continue our study from this respect and might find something
interesting.

CONCLUSIONS

In the current study, we proposed using a single-trial N170
as a feature applied in the emotional classification. The results
illustrated that three classifiers, namely L1LR, RBF-SVM, and
LDA, were utilized to successfully classify positive and negative
samples, and L1LR showed a relatively good generalization
for pattern classification of different emotions while LDA
showed a relatively poor classification performance. The current
study could provide beneficial information for researchers in
emotion regulation; furthermore, the single-trial N170 could be a
biomarker to monitor the emotional states of subjects for the BCI
domain.
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